Keeping the Pace

Heart Rate Informed 3-D Motion Detection for Adaptive Temporal Smoothing

Oliver Taubmann^{1,2}, Günter Lauritsch³, Andreas Maier^{1,2}, Rebecca Fahrig⁴, and Joachim Hornegger^{1,2}

¹ Pattern Recognition Lab, FAU Erlangen-Nuremberg, Germany

² Graduate School in Advanced Optical Technologies (SAOT), Erlangen, Germany

- ³ Siemens Healthcare GmbH, Forchheim, Germany
- ⁴ Radiological Sciences Laboratory, Stanford University, California, USA

Fully4D June 4, 2015

Outline

- 1. Introduction
 - a) Clinical Setting
 - b) Motion Compensated 4-D Cardiac C-arm CT
- 2. Method
 - a) Adaptive Temporal Smoothing
 - b) Heart-Rate Informed 3-D Motion Detection
- 3. Experiments and Results
- 4. Summary

Clinical Setting

• Interventional 4-D (3-D+t) cardiac imaging with C-arm systems

Fig.: Artis zeego multi-axis C-arm system, Siemens Healthcare GmbH, Forchheim, Germany.

Fig.: Rotational angiogram, courtesy of Dr. Bernd Abt, Centre of Cardio-vascular Diseases, Rotenburg a.d. Fulda, Germany.

Gated Reconstruction

• Retrospective electrocardiography (ECG) gating [1]

Fig.: Projection images from a C-arm sweep belonging to the same relative heart phase.

[1] Desjardin et al.: ECG-gated Cardiac CT, Am J Roentgenol, 2004

State-of-the-Art: Motion Compensation

- Image quality of gated reconstructions insufficient
 - Artifacts due to angular undersampling
- Approach: Motion compensated reconstruction [1]
 - Estimate motion from initial reconstruction
 - Final reconstruction from all data

[1] Müller et al.: Image artefact propagation in motion estimation and reconstruction in interventional cardiac C-arm CT, *Phys. Med. Biol.*, 2014

Initial Image Reconstruction

- Severe artifacts in clinical patient data
- Reduced significantly by several steps:
 - Catheter removal [1]
 - Thresholding of filtered projections
 - McKinnon-Bates artifact suppression [2]
 - Joint bilateral filtering

[1] Müller et al.: Catheter artifact reduction (CAR) in dynamic cardiac chamber imaging with interventional C-arm CT, *Proc. 3rd international conference on image formation in X-ray CT*, pp. 418-421, 2014

[2] Mc Kinnon and Bates: **Towards imaging the beating heart usefully** with a conventional CT scanner, *IEEE Trans. Biomed. Eng.*, 1981

Fig.: Axial views of ECG-gated reconstructions from clinical data, with (bottom) and without (top) artifact reduction. Data courtesy of Dr. Abt, Centre of Cardiovascular Diseases, Rotenburg a.d. Fulda.

Temporal Inconsistency

Heart Rate Informed 3-D Motion Detection for Adaptive Temporal Smoothing

TECHNISCHE FAKULTÄT

Adaptive Temporal Smoothing

• Perform Gaussian smoothing in temporal domain:

$$\boldsymbol{I}_{s}^{t}(\boldsymbol{x}) = \sum_{t'=0}^{N_{\text{phases}}} \boldsymbol{I}^{t'}(\boldsymbol{x}) \cdot \frac{1}{\sigma(\boldsymbol{x})\sqrt{2\pi}} \exp\left(-\frac{\text{dist}^{2}(t,t')}{2\sigma^{2}(\boldsymbol{x})}\right)$$

• Choose $\sigma({m x})$ dependent on the amount of cardiac motion ${m M}_{\rm w}({m x})$

Heart Rate Informed 3-D Motion Detection

- Center piece of our method
- Key ideas:
 - 1. Projections show heart motion, but no artifacts correlated with it
 - 2. High temporal resolution (many individual heart beats)
 - 3. Frequency (heart rate!) is known from the ECG

Heart Rate Informed 3-D Motion Detection

- Approach:
 - 1. "Follow" x over the whole sweep
 - 2. Consider line integrals as temporal profile
 - 3. Perform frequency analysis, compute power spectrum
 - 4. Obtain energy $oldsymbol{M}(oldsymbol{x})$ assoc. with heart rate

Motion Maps

Spatial distribution of heart rate energy visualized:

Fig.: Color-coded visualizations of detected cardiac motion inside considered ROI for patients 1 and 2. Overlayed on reconstruction from all data for orientation. Warmer hues correspond to larger motion.

Heart Rate Informed 3-D Motion Detection

- Remove outliers and denoise:
 - Median filter (3 x 3)
 - Blur filter (1.5 mm std. dev.)

• Linear interpolation of $\sigma(\boldsymbol{x})$:

$$\sigma(\boldsymbol{x}) = \sigma_{\min} \cdot \boldsymbol{M}_{w}(\boldsymbol{x}) + \sigma_{\max} \cdot (1 - \boldsymbol{M}_{w}(\boldsymbol{x}))$$

Experiments and Results

TECHNISCHE FAKULTÄT

Data

- 2 clinical patient data sets (Rotenburg a. d. Fulda):
 - Acquisition duration 14.5 s, 381 projection images
 - Right ventricular pacing to 115 bpm (~27 heart beats)
 - Systemic contrast injection (91 ml total, pulmonary artery)
- Dynamic heart phantom data set [1,2]
 - Projections simulated using polychromatic X-ray spectrum
 - Ground truth reconstruction from projections of static phantom

[1] Segars et al.: 4D XCAT phantom for multimodality imaging research, *Medical Physics*, vol. 37, 2010.
[2] Maier et al.: CONRAD - A software framework for cone-beam imaging in radiology, *Medical Physics*, vol. 40(11), 2013

Experimental Setup

- 1. Generate initial images with and without temporal smoothing
- 2. Perform motion estimation and compensation on both
- 3. Compare final images (same projections, different motion)

Temporal Inconsistency Measured

- Static (uncontrasted, yellow) vs. dynamic (contrasted, red) regions
 - Uncontrasted blood / tissue should barely vary over time
 - Temporal variation in LV blood pool due to motion should be preserved

Fig.: Regions chosen for quantitative evaluation in patient 1, patient 2, and the phantom.

Temporal Inconsistency Measured

• Temporal statistics (mean \pm std), averaged over regions:

Data set	TS	Static	Dynamic
Patient 1	-	634 ± 70	964 ± 154
	\checkmark	635 ± 32	959 ± 148
Patient 2	-	776 ± 49	870 ± 83
	\checkmark	776 ± 23	866 ± 78
Phantom	-	593 ± 33	1232 ± 110
	\checkmark	594 ± 12	1230 ± 107

- Static: Std. dev. reduced by more than 50%
- Dynamic: Almost no change (despite higher means)

Phantom: Reduced Error

- RMSE reduced by about 9%
 - Not as dramatic as decrease in temporal variance
 - Improved temporal consistency reduces artifacts in spatial domain

Fig.: Phantom model reconstructions. Motion estimated from initial images processed with (right) and without (left) temporal smoothing. Color-coded error images: Absolute difference, MIP along z.

In Motion (Axial)

In Motion (Long Axis)

In Motion (Short Axis)

Summary

• Improving initial images for motion compensated reconstruction:

Heart Rate Informed 3-D Motion Detection

- · Frequency analysis of acquired projection images over time
- Efficient parallel computation for a single frequency

Adaptive Temporal Smoothing

- Based on spatial distribution of detected cardiac motion magnitudes
- Reduces temporal inconsistency while keeping the heart pace :-)
- For other protocols: potential extension of motion detection to, e.g., irregular heartbeat (arrhythmia)

Thanks for your attention!

Any questions?

TECHNISCHE FAKULTÄT

In Motion (Long Axis)

In Motion (VRT)

Frequency Analysis

- Computing $M(\mathbf{x})$ in parallel (with FFT): memory in $\mathcal{O}(N_{\text{voxels}} \cdot N_{\text{proj}}) \Rightarrow$ prohibitive, unless done blockwise!
- Better approach: Görtzel filter [1]
 - Computes DFT for a single frequency efficiently
 - Two-stage recursive filter (i.e., constant memory footprint)
- Advantages over FFT (in our use case):
 - Memory complexity of $\mathcal{O}(N_{\text{voxels}})$ vs. $\mathcal{O}(N_{\text{voxels}} \cdot N_{\text{proj}})$
 - Runtime complexity of $\mathcal{O}(N_{\text{proj}})$ vs. $\mathcal{O}(N_{\text{proj}} \cdot \log N_{\text{proj}})$

[1] Goertzel et al.: An algorithm for the evaluation of finite trigonometric series, American Mathematical Monthly, 1958.