4D Statistical Shape Model of the Heart for X-Ray Projection Imaging

Mathias Unberath, Andreas Maier, Dominik Fleischmann, Joachim Hornegger, Rebecca Fahrig

April, 17. 2015

Pattern Recognition Lab, FAU Erlangen-Nürnberg
Radiological Sciences Lab, Stanford University
Context

- C-arm CT dominant in interventional angiography
 - Acquisition times of ≈ 10 s
- Motion compensation:
 - 4D reconstruction
 - Improved guidance
- Performance evaluation
 - Exhaustive testing
 - Normal and pathologic cases
- X-rays: somewhat "unhealthy"
 - No ground-truth for real data

April, 17. 2015 | Unberath | FAU Erlangen-Nürnberg, Stanford University | 4D Statistical Human Heart Phantom
Context

- C-arm CT dominant in interventional angiography
 - Acquisition times of ≈ 10 s
- Motion compensation:
 - 4D reconstruction
 - Improved guidance
- Performance evaluation
 - Exhaustive testing
 - Normal and pathologic cases
- X-rays: somewhat "unhealthy"
 - No ground-truth for real data
Context

• C-arm CT dominant in interventional angiography
 → Acquisition times of ≈ 10 s

• Motion compensation:
 → 4D reconstruction
 → Improved guidance

• Performance evaluation
 → Exhaustive testing
 → Normal and pathologic cases

• X-rays: somewhat “unhealthy”
 → No ground-truth for real data
Context

- C-arm CT dominant in interventional angiography
 → Acquisition times of ≈ 10 s
- Motion compensation:
 → 4D reconstruction
 → Improved guidance
- Performance evaluation
 → Exhaustive testing
 → Normal and pathologic cases
- X-rays: somewhat "unhealthy"
 → No ground-truth for real data
Context

- Need for artificial data
 → Simulation frameworks
 → Numerical phantoms

- Enable comparison:
 → Framework: CONRAD

- XCAT\(^1\)
 → 3D from Visible Human
 → Motion from one male patient
 → Developed for ET
 → Licensing fee (small)

\(^1\) Segars et al., “4D XCAT phantom for multimodality imaging research”. April, 17. 2015 | Unberath | FAU Erlangen-Nürnberg, Stanford University | 4D Statistical Human Heart Phantom
Context

- Need for artificial data
 - Simulation frameworks
 - Numerical phantoms

- Enable comparison:
 - Framework: CONRAD

- XCAT\(^1\)
 - 3D from Visible Human
 - Motion from one male patient
 - Developed for ET
 - Licensing fee (small)

\(^{1}\) Segars et al., “4D XCAT phantom for multimodality imaging research”.
Context

- Need for artificial data
 - Simulation frameworks
 - Numerical phantoms
- Enable comparison:
 - Framework: CONRAD
- XCAT\(^1\)
 - 3D from Visible Human
 - Motion from one male patient
 - Developed for ET
 - Licensing fee (small)

\(^1\)Segars et al., “4D XCAT phantom for multimodality imaging research”.

April, 17. 2015 | Unberath | FAU Erlangen-Nürnberg, Stanford University | 4D Statistical Human Heart Phantom
Goals

A new phantom should be:

• available
• dynamic (temporal variation)
• versatile (inter-subject variation)
• clinically relevant

Dynamic statistical shape model of the heart.
Contents

Training set generation
 Registration Pipeline
 Results and conclusions

Model-building and simulation
 Alignment and principal component analysis
 Results and conclusions
Problem statement

Learn valid behavior from training set

Many shapes from diverse anatomies.

Point correspondence **must** be established/preserved.

?- Data-driven segmentation (incl. manual)

! Registration-based segmentation

How "many" and how "diverse"?
General idea

Propagate landmarks from atlas to new images.3,4

What is needed?

- Landmarked atlas segmentation
- Registration pipeline

What atlas? What pipeline?

3 Frangi et al., “Automatic construction of multiple-object three-dimensional statistical shape models: Application to cardiac modeling”.

4 Ordas et al., “A statistical shape model of the heart and its application to model-based segmentation”.

Atlas segmentation

1. Manual segmentation in ITK Snap
2. Mesh generation (coarsening and smoothing)

Data set used:

- 45 y/o female, 78% phase
- $512 \times 512 \times 241$ pixels
- $0.29 \times 0.29 \times 0.5$ mm spacing
Atlas segmentation

Figure: Axial slice

Figure: Surface rendering
Registration

B-Spline-based registration pipeline:

Rigid:

- Similarity transform
- Mutual information

Non-rigid: multi-resolution

- B-spline transforms
- Mutual information
Mutual information

Reduce uncertainty in X by knowing Y
No explicit form of dependency needed

\[
\int \int p_{fm}(f(x), m(y)) \log \left(\frac{p_{fm}(f(x), m(y))}{p_f(f(x)) p_m(m(y))} \right) \, dx \, dy
\]

\(f, m\) are the fixed and moving image
\(p_f\) and \(p_m\), and \(p_{fm}\) are the marginal and joint histograms
B-Spline transforms

Smooth transforms defined on control grid

Weighted sum of points in finite support region

1D B-Spline

\[T(x) = \sum_{n=0}^{d} B_n(u) \Phi_{k+n}, \]

\[u = \frac{x}{n_x} - \left\lfloor \frac{x}{n_x} \right\rfloor \in [0, 1] \]

\[k = \left\lfloor \frac{x}{n_x} \right\rfloor - 1 \]

\(B_n(u) \): B-Spline basis function (≡ weights)

\(\Phi_i \): control points in grid
Evaluation

Procedure

• Fix registration parameters
• Register to data at all cardiac phases

Quality assessment

Representative female and male patient data

• Visual evaluation
• Expert ranking
Visual evaluation

Female, End-Diastole: Coronal view

Male, End-Systole: Coronal view
Expert ranking: Results & Discussion

Average scores throughout the cardiac cycle

- 3 experts: Grades ∈ [0, 5], 5 ≡ best
- Overall score: 3.33 ± 0.51
- Atlas segmentation is at 78% phase (end-diastole) → Induces bias.
Conclusions

- Reduce bias: create atlas from "mean heart"
- Automatic registration: parameters fixed
 → Automatic parameter tuning at run-time?

Training set generation is not time-sensitive but crucial.
→ Refinement of the automatic segmentation (e.g. local adaptation).
Best case scenario

Atlas segmentation:
Axial view

Female, End-Diastole:
Axial view
Procedure

Statistical shape model generation

Four step process:

1. Obtain training shapes
2. Establish point correspondence
3. Align shapes
4. Extract principal modes of variation
Training set

20 ten phase CTA data sets

9 male patients: 23-92 y/o (59.56 ± 25.10 years)
11 female patients: 51-81 y/o (70.45 ± 12.89 years)

Ejection fractions: 52.13 ± 9.11%
Alignment

Generalized Procrustes Analysis

Pose (and scale) is not part of shape.

1. Center and scale input samples X_i
2. Rotate all n shapes X_i to fit X_1
3. Calculate consensus shape Y
4. Until convergence:
 - Rotate and scale X_i to consensus Y
 - Reassure proper scaling
 - Calculate residual change
PCA

Goals of Principal Component Analysis

- Extract most important information from the data
- Reduce dimensionality of the data
- Simplify description of shapes
PCA: Procedure

Procedure

1. Compute mean shape \(\bar{X} \)
2. Covariance matrix: \(S = \sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})^T \)
3. Solve: \(S \Phi_k = \lambda_k \Phi_k \)
4. Pick largest \(c \) principal components \(\Phi_k \)
e.g. cumulative variance \(r > 75, \ldots, 99\% \)

Statistical shape model: \(\{ \bar{X}, \Phi \} \)
PCA: Procedure cont.

Statistical shape model: \(\{ \bar{X}, \Phi \} \)

Shape description

\[
X_i \approx \bar{X} + \sum_{k=1}^{c} \beta_{i,k} \Phi_k
\]

\(\Phi_k: c < n \) principal modes of variation
\(\beta_k: \) principal components
PCA: Procedure cont.

Inter-subject and temporal variation.
Valid dynamic shapes from multi-phase data.

1. Shape models at phase p: $\{\bar{X}, \Phi\}^{(p)}$
2. Principal components of shapes: $\beta_i^{(p)}$
3. Build component vector:
$$\beta_i = (\beta_i^{(1)}, \cdots, \beta_i^{(p)})$$
PCA: Procedure cont.

PCA on component vectors: \(\{ \bar{\beta}, \rho \} \)

Compact interface for dynamic model generation

Dynamic model

\[
(\kappa^{(1)}, \ldots, \kappa^{(p)}) = (\bar{X}^{(1)}, \ldots, \bar{X}^{(p)}) + (\Phi^{(1)}, \ldots, \Phi^{(p)})(\bar{\beta} + \rho \delta)
\]

Interpolation for continuous representation.
Results: Generalization

Cross validation: leave-one-out test

Capability to represent unseen instances.

- Exclude shape from model
- Fit model to shape
- Compute error

90% variation: \(5.00 \pm 0.93 \) mm
95% variation: \(4.89 \pm 0.90 \) mm
Results: Specificity

Random shape sampling

Validity of new instances.

- Generate random component vectors
- Compute distance to nearest training shape

Static: 1000 samples $7.18 \pm 0.45 \, mm$
Dynamic: 100 samples $7.30 \pm 0.97 \, mm$
Results: Variability at diastole

Decreasing variance μ from left to right: $\delta_b = -\mu_b/2$ top, $\delta_b = \mu_b/2$ bottom, and $\delta_b = 0$ mid.
Results: Projection imaging

Volume rendering

Projection image
Conclusions

- Large variation among few samples
- Deteriorates specificity
 → Revisit training set generation

- Currently: anatomy at rest determines contraction
 → Multi-linear PCA
 → Thorax model, Breathing motion, ...

To our knowledge the first open-source, dynamic statistical shape model of the heart.\(^5\)

\(^5\)Available at: conrad.stanford.edu