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Abstract. Organ motion occuring during acquisition of medical images
can cause motion blur artifacts, thus posing a major problem for many
commonly employed modalities. Therefore, compensating for that mo-
tion during image reconstruction has been a focus of research for several
years. However, objectively comparing the quality of different motion
compensated reconstructions is no easy task. Often, intensity profiles
across image edges are utilized to compare their sharpness. Manually
positioning such a profile line is highly subjective and prone to bias.
Expanding on this notion, we propose a robust, semi-automatic scheme
for comparing edge sharpness using an ensemble of profiles. We study
the behavior of our approach, which was implemented as an open-source
tool, for synthetic data in the presence of noise and artifacts and demon-
strate its practical use in respiratory motion-compensated MRI as well
as cardiac motion-compensated C-arm CT.

1 Introduction

Motion artifacts such as image blurring are caused by movements of the imaged
objects during acquisition, leading to inconsistent raw data. To obtain high-
quality images using all of the acquired data—as opposed to a retrospective
gating—this inconsistency must be addressed during image reconstruction. A
typical approach is to estimate the motion from an initial reconstruction and sub-
sequently or jointly perform another motion-compensated reconstruction from
all data [1, 2]. Comparing the quality of motion-compensated reconstructions in
terms of common measures such as the signal-to-noise ratio of the reconstructed
image is of limited value: A noise-free image may be obtained even if the motion
was estimated incorrectly. In fact, many pixel-wise distance measures used in
phantom studies are dominated by homogeneous regions as well. Therefore, it
makes sense to attempt to directly measure the entity that is supposed to be im-
proved, i. e. the sharpness of an edge. For this purpose, analyses of modulation
transfer functions (MTF) of slanted edges [3] used to be common, but they are
not applicable to non-linear reconstruction methods which are dependent on the
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imaged object. Here, the measurements need to be performed on the represen-
tative object itself. Typically, in order to perform such measurements, intensity
profile lines across edges are considered [4]. Proper selection of these lines is
crucial, but typically amounts to visual inspection based on personal experience.

We propose a more robust, objective approach, comparable to e. g. [5], that
aims to measure edge sharpness reliably from a large number of semi-automatically
placed profile lines and is explained in section 2. In section 3, its merits are
demonstrated using a synthetic phantom and shown exemplarily for respira-
tory motion-compensated 3-D whole-heart coronary magnetic resonance imaging
(MRI) [2] and cardiac motion-compensated C-arm computed tomography (CT)
of the heart [1]. We discuss and conclude the paper in section 4.

2 Materials and methods

Let us first identify the main problems of manual placement of a profile line:

P1 Susceptibility to noise. Even noise that is incoherent with the signal and
randomly distributed will influence the measurement if it cannot be sepa-
rated reliably in the 1-D profile, which is often the case. As this influence
is generally not consistent for different reconstructions, comparing a profile
line across images may be problematic.

P2 Susceptibility to artifacts. For similar reasons, artifacts pose a problem to
this approach. In contrast to (moderate) noise, however, they may com-
pletely render a profile invalid in one image but not the other. For instance,
consider a streak artifact coinciding with the profile line in one image, which
happens to appear at a different position along the same edge in the other.

P3 Placement bias. With no automated process for positioning the profiles,
there is no way to avoid a subjective placement, potentially unconsciously
biased toward a certain outcome.

P4 Mismatch of desired and measured entity. This is a more abstract, conceptual
issue than (P1) through (P3). The entity we are interested in is the sharpness
of an originally motion blurred edge. Reducing this problem to measuring
the sharpness of a profile is a simplification which may or may not be valid

Fig. 1. A schematic overview of our approach to measuring edge sharpness from a
large number of semi-automatically placed intensity profile lines.
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in any given case. The closer we can get to measuring the relevant entity,
i. e. the less we have to simplify, the more trustworthy our results.

We address each of these problems with our approach, which is summarized be-
low and illustrated in Fig. 1. An obvious and common choice for alleviating the
susceptibility to noise and artifacts is using multiple profile lines and some form
of averaging of the measurements for increased robustness. Manually choosing
a large number of lines, though, is time-consuming and may even increase the
effect of placement bias. If they are to be averaged, it also requires the chosen
profiles to be somewhat comparable. Therefore, starting from the core idea be-
hind (P4), the first and only manual step in our method is to select the desired
edge by roughly tracing it with a connected sequence of line segments. Along
this segmentation, profile lines of equal length are generated at short equidis-
tant steps, oriented orthogonally to the segmented line. They cover the edge
densely and completely, eliminating placement bias. Naturally, there still re-
mains a possibility for bias while choosing the edge, although we believe that it
is considerably less dangerous than manually placing profiles. For each profile,
an estimate of its sharpness is obtained. For this purpose, the image is sam-
pled densely along the profile line, which is subsequently reoriented, if necessary,
such that the intensities are rising. A region of interest is defined starting at the
location of the minimum intensity in the first half of the profile and ending at
that of the maximum in the second. In this region, the slope of the least squares
regression line fit is computed as
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where s� contains the distances in physical units of the N� sample locations
within the region of interest and I� the corresponding intensities along profile
line �. The slope ξ� serves as a rough measure of the edge sharpness locally,
but as explained above, we do not expect it to be very robust. Averaging all
the ξ� would now reliably eliminate susceptibility to noise, yet artifacts can be
the cause of outliers strongly affecting the mean value. Hence, we select the

Fig. 2. The upper row shows a motion-blurred image (a) and the edge selected for
comparison (b). Below, a motion-compensated reconstruction (c) and the edge sharp-
ness increase (d) can be seen, with stronger hues of red indicating a larger relative
change. The plot shows the corresponding sharpness estimates along the edge for both
images.
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total edge sharpness as ξ∗ = median[ξ], where ξ = [ξ0, ξ1, . . . , ξM−1]
� with M

the number of profiles. For two comparable images showing the same edge, the
sharpness can now be compared quantitatively using the ratio of their respective
ξ∗. Our approach can also support a qualitative, visual comparison. Instead
of computing a single sharpness value for the whole edge, we can alternatively
restrict the median computation to a smaller window to retain the spatial infor-
mation, i. e. apply a median filter to ξ. Plotting the color-coded ratios of two
vectors filtered in that manner on top of the corresponding edge shows in which
regions the sharpness has increased the most (Fig. 2). It facilitates an intuitive
understanding and “sanity check” of the performed measurements.

2.1 Experiments

For a first validation of our method, we use a Gaussian-blurred Shepp-Logan
phantom as well as a slightly sharper version (Fig. 3, left). The latter is ad-
ditionally corrupted with noise or artifacts to obtain test images for which we
expect roughly the same relative increase in edge sharpness compared to the
original blurred image. Next, we assess the performance in real-world scenar-
ios by comparing measured edge sharpness values to scores assigned by people
working in the field of medical image reconstruction (hereafter referred to as
experts). The first data set we use for this purpose is a C-arm CT acquisi-
tion of a porcine model [6]. Over 14.5 s, 381 projection images are acquired
in a single sweep. Right atrial pacing and systemic injection of contrast agent
ensure a sufficient quality of the initial electrocardiography-gated reconstruc-
tions. Each phase is deformably registered to the reference phase using a uni-
form B-Spline motion model [1, 7]. Subsequently, a motion-compensated re-
construction is performed for the reference phase (Fig. 4, left). The second
data set stems from an in-vivo volunteer experiment using a 1.5T clinical MR
scanner. The measurement was taken with electrocardiography triggering to
avoid cardiac motion artifacts, but in free breathing. Respiratory motion is
taken into account with a motion-compensated reconstruction [2] using displace-
ment fields computed with Demons at half resolution and Bilateral Demons [8]
(Fig. 5, left). The edge sharpness measurement tool is openly available on
http://www5.cs.fau.de/research/software/.

3 Results

The table in Fig. 3 shows the results of our phantom study. The proposed
approach achieved the most consistent measurements (smallest standard devia-
tion) compared to manually placed smaller sets of profile lines. Note that the
sets in (ii) and (iv) do not touch the simulated artifact; hence, they measure
the same values in the corresponding case (d). Nevertheless, they show higher
standard deviations due to the noise case (c) alone. In the tables of Figs. 4 and 5,
the sharpness scores given to each image by experts are compared to the com-
puted edge sharpness estimates. Expert annotation was performed without any



Edges in Motion-Compensated Reconstruction 429

prior knowledge of the employed reconstruction algorithms or the computed es-
timates. In both experiments, the sharpest (least sharp) image according to our
measurements also received the highest (lowest) score. The difference between
the uncompensated and the motion compensated images is larger than the differ-
ence between the two motion compensated versions consistently in both scores
and measurements. For the C-arm CT images, even the relative distances are
preserved well. As there still is a slight slope present in the uncompensated re-
constructions despite the edge appearing strongly blurred visually, our approach
yields comparatively larger values here.

Image Profiles

(i) (ii) (iii) (iv)

(b) vs. (a) 1.477 1.504 1.412 1.345

(c) vs. (a) 1.459 1.936 1.334 1.487

(d) vs. (a) 1.463 1.504 0.133 1.345

Std. dev. 0.0095 0.25 0.72 0.082

Fig. 3. The top row shows a blurred phantom image (a) and a sharper version (b)
corrupted with noise (c) and a large artifact (d). In the bottom row, profile lines
covering the whole edge (i) or parts of it (ii, iii, iv) are plotted on top of the blurred
image. The table on the right lists the edge sharpness increase as described in the text
for different combinations of images and profile lines used to measure the sharpness.

Image Edge sharpness Expert score

(a) 0.0402 3.43± 0.53

(b) 0.0296 2.14± 0.69

(c) 0.0114 0.00± 0.00

Fig. 4. Two different motion-compensated C-arm CT images (a,b) of a porcine model
are shown together with an uncompensated FDK reconstruction (c) for comparison.
B-Spline based deformable motion estimation [7] was performed with a control point
spacing of 8mm (a) and 16mm (b). The table lists the computed sharpness as well as
the average scores (4 = very sharp, 0 = blurred) of 7 experts for the highlighted edge.

Image Edge sharpness Expert score

(a) 0.0604 2.00± 0.58

(b) 0.0724 3.57± 0.53

(c) 0.0367 0.29± 0.49

Fig. 5. Two different motion-compensated MR images (a,b) of a volunteer are shown
together with an uncompensated reconstruction (c) for comparison. Demons at half
resolution (a) and Bilateral Demons [8] (b) motion estimation was performed. The
table lists the computed sharpness as well as the average scores (4 = very sharp, 0 =
blurred) of 7 experts for the highlighted edge.
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4 Discussion

In summary, the edge sharpness values computed by our method are in agree-
ment with the visual impression and exhibit increased robustness compared to
the manual approach. Artifacts and noise still have an influence on the mea-
surements as they locally affect the observed sharpness, but it is reduced consid-
erably. A limitation of our method lies in reconstruction methods that enforce
sharp edges. In this case, the sharpness of an edge is no longer a clear indication
that the motion of this edge was indeed estimated correctly, eliminating the va-
lidity of our main criterion. However, note that this also applies to the manual
placement of profile lines we compare our method with. Further improvements
of our approach in the future could include an integrated intensity normalization
scheme, the use of higher-order splines instead of line segments for representing
the edge, a pre-segmentation step to automatically generate a set of edges to
select from, as well as a variety of different per-profile estimators of sharpness.
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