Image-based Compensation for Involuntary Motion in Weight-bearing C-arm CBCT Scanning of Knees

Mathias Unberath, Jang-Hwan Choi, Martin Berger, Andreas Maier, Rebecca Fahrig

February 24, 2015

Pattern Recognition Lab, FAU Erlangen-Nürnberg
Radiological Sciences Lab, Stanford University
Context

- Knee-joint kinematics change under strain
 - In particular: different flexion angles
 → Weight-bearing imaging may be advantageous

- Enable weight-bearing acquisitions
 → Dedicated CBCT scanners
 → Existing systems

- C-arm CT scanners
 → Horizontal trajectories
 → Wide volumetric beam coverage
Context

- Knee-joint kinematics change under strain
 - In particular: different flexion angles
 - Weight-bearing imaging may be advantageous

- Enable weight-bearing acquisitions
 - Dedicated CBCT scanners
 - Existing systems

- C-arm CT scanners
 - Horizontal trajectories
 - Wide volumetric beam coverage
Context

- Knee-joint kinematics change under strain
 - In particular: different flexion angles
 - Weight-bearing imaging may be advantageous

- Enable weight-bearing acquisitions
 - Dedicated CBCT scanners
 - Existing systems

- C-arm CT scanners
 - Horizontal trajectories
 - Wide volumetric beam coverage
Context

- Weight-bearing acquisitions:
 → From standing upright through to deep squats (65° flexion)

- Involuntary knee motion during scans
 → Severe motion artifacts

- Previously: Use of fiducial markers
 Compensation in:
 - Reconstruction space
 - Projection space

Image-based compensation possible?
Context

- Weight-bearing acquisitions:
 → From standing upright through to deep squats (65° flexion)

- Involuntary knee motion during scans
 → Severe motion artifacts

- Previously: Use of fiducial markers
 Compensation in:
 - Reconstruction space
 - Projection space

Image-based compensation possible?
Context

- Weight-bearing acquisitions:
 → From standing upright through to deep squats (65° flexion)

- Involuntary knee motion during scans
 → Severe motion artifacts

- Previously: Use of fiducial markers
 Compensation in:
 - Reconstruction space
 - Projection space

Image-based compensation possible?
Context

- Weight-bearing acquisitions:
 - From standing upright through to deep squats (65° flexion)

- Involuntary knee motion during scans
 - Severe motion artifacts

- Previously: Use of fiducial markers
 Compensation in:
 - Reconstruction space
 - Projection space

Image-based compensation possible?
Outline

• Review of the marker-based approach
• Introduction to the image-based approach
• Results
• Conclusions
Outline: Projection Shifting Algorithm

1. Generate projections of the static 3D scene
 - Estimate static (mean) 3D position of features (e.g. markers)
 - Forward project the scene

2. Calculate projection shifts

3. Apply shifts and back-project
Marker-based Projection Shifting

- Detect position \((u, v)_i^{(j)}\) of marker \(i = 1, \ldots, N\) in projection \(j\)
- Calculate mean marker position \((\bar{x}, \bar{y}, \bar{z})_i\) in 3D space

Calculate 2D shift:

\[
(\Delta u, \Delta v)^{(j)T} = \frac{1}{N} \sum_i \left(P^{(j)} \cdot \bar{x}_i^T - (u, v)_i^{(j)T} \right)
\]
Marker-based Projection Shifting

- Detect position \((u, v)_i^{(j)}\) of marker \(i = 1, \ldots, N\) in projection \(j\)
- Calculate mean marker position \((\bar{x}, \bar{y}, \bar{z})_i\) in 3D space

Calculate 2D shift:

\[
(\Delta u, \Delta v)^{(j)T} = \frac{1}{N} \sum_i \left(P^{(j)} \cdot \bar{x}_i^T - (u, v)^{(j)T} \right)
\]
Image-based Projection Shifting

Use image registration to calculate 2D projection shifts.

- Estimate of motion-corrected projections
 1. FDK-type uncompensated reconstruction
 2. Gaussian smoothing
 3. Maximum-Intensity-Projections (MIPs) of the volume
 → MIPs dominated by high-intensity structures

- Calculate projection shifts \((\Delta u, \Delta v)^{(j)}\)
 1. Registration of MIPs to motion-corrupted projections
 → Mutual information in 4 scale-space levels

- Shift and reconstruct
Image-based Projection Shifting

Use image registration to calculate 2D projection shifts.

- Estimate of motion-corrected projections
 1. FDK-type uncompensated reconstruction
 2. Gaussian smoothing
 3. Maximum-Intensity-Projections (MIPs) of the volume
 → MIPs dominated by high-intensity structures

- Calculate projection shifts \((\Delta u, \Delta v)^{(i)}\)
 1. Registration of MIPs to motion-corrupted projections
 → Mutual information in 4 scale-space levels

- Shift and reconstruct
Image-based Projection Shifting

Use image registration to calculate 2D projection shifts.

- Estimate of motion-corrected projections
 1. FDK-type uncompensated reconstruction
 2. Gaussian smoothing
 3. Maximum-Intensity-Projections (MIPs) of the volume → MIPs dominated by high-intensity structures

- Calculate projection shifts \((\Delta u, \Delta v)^{(j)}\)
 1. Registration of MIPs to motion-corrupted projections → Mutual information in 4 scale-space levels

- Shift and reconstruct
Image-based Projection Shifting

Use image registration to calculate 2D projection shifts.

- Estimate of motion-corrected projections
 1. FDK-type uncompensated reconstruction
 2. Gaussian smoothing
 3. Maximum-Intensity-Projections (MIPs) of the volume → MIPs dominated by high-intensity structures

- Calculate projection shifts \((\Delta u, \Delta v)^{(i)}\)
 1. Registration of MIPs to motion-corrupted projections → Mutual information in 4 scale-space levels

- Shift and reconstruct
Remarks on Mutual Information

How much information about m is contained in f

Mutual information

$$MI(m(x), f(T(x))) = H(m(x)) + H(f(T(x))) - H(m(x), f(T(x)))$$

- Marginal and joint entropy: $H(y)$, $H(y, z)$
- Calculated from histograms: Parzen Window approximation

→ No explicit form of dependency needed.

But the histograms must be "related".
Procedure

- Perform FDK-type reconstruction
 → Modeling clay to avoid detector saturation
Procedure

- Calculate MIPs and register to acquisitions
 → Note clay artifact in MIPs
Experiments:

- Five healthy volunteers imaged
- Standing upright, 35° and 65° flexion
 → Two scans with significant motion artifact shown
 Scan A at 35° and Scan B at 65° flexion

Evaluation:

- Qualitatively: visual inspection
- Quantitatively: marker-based results (gold standard)
Results: Scan A

Error: $2.89 \text{ mm} \pm 1.24 \text{ mm}$ (uncorrected: $3.50 \text{ mm} \pm 1.90 \text{ mm}$)
Results: Scan A

Uncompensated reconstruction

Proposed method
Remarks

- Both knees "aligned"
- Boundaries in u-direction pronounced
- Boundaries in v-direction suppressed (artifact)
- Structures resulting from overlap not present in MIPs
- Registration becomes more challenging
Remarks

- Both knees "aligned"
- Boundaries in u-direction pronounced
- Boundaries in v-direction suppressed (artifact)
- Structures resulting from overlap not present in MIPs
- Registration becomes more challenging
Results: Scan B

Detector u-coordinate

Detector v-coordinate

Error: 2.90 mm ± 1.43 mm
(uncorrected: 4.10 mm ± 3.03 mm)
Results: Scan B

Uncompensated reconstruction

Proposed method
Observations

Mean error after correction remains significant in both scans.

Can we get better with iterative application of the method?

Iterative application did not help with the current pipeline.

Possible reasons:

- Using MIPs as reference projections is not optimal
- Mutual information cannot handle the given problem
Performance w.r.t. Marker-based Method

Figure: Uncompensated, proposed and marked-based reconstructions
Discussion and Conclusion

Motion must be visible in high-intensity structures
→ Biased registration in the presence of artifacts (modeling clay)

Stable registration remains challenging
• MIPs & acquisition: dissimilar intensity range and appearance
→ Best similarity metric?
→ Use iterative reconstruction and integrated projections?

3D motion compensation using 3D/2D registration

First step towards automatic image-based motion compensation for weight-bearing knee imaging
Discussion and Conclusion

Motion must be visible in high-intensity structures
→ Biased registration in the presence of artifacts (modeling clay)

Stable registration remains challenging
• MIPs & acquisition: dissimilar intensity range and appearance
→ Best similarity metric?
→ Use iterative reconstruction and integrated projections?

3D motion compensation using 3D/2D registration

First step towards automatic image-based motion compensation for weight-bearing knee imaging