Image-based Compensation for Involuntary Motion in Weight-bearing C-arm CBCT Scanning of Knees

Mathias Unberath, Jang-Hwan Choi, Martin Berger, Andreas Maier, Rebecca Fahrig

February, 24. 2015

Pattern Recognition Lab, FAU Erlangen-Nürnberg Radiological Sciences Lab, Stanford University

Stanford University Medical Center

TECHNISCHE FAKULTÄT

- Knee-joint kinematics change under strain
 - In particular: different flexion angles
- Enable weight-bearing acquisitions
 - → Dedicated CBCT scanners
 - → Existing systems
- C-arm CT scanners
 - ightarrow Horizontal trajectories
 - ightarrow Wide volumetric beam coverage

- Knee-joint kinematics change under strain
 - In particular: different flexion angles
 - Weight-bearing imaging may be advantageous
- Enable weight-bearing acquisitions
 - \rightarrow Dedicated CBCT scanners
 - \rightarrow Existing systems
- C-arm CT scanners
 - → Horizontal trajectories
 - \rightarrow Wide volumetric beam coverage

- Knee-joint kinematics change under strain
 - In particular: different flexion angles
 - → Weight-bearing imaging may be advantageous
- Enable weight-bearing acquisitions
 - \rightarrow Dedicated CBCT scanners
 - \rightarrow Existing systems
- C-arm CT scanners
 - \rightarrow Horizontal trajectories
 - ightarrow Wide volumetric beam coverage

- Weight-bearing acquisitions:
 - ightarrow From standing upright through to deep squats (65° flexion)
- Involuntary knee motion during scans
 - ightarrow Severe motion artifacts
- Previously: Use of fiducial markers Compensation in:
 - Reconstruction space
 - Projection space

- Weight-bearing acquisitions:
 → From standing upright through to deep squats (65° flexion)
- Involuntary knee motion during scans
 → Severe motion artifacts
- Previously: Use of fiducial markers Compensation in:
 - Reconstruction space
 - Projection space

- Weight-bearing acquisitions:
 - → From standing upright through to deep squats (65° flexion)
- Involuntary knee motion during scans
 → Severe motion artifacts
- Previously: Use of fiducial markers Compensation in:
 - Reconstruction space
 - Projection space

- Weight-bearing acquisitions:
 - → From standing upright through to deep squats (65° flexion)
- Involuntary knee motion during scans
 → Severe motion artifacts
- Previously: Use of fiducial markers Compensation in:
 - Reconstruction space
 - Projection space

Outline

- Review of the marker-based approach
- Introduction to the image-based approach
- Results
- Conclusions

Outline: Projection Shifting Algorithm

- 1. Generate projections of the static 3D scene
 - Estimate static (mean) 3D position of features (e.g. markers)
 - Forward project the scene
- 2. Calculate projection shifts
- 3. Apply shifts and back-project

Marker-based Projection Shifting

- Detect position $(u, v)_i^{(j)}$ of marker i = 1, ..., N in projection j
- Calculate mean marker position $(\bar{x}, \bar{y}, \bar{z})_i$ in 3D space

$(\Delta u, \Delta v)^{(j)T}$	$= \frac{1}{N} \sum_{i} \left(\mathbf{P}^{(j)} \cdot \bar{\mathbf{x}}_{i}^{T} - (u, v)_{i}^{(j)T} \right)$

Marker-based Projection Shifting

- Detect position $(u, v)_i^{(j)}$ of marker i = 1, ..., N in projection j
- Calculate mean marker position $(\bar{x}, \bar{y}, \bar{z})_i$ in 3D space

Calculate 2D shift: $(\Delta u, \Delta v)^{(j)T} = \frac{1}{N} \sum_{i} \left(\mathbf{P}^{(j)} \cdot \bar{\mathbf{x}}_{i}^{T} - (u, v)_{i}^{(j)T} \right)$

Use image registration to calculate 2D projection shifts.

- Estimate of motion-corrected projections
 - 1. FDK-type uncompensated reconstruction
 - 2. Gaussian smoothing
 - 3. Maximum-Intensity-Projections (MIPs) of the volume → MIPs dominated by high-intensity structures
- Calculate projection shifts $(\Delta u, \Delta v)^{(j)}$
 - Registration of MIPs to motion-corrupted projections
 → Mutual information in 4 scale-space levels
- Shift and reconstruct

Use image registration to calculate 2D projection shifts.

- Estimate of motion-corrected projections
 - 1. FDK-type uncompensated reconstruction
 - 2. Gaussian smoothing
 - 3. Maximum-Intensity-Projections (MIPs) of the volume \rightarrow MIPs dominated by high-intensity structures
- Calculate projection shifts $(\Delta u, \Delta v)^{(j)}$
 - Registration of MIPs to motion-corrupted projections
 → Mutual information in 4 scale-space levels
- Shift and reconstruct

Use image registration to calculate 2D projection shifts.

- Estimate of motion-corrected projections
 - 1. FDK-type uncompensated reconstruction
 - 2. Gaussian smoothing
 - 3. Maximum-Intensity-Projections (MIPs) of the volume \rightarrow MIPs dominated by high-intensity structures
- Calculate projection shifts $(\Delta u, \Delta v)^{(j)}$
 - 1. Registration of MIPs to motion-corrupted projections
 - \rightarrow Mutual information in 4 scale-space levels
- Shift and reconstruct

Use image registration to calculate 2D projection shifts.

- Estimate of motion-corrected projections
 - 1. FDK-type uncompensated reconstruction
 - 2. Gaussian smoothing
 - 3. Maximum-Intensity-Projections (MIPs) of the volume → MIPs dominated by high-intensity structures
- Calculate projection shifts $(\Delta u, \Delta v)^{(j)}$
 - Registration of MIPs to motion-corrupted projections
 → Mutual information in 4 scale-space levels

· Shift and reconstruct

Remarks on Mutual Information

How much information about **m** is contained in **f**

Mutual information

 $MI(m(\mathbf{x}), f(T(\mathbf{x}))) = H(m(\mathbf{x})) + H(f(T(\mathbf{x}))) - H(m(\mathbf{x}), f(T(\mathbf{x})))$

- Marginal and joint entropy: H(y), H(y, z)
- Calculated from histograms: Parzen Window approximation
- \rightarrow No explicit form of dependency needed. But the histograms must be "related".

Procedure

Perform FDK-type reconstruction → Modeling clay to avoid detector saturation

Procedure

• Calculate MIPs and register to acquisitions \rightarrow Note clay artifact in MIPs

Experiments:

- Five healthy volunteers imaged
- Standing upright, 35° and 65° flexion
- $\rightarrow\,$ Two scans with significant motion artifact shown Scan A at 35° and Scan B at 65° flexion

Evaluation:

- Qualitatively: visual inspection
- Quantitatively: marker-based results (gold standard)

Results: Scan A

Error: 2.89 $mm \pm 1.24 mm$ (uncorrected: 3.50 $mm \pm 1.90 mm$)

Results: Scan A

Uncompensated reconstruction

Proposed method

Remarks

- Both knees "aligned"
- Boundaries in *u*-direction pronounced
- Boundaries in *v*-direction suppressed (artifact)
- Structures resulting from overlap not present in MIPs
- Registration becomes more challenging

Remarks

- Both knees "aligned"
- Boundaries in *u*-direction pronounced
- Boundaries in *v*-direction suppressed (artifact)
- Structures resulting from overlap not present in MIPs
- Registration becomes more challenging

Results: Scan B

Error: 2.90 $mm \pm 1.43 mm$ (uncorrected: 4.10 $mm \pm 3.03 mm$)

Results: Scan B

Uncompensated reconstruction

Proposed method

Observations

Mean error after correction remains significant in both scans.

Can we get better with iterative application of the method?

Iterative application did not help with the current pipeline.

Possible reasons:

- Using MIPs as reference projections is not optimal
- Mutual information cannot handle the given problem

Performance w.r.t. Marker-based Method

Figure: Uncompensated, proposed and marked-based reconstructions

Discussion and Conclusion

Motion must be visible in high-intensity structures

 \rightarrow Biased registration in the presence of artifacts (modeling clay)

Stable registration remains challenging

- MIPs & acquisition: dissimilar intensity range and appearance
- \rightarrow Best similarity metric?
- \rightarrow Use iterative reconstruction and integrated projections?

3D motion compensation using 3D/2D registration

First step towards automatic image-based motion compensation for weight-bearing knee imaging

Discussion and Conclusion

Motion must be visible in high-intensity structures

 \rightarrow Biased registration in the presence of artifacts (modeling clay)

Stable registration remains challenging

- MIPs & acquisition: dissimilar intensity range and appearance
- \rightarrow Best similarity metric?
- \rightarrow Use iterative reconstruction and integrated projections?

3D motion compensation using 3D/2D registration

First step towards automatic image-based motion compensation for weight-bearing knee imaging