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Abstract- Statistical shape models learn valid variability
from example shapes, making large training sets favorable.
Methods for automatic training set generation use transforms
obtained by registration to propagate atlas landmarks to new
samples. Algorithms based on B-spline transforms and mu-
tual information (MI) were successfully employed for the car-
diac anatomy in CT and MRI. For single-modality data, how-
ever, computationally less complex algorithms such as Thirion’s
Demons can be used, allowing for reduced computation times.
We implemented two multi-resolution registration-based seg-
mentation pipelines based on Thirion’s Demons, and MI-driven
B-spline transforms, respectively, fixed the parameters, and
evaluated their performance in whole heart segmentation of
contrasted CT angiography images. The segmentation quality
was assessed qualitatively using visual inspection and quanti-
tatively using expert ratings. While the Demons-based algo-
rithm required less computation time, the results of the B-spline-
based pipeline were in better agreement with the tested data
and achieved a higher expert score (3.33± 0.51 compared to
2.19± 0.45). We found registration using B-spline transforms
and MI to be favorable, as the application is not time-sensitive.
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I.INTRODUCTION

The significance of statistical shape models (SSMs) is
largely dependent on their training sets. Training set genera-
tion implies segmentation of sufficiently many, representative
shapes. Establishing point correspondence among all sam-
ples is imperative but challenging [8]. Registration-based
segmentation algorithms avoid this problem by propagating
landmarks from an atlas segmentation to unseen images us-
ing coordinate transforms obtained by image registration.
Frangi et al. propagated landmarks from an atlas image to
manually segmented images by non-rigid registration of seg-
mentation masks [2]. The need for manual segmentation of
all input data imposes a practical limitation on the size of
the training set. To overcome this limitation, Ordas et al.
directly operate on intensity images using free-form defor-
mations and mutual information (MI) [6].

While algorithms using B-spline transforms and MI have
been shown capable of dealing with large inter-subject and
temporal variability of the cardiac anatomy [10], they re-
quire optimization of a complex similarity metric in high-
dimensional parameter space. For intra-modality registration,
however, the mean squares metric and Thirion’s Demons [9]
can be employed, leading to decreased computational com-
plexity and therefore computation time.
We implemented two registration-based segmentation
pipelines using Thirion’s Demons, and MI-driven B-spline
transforms, respectively, and evaluated their performance in
automatic cardiac segmentation. All algorithms are imple-
mented in C++ using the Insight Toolkit (ITK) [4].

II.MATERIALS AND METHODS

The initial segmentation was performed manually on a ret-
rospectively gated contrasted coronary angiography CT scan
of a 45 year old female at best diastolic phase (78%). The re-
constructed volume has 512×512×241 voxels with a voxel-
size of 0.29× 0.29× 0.5mm. We segmented the descending
aorta, right atrium and ventricle, left atrium and ventricle, and
left ventricular myocardium.
The discussed algorithms both have the same structure out-
lined below:

• Bilateral Filtering,

• Rigid image registration using a similarity transform,

• Non-rigid image registration using multiple resolution
levels,

• Propagation of the atlas segmentation.

Preprocessing and atlas propagation is similar in both
pipelines, but registration steps are substantially different. All
objective functions are optimized using gradient-descent.
A. Demons-based Pipeline

This registration pipeline is suitable for intra-modality reg-
istration, as it assumes that homologous points are repre-
sented by the same intensity. Using the mean-squares metric,
the objective function of the rigid registration with transform

1



T reads:

argmin
T

MS( f ,m,T ) = argmin
T

1
N

N

∑
i=1

( f (xi)−m(T (xi)))
2 ,

(1)
where f and m are the fixed and moving image, respectively,
xi is the physical position of the ith pixel in the fixed im-
age, and N is the number of samples considered. For rigid
registration T is a similarity transform allowing for rotation
R ∈ Rn×n, translation t ∈ Rn, and isotropic scaling σ :

T (x) = Rx+ t, (2)

such that det(R)=σn. We used 10% of the fixed image pixels
and 300 iterations. Rigid registration is followed by Thirion’s
Demons algorithm on four scale-space levels. The algorithm
iteratively updates an initial displacement field D0(x). The
updates are calculated using optical flow and the local image
gradient followed by renormalization:

D(x) =− (m(x)− f (x))∇ f (x)

‖∇ f (x)‖2 +(m(x)− f (x))2 /K
, (3)

where K is a normalization factor. For greater detail refer
to [9]. The resulting deformation field is smoothed with a
Gaussian kernel with a standard deviation of 1.2mm after
each iteration. The number of iterations were 1500, 1200,
750 and 150 from coarse to fine. The runtime of 1h49min
was measured for the registration of a volumetric image with
512×512×241 pixels to the initially segmented volume on
a 64Bit Windows 7 laptop equipped with an Intel R© CoreTM

i7-3632QM operating at 2.20GHz and 8GB RAM.
Implementations of the Demons algorithm on the GPU are
available allowing for significant acceleration.
B. B-spline-based Pipeline

Using MI as the similarity metric allows for intra- but also
for inter-modality registration as no assumptions about in-
tensity correlations are made. Using MI, however, increases
computational complexity and hence computation time. As-
suming a transform T , one has to optimize:

argmax
T

MI( f ,m,T )

= argmax
T

∑
i, j

p f m ( f (xi),m(T (x j))) · · ·

log
(

p f m ( f (xi),m(T (x j)))

p f ( f (xi)) pm (m(T (x j)))

)
, (4)

where p f and pm, and p f m are the marginal and joint prob-
ability density functions (i.e. histograms) of the fixed and
moving image, respectively. Derivations can be found in [5].

For rigid registration, we combine the objective function in
Eq. 4 with the transform defined in Eq. 2. We use 70 his-
togram bins and 10% of the central fixed image pixels for the
calculation of MI, and 150 iterations for optimization.

Free form models deform an object by manipulating an un-
derlying mesh of control points and can be connected to any
similarity metric. Higher dimensional deformations can be
written as the tensor product of 1D cubic B-Splines defined
on the domain 0 < x < xmax:

T (x) =
3

∑
n=0

Bn(u)Φk+n, (5)

where k = b x
nx
c−1, u= x

nx
−b x

nx
c, nx is the number of control

points Φi in that direction and Bn(u) represents the nth cubic
B-spline basis function [7]. We used 4, 9, 13, and 18 grid
nodes with 300, 250, 200, and 150 iterations in the coarse to
fine resolution scheme. 70 histogram bins and 10% of the
fixed image pixels were used for the estimation of the un-
derlying probability density functions. Using the hardware
described above the runtime was 2h21min.

III.RESULTS

We evaluate the performance of both pipelines by com-
paring the resulting segmentation accuracy. Findings will be
motivated using representative data sets of a female patient’s
heart at end diastole and a male patient’s heart at end systole.
Results obtained with the Demons-based pipeline are con-
sistently worse compared to the ones obtained with the B-
spline-based approach. The segmentation of left ventricle,
and myocardium is of similar accuracy in the female patient’s
data set (c.f. Fig. 1(a) and 1(d)). In both cases, however,
the myocardium extends too far into the surrounding tissue
(emphasized in Fig. 1(a)). The boundary between aorta and
left ventricle is inaccurately determined with Demons-based
segmentation. The most significant error can be observed in
Fig. 1(d), where the delineation of the right atrium extends
into the aorta and left ventricle. Neither error can be observed
in the B-spline-based segmentation in this data set.
For the male patient’s data set, the segmentation of the right
atrium is not very accurate in the B-spline case, however, it
is worse for the Demons pipeline (evident in Fig. 1(b) and
1(e)). The right atrium comprises great vessels while parts
of the right ventricle are shifted into the right atrium in both
cases (not shown). The Demons-based algorithm gives par-
ticularly incorrect delineations of left atrium and ventricle,
and myocardium. The erroneous segmentation leads to larger
left ventricular and myocardial volumes (refer to Fig. 1(e)).
Three experts were asked to independently judge segmenta-
tion quality of both pipelines for all ten acquired phases of the
cardiac cycle on a scale from 0 to 5, where 5 indicates perfect
segmentation accuracy and 0 indicates erroneous delineation
of all anatomical components. The results are shown in Ta-
ble 1.
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(a) Female, B-splines: Coronal view (b) Male, B-splines: Coronal view (c) Ground truth segmentation: Axial view

(d) Female, Demons: Coronal view (e) Male, Demons: Coronal view (f) B-Splines, Best case scenario: Axial view

Fig. 1 Segmentation results for the female patient’s heart at end diastole: 1(a) 1(d), the male patient’s heart: 1(b) 1(e), the ground truth
segmentation: 1(c), and an optimal segmentation result obtained with the B-spline pipeline: 1(f).

IV.DISCUSSION AND CONCLUSION

We compared the performance of two registration-based
segmentation algorithms in automatic whole heart segmenta-
tion.
Results of the Demons-based pipeline indicated poor perfor-
mance for marginally separated structures, such as the right
atrium and ventricle. We observed erroneous segmentations
of such structures in all samples. The displacements are
derived from optical flow, which inherently assumes that cor-
responding pixels are of constant intensity in all images. In
the present case, every pixel associated with blood has simi-
lar intensities and is hence equivalent in the sense of optical
flow computation. The minimalistic regularization of the dis-
placement field (Gaussian smoothing) was not sufficient to
obtain correct mappings.
We found segmentations obtained with the B-spline pipeline
to be more satisfactory. Although we observed similar prob-
lems with marginally separated anatomical structures, seg-
mentations of the right and left ventricular blood pool mostly
were in good agreement with the tested data. Misalignments,
in particular the ones observed with the myocardium (c.f.
Fig. 1(b)), can likely be explained by too coarse binning of
the histograms, making discrimination of structures with sim-

ilar intensities impossible. Due to the finite support region,
B-spline transform deformations are smooth. In agreement
with [6], the study indicated that B-spline transforms can
cope with inter-subject and temporal variability.
Global contrast induced variations of blood pool intensity
(compare 1(a) and 1(c)) can have significant impact on mean
squares-based registrations. MI-based registrations, however,
are largely unaffected. This allows for consistent segmenta-
tion quality over the cardiac cycle in the presence of contrast
agent washout. Local variations in contrast agent concentra-
tion, however, can drastically influence both metrics. Strong
intensity variations due to contrast enhancement were ob-
served especially in the right atria.
Segmentation accuracy was similar in all data sets, suggest-
ing that the initial rigid registration can sufficiently explain
variations in size and pose. The evaluation indicated im-
proved segmentation accuracy for the diastolic phases. This
effect arises from the use of an initial segmentation of a
data set at end diastole, biasing segmentations towards this
heart state (see Table 1). While the Demons-based pipeline
allowed for shorter computation times (acceleration on the
GPU possible), the B-spline-based pipeline provided more
accurate segmentations. As this particular use-case was not
time-sensitive, MI-driven registration using B-spline trans-
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Table 1 Scores on a scale from 0 to 5 for the segmentation results of both pipelines.

00% 10% 20% 30% 40%
B-spline: 3.67±0.61 3.25±0.52 3.25±0.76 2.75±0.88 2.25±0.69
Demons: 2.58±0.58 2.08±0.74 2.00±0.00 1.67±0.52 1.42±0.49

50% 60% 70% 80% 90%
B-spline: 3.25±0.69 3.67±0.52 3.50±0.63 3.75±0.42 3.92±0.49
Demons: 2.08±0.20 2.25±0.27 2.33±0.26 2.58±0.58 2.92±0.66

forms was favorable.
The pipelines were designed with automatic segmentation
in mind. Therefore, the respective registration parameters
have not been fine-tuned to each data set, implying average
segmentation performance in above examples. Figure 1(f)
suggests that very accurate segmentations are possible, if the
registration parameters perfectly match the images to be reg-
istered.
Parameter choice is a trade-off between segmentation accu-
racy and computation time. Future research could focus on
fine-tuning registration parameters at run-time similar to [3].
Neither pipeline currently uses prior knowledge. Shape sim-
ilarity metrics between transformed and initial mesh could
be introduced as regularization of the registration and knowl-
edge about shape changes during the cardiac cycle could be
exploited. Regularization might also be employed to cope
with the erroneous segmentation of low contrast separations
between anatomical structures, which would drastically im-
prove segmentation quality [1]. The proposed registration-
based segmentation pipeline using B-spline transforms and
MI is not only applicable to automatic whole heart segmen-
tation, but can easily be adapted to other segmentation prob-
lems, provided that an initial segmentation is available.
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