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ABSTRACT

We present an open-source 4D (3D+t) statistical shape model
of the heart developed as numerical phantom for cone-beam
CT simulation. The training set consists of surface meshes
from 20 ten-phase-CT angiography data sets extracted us-
ing automatic registration-based segmentation. Incorporat-
ing 90% of the training set variation, the model exhibits a
generalization ability of 5.00 £ 0.93 mm and specificity of
7.30 = 0.97 mm. The model is implemented in CONRAD,
an open-source simulation and reconstruction framework. We
provide all algorithms and high resolution projection data on
the project’s homepage. To the best of our knowledge, this is
the first open-source 4D statistical shape model of the heart.

Index Terms— Simulation, numerical phantom, XCAT,
cone-beam, CT, open-source

1. INTRODUCTION

The long acquisition times of about 5 s in rotational angiog-
raphy using C-arm systems requires the incorporation of the
hearts dynamics into the reconstruction algorithms [1, 2].
Meaningful evaluation and comparison of such algorithms
requires projection data from computerized 4D phantoms as
ground truth is typically unavailable in clinical cases.

The 4D extended cardiac-torso (XCAT) phantom is the most
frequently used numerical cardiac phantom up to date. The
underlying 3D model is based on the Visible Human male
and female anatomical data sets [3], extended to 4D using
deformations obtained from one tagged cardiac MRI and one
respiratory-gated CT data set from normal male patient vol-
unteers [3]. As a consequence its clinical relevance suffers
when changing clinical parameters, such as the ejection frac-
tion (EF), or when modeling pathologies.

In order to tackle this problem, we develop an open-source
4D statistical shape model (SSM) of the whole heart for the
simulation of cone-beam CT angiography.

2. METHODS

2.1. Training set generation

We use a registration-based segmentation approach to auto-
matic whole heart segmentation in order to preserve point
correspondence among samples [4]. Surface meshes of the
aorta, atria, ventricles, and left-ventricular myocardium of
an atlas segmentation are propagated to unseen images us-
ing transforms obtained by registration. The atlas segmen-
tation was performed on a retrospectively ECG-gated, four
chamber enhanced CT angiography data set of a 45 year old
female at best diastolic phase (78%). The image volume had
512x512x241 pixels with a spacing of 0.29x0.29x0.5 mm.
Images are then rigidly and non-rigidly registered to the atlas
in order to obtain mappings for the surface meshes, follow-
ing a strategy similar to Rueckert et al. [5]. The complete
segmentation algorithm consisted of the following steps:

1. Rigid registration using a similarity transform and mu-
tual information [6]

2. Multi-resolution non-rigid registration on four levels
using B-spline transforms and mutual information [7]

3. Propagation of atlas surface meshes

An axial view and surface rendering of the atlas segmenta-
tion together with representative example segmentations of
a male patient’s data set at end-systole, and a female pa-
tient’s data set at end-diastole are shown in Fig. 1. Using
the strategy described above we segmented 20 ten phase,
four-chamber enhanced CT angiography data sets from nine
male (59.56+25.10 years old) and eleven female patients
(59.56+25.10 years old) with EFs ranging from 28.65% to
66.12% (52.13+9.11%). An expert study not described here
was conducted to assess segmentation accuracy of 20 repre-
sentative volumes. Samples not included in the study were
inspected visually to ensure plausible results.



(a) Atlas: axial view

(c) Example 1: axial view

(d) Example 2: axial view

Fig. 1. Axial view of the atlas segmentation in (a), and corre-
sponding surface rendering in (b). Axial views of representa-
tive segmentations of a male patient’s data set at end-systole,
and a female patient’s data set at end-diastole are shown in
(c) and (d), respectively.

2.2. 3D model building

We build a 3D SSM describing inter-subject variation at each

of the ten cardiac phases. First the m training shapes :cEp ), 1=

1,---,m,p = 1,---, P at cardiac phase p are aligned in a
common reference coordinate system using Generalized Pro-
crustes Analysis, an iterative procedure consisting of translat-
ing, rotating, and scaling of each input shape to the iteratively
updated sample consensus using orthogonal Procrustes anal-
ysis [8]. We rescale the shapes after alignment as heart size is
part of anatomical variation.

Subsequently we extract the ¢(?) principal modes of variation
among the training samples by solving the Eigenvalue equa-
tion [9]:
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2.3. Dynamic model

In order to describe valid contractive behavior we concen-
trate the principal components ﬂz(-p ) of shape ¢ at all phases p
1), T (P), T
6@‘ [ 7/61‘ .

We then perform principal component analysis as described
in Eq. 1 on the dynamic shape vectors 3, yielding a SSM
of principal components {3, p} with Eigenvalues y. This
procedure is related to the method proposed by Bosch et al..
They concentrated shape sequences into one dynamic shape
and performed principal component analysis [10]. The use
of such strategies allows for a compact interface for dynamic
shape generation as a whole cardiac cycle y is represented by
one principal component vector §:
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into one dynamic shape vector 3, = (

Linear interpolation is used to allow for continuous sampling
of the cardiac cycle.

2.4. Evaluation

We investigated compactness, generalization ability and
specificity of the SSM. Generalization ability is the capa-
bility of a SSM to represent unseen instances of the object
class and is assessed using leave-one-out tests. We evaluated
the generalization ability for models containing 90% (95%)
of the variation present in the training set. We built SSMs for

each cardiac phase with one training shape excluded and cal-
culated the error ||5§p ) |3 for each phase and training set using
Eq. 2 and 3. Model specificity measures the validity of newly
generated instances. Specificity of the static (dynamic) model

was calculated by randomly generating H new instances us-
ing Eq.2, where the weights ,B,(c e —/\Eep)/Z,/\gf)/Q}

(51(7}1) € [fub/Q,,ub/Q]), h = 1,---,H were determined
randomly. The generated test samples were then compared
to all samples in the training set. Model specificity can be
defined as the average distance of H uniformly distributed,
randomly generated shape instances to their nearest member
among all training shapes. We used H = 1000 (H = 100)
test samples to compute the specificity of the models. The
model is intended as numerical phantom for X-ray projection
imaging. We generated forward projections of the model
with a contrasted left ventricle using a ray-casting forward
projector implemented in CONRAD [11]. The detector had



620 x 480 pixels with an isotropic spacing of 0.62 mm. The
source to detector distance was 1198 mm and the detector to
isocenter distance was 780 mm.

3. RESULTS

The model was evaluated using the strategies explained in
Section 2.4. In order to incorporate 90% (95%) of training
set variation the 16 (18) largest principal modes of varia-
tion were needed in all static models {Z(?), &)}, and the
dynamic model {3, p}. The assessment of generalization
ability yielded 5.00 = 0.93mm (4.89 £ 0.90mm). Using
the 16 largest modes of variation resulted in a specificity of
7.18 £ 0.45mm (7.30 & 0.97 mm). Shape changes at end-
diastole induced by variation of the first two principal com-
ponents of the dynamic model are shown in Fig. 2. Volume

Fig. 2. Shape changes due to variation of the two largest
principal components of the dynamic model at 0% phase in
decreasing magnitude of variance p from left to right. The
weight 0, = —pu;, /2 for the top row, §, = py,/2 for the bottom
row, and & = 0 in the middle.

renderings of the model at representative phases during the
cardiac cycle together with the corresponding X-ray projec-
tion image are shown in Fig. 3. The model’s source code as
well as high resolution forward projections of dynamic heart

(a) b)

Fig. 3. Volume renderings and forward projections of the
mean shape of the dynamic SSM at end-systole in (a), and
end-diastole in (b).

Gender: | f f m m
Age: 52 81 56 62
EF /%: 54 62 56 46

Table 1. Predefined model parameters.

scenes simulated with real trajectories are available on the
project’s homepage: conrad.stanford.edu.

4. DISCUSSION AND CONCLUSION

We constructed SSMs of the cardiac anatomy (descending
aorta, four chambers, and left ventricular myocardium) at ten
phases during the cardiac cycle. The training set consisted of
20 ten phase, four-chamber enhanced CT angiography data
sets of nine male and eleven female patients between 23 and
92 years with an average EF of 52.13 + 9.11 %. A dynamic
model was obtained by concentrating the principal compo-
nents of each training shape at all phases into one vector and
performing principal component analysis on those component
vectors. This procedure allowed for a compact representation
of cardiac dynamics while guaranteeing valid behavior.
Assessment of the model’s compactness showed that the 16
(18) largest modes were sufficient to explain 90% (95%) of
training set variation. This corresponds to a dimensional-
ity reduction of only 20% (10%) indicating large variations
among the training samples. Large variation is desired in or-
der to express as much diversity as possible, however, it can
be problematic if the landmarks do not follow a normal distri-
bution, as the estimation of the allowable shape domain may
become unobvious [9].

The computation of generalization ability yielded an average
vertex offset of 5.00 £ 0.93mm for the model containing



90% of the variation present in the training set. Considering
the large dispersion between individual training samples sug-
gested by the compactness of the model generalization ability
was found to be rather low. This result may indicate that the
training shapes, while being largely diverse, satisfactorily rep-
resent the target population.

Specificity was similar for both the static and dynamic car-
diac models, yielding numeric values of 7.18 4= 0.45 mm and
7.30 £ 0.97 mm, respectively. Specificity was significantly
worse than generalization ability (c.f. 5.00 £ 0.93mm, p =
0.013). A possible explanation can be found when investi-
gating the testing procedure. Weights for the uniformly dis-
tributed, randomly generated test samples were confined to
an interval of £\ /2 in all tests, allowing for a broad spectrum
of instances. Due to the low amount of training shapes, the
space of valid instances is only sparsely populated, leading to
an increased expectation value of average distance to the near-
est member of the training set and, consequently, specificity.
Therefore, verification of newly generated instances remains
difficult with the current training set. Invalid shapes and dy-
namics, however, may lead to false conclusions when using
the model as numeric phantom. We therefore provide prede-
fined shape vectors extracted from the training set (see Ta-
ble 1) as well as projection data. We expect improvements in
all quantitative measures for models built from a larger train-
ing set, strongly suggesting the acquisition of additional data.
Recently proposed statistical shape models of the heart em-
ployed bilinear models to incorporate inter-subject and tem-
poral variation into a single model [12]. This allows for in-
dependent tuning of anatomical and temporal variation at the
cost of larger parameter vectors. We used statistical analy-
sis of the principal component vectors to provide an inter-
face for dynamic shape generation using few parameters. Our
approach assumes that equal anatomies at rest exhibit simi-
lar contractive behavior. However, inter-subject and temporal
variation neither is independent nor is it deterministic. The
commitment to a certain method is a trade-off between model
flexibility and ease of use. In the present case the advantages
of simplified shape generation prevailed.

The algorithms used for model construction are freely avail-
able and provide an open-source basis for statistical shape
model generation of arbitrary shapes.
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