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Abstract
Automatic classification of Parkinson’s disease (PD) speakers
and healthy controls (HC) is performed considering speech
recordings collected in non-controlled noise conditions. The
speech tasks include six sentences and a read text. The record-
ing is performed using an open source portable device and a
commercial microphone. A speech enhancement (SE) tech-
nique is applied to improve the quality of the signals. Voiced
and unvoiced frames are segmented from the speech tasks and
characterized separately. The discrimination of speakers with
PD and HC is performed using a support vector machine with
soft margin. The results indicate that it is possible to discrimi-
nate between PD and HC speakers using recordings collected
in non-controlled noise conditions. The accuracies obtained
with the voiced features range from 64% to 86%. For unvoiced
features the accuracies range from 78% to 99%. The SE al-
gorithm improves the accuracies of the unvoiced frames in up
to 11 percentage points, while the accuracies decrease in the
voiced frames when the SE algorithm is applied. This work is
a step forward to the development of portable devices to assess
the speech of people with PD.
Index Terms: Parkinson’s disease, speech, voiced/unvoiced,
speech enhancement, non-controlled noise conditions.

1. Introduction
PD is a neurological disorder characterized by the progressive
loss of dopaminergic neurons in the substantia nigra of the mid-
brain [1]. Voice impairments appear in about 90% of people
with PD. The set of symptoms observed in the speech of PD
patients include reduced loudness, monotonous pitch, and mis-
articulation, among others. Although the high prevalence of
PD and its negative effects in speech, only from 3% to 4% of
the patients receive speech therapy [2]. The motor skills of the
patients with PD are impaired, thus visiting a hospital to per-
form medical screenings and/or assessments is not a straight-
forward task for them [3]. The research community has shown
interest developing computer-aided tools to perform screenings
from speech. The main goals of such tools are (a) to spare pa-
tients moving from their home to the hospital to perform routine
screenings, and (b) to raise early alerts to patients and doctors
that allow them make assertive and timely decisions regarding
pharmacological treatments and/or therapies. Several studies
have been focused on such computational approach for tele-
monitoring of patients with PD through speech. In [4] the au-
thors developed a portable device to assess speech of people
with PD. The device evaluates the speech signal and provides
bio-feedback to the patients in real time. It is equipped with

an LCD monitor and generates a report with different measure-
ments to assess the phonatory and articulatory capabilities of
the patient. Although the device is able to calculate different
acoustic features on the vowels /a/, /i/, and /u/, more speech
tasks need to be included to perform more complete screenings.
In [5] the authors present a portable device to assess the speech
therapy of patients with PD. The device provides bio-feedback
of the speech volume levels. A signal tone is sent to the patient
if the vocal intensity falls below an adjustable threshold. This
device operates with a microphone stuck to the neck of the pa-
tient, so it could be considered invasive in some way by several
users.This device was updated later in [6], where the authors in-
cluded visual feedback. However, the new version still requires
the microphone stuck to the neck. In [7] a device equipped with
an accelerometer to measure the skin vibrations and a micro-
phone to record the speech signals is presented. The device cal-
culates three voice parameters: fundamental frequency, energy,
and sound pressure level. The feedback is given via vibrations
from the device to the patients. When the device vibrates, the
patient is aware that is speaking incorrectly. In [8] a portable de-
vice to record speech signals from a patient under monitoring is
presented. The signals are acquired using a microphone stuck to
the neck of the patient. The aim of this device is to identify dif-
ferent voice disorders through the fundamental frequency and
sound pressure level estimated from sustained phonations of the
vowel /a/ and read texts. In [9] a methodology for the automatic
detection of PD using speech recordings captured in controlled
noise conditions, i.e. in a sound-proof booth and with a pro-
fessional audio card and microphone, is presented. The authors
report an accuracies of up to 99% considering recordings of sev-
eral isolated words. Another study reporting accuracies above
98% is presented in [10]. A total of 263 voice samples were
recorded from 43 subjects. The experiments were performed
following a 10-folds cross-validation strategy, but the speaker
independence was not fulfilled, leading to optimistic and prob-
ably biased results.

According to the reviewed literature, the devices are mainly
focused on the analysis of sustained phonations to estimate fun-
damental frequency and its variability, the sound pressure level,
and the frequency of the formants. Further work is required to
develop portable devices for the analysis of speech of people
with PD considering running speech signals recorded in non-
controlled noise conditions. The aim of this work is to apply the
methodology presented in [9] using speech signals recorded in
real-world conditions, i.e. without using the sound-proof booth
and using the device presented in [4] to record the signals. The
methodology is tested on a set with six isolated sentences and
on a read text. The device will be accessible to the community



through a web page, allowing other people to do similar speech
assessments and improve the current version of the system.

The rest of the paper is organized as follows: Section 2 in-
cludes details of the methodology presented in the paper. Sec-
tion 3 includes the description of the data and the experiments.
Section 4 shows the results obtained in the different experi-
ments, and finally in Section 5, the conclusions derived from
this work are provided.

2. Methods
2.1. Preprocessing

The recordings considered in this work were captured in non-
controlled noise conditions, thus the speech enhancement (SE)
procedure presented in [11] is applied. The noisy signal is rep-
resented by two components: the clean signal, i.e the target, and
the noise. The method consists of finding a linear minimum
mean-square error estimator of the target signal ŝ ∈ <k×1,
which is defined as ŝ = Hx, where x ∈ <k×1 is a vector
formed by k samples of the noisy signal and H ∈ <k×k is a
linear estimation matrix that is optimized to “model” the noise
in x. The optimum H is obtained from a matrix that diagonal-
izes the covariance matrices of the target signal and the noise
simultaneously [12]. This method was chosen due to its good
performance in previous studies [11]. For the sake of compar-
isons, the recordings without SE are also considered here. Pos-
sible bias introduced by the channel are eliminated by means of
mean cepstral subtraction [13].

2.2. Voiced/Unvoiced characterization

Voiced and unvoiced frames are detected and grouped sepa-
rately. Hamming windows with 20ms length and time shift
of 10ms are applied on all of the segmented frames. The fea-
tures estimated for voiced frames include the variation of the
fundamental frequency of speech (F0), jitter, shimmer, log en-
ergy per window, and 12 MFCCs. For unvoiced frames, the set
of features includes 12 MFCCs, and the log energy of the sig-
nal distributed in 25 Bark bands, as in [9]. The features from
voiced and unvoiced frames are grouped separately into fea-
ture vectors. Four functionals of these vectors are calculated:
mean value, standard deviation, kurtosis, and skewness. Form-
ing 55- and 148-dimensional feature vectors for the voiced and
unvoiced frames, respectively.

2.3. Classification

The decision whether a recording is from a PD patient or from
a healthy person is taken by means of a radial basis support
vector machine (SVM) with margin parameter C and a Gaus-
sian kernel with parameter γ. C and γ are optimized through
a grid-search up to powers of ten with 10−1 < C < 104 and
1 < γ < 103. The selection criteria was based on the ob-
tained accuracy on test data. This approach can lead to slightly
optimistic accuracy estimates, but considering that only two pa-
rameters are optimized, the bias effect should be minimal. Due
to the low number of speakers, the SVM is tested following
a leave-one-speaker-out cross-validation (LOSO-CV) strategy.
An SVM is used here due to its validated success in similar
works related to automatic detection of pathological speech sig-
nals [9, 14, 15].

The stages of the methodology are detailed in Figure 1.

Figure 1: Methodology

3. Experimental setup
3.1. Data

14 patients with PD and 14 HC (7 female and 7 male in each
group) were recorded with a sampling frequency of 44.1KHz
and 16 bits of resolution. The age of the PD patients ranges
from 51 to 71 (mean 61.64 ± 6.43), and the age of the HC
ranges from 50 to 78 (mean 63.29 ± 10.43). All patients were
diagnosed by a neurologist expert. The speech signals were
recorded in a normal room, under non-controlled noise condi-
tions. This database was collected by the GITA research group,
from Universidad de Antioquia, in Medellı́n, Colombia. Table 1
provides detailed information of the recorded patients including
age, gender, time after the PD diagnosis, and their neurological
state according to the MDS-UPDRS-III scale, which is the mo-
tor sub-scale of the full MDS-UPDRS evaluation [16].

Table 1: Detailed information of the speakers. t: time post PD
diagnosis in years. PD: Parkinson’s disease. HC: Healthy con-
trols. UPDRS: Unified Parkinson’s disease rating scale.

PD HC
AGE GENDER UPDRS t AGE GENDER

71 F 27 1 78 F
70 M 62 4 78 M
69 M 22 2 78 M
67 M 43 14 75 M
66 M 22 5 70 F
66 M 30 8 62 M
61 F 33 16 61 M
60 M 15 9 60 M
58 F 44 38 59 F
57 M 79 5 55 M
56 F 18 14 54 F
56 F 30 44 54 F
55 F 30 8 52 F
51 F 49 42 50 F



3.2. Speech tasks

A set with six sentences and a read text with 36 words are con-
sidered. These speech tasks comprise a subset of the tasks pre-
sented in [17]. The details are provided in Table 2.

Table 2: Speech tasks (ST)
ST Texts
1 Mi casa tiene tres cuartos.
2 Omar, que vive cerca, trajo miel.
3 Laura sube al tren que pasa.
4 Los libros nuevos no caben en la mesa de la oficina.
5 Rosita Niño, que pinta bien, donó sus cuadros ayer.
6 Luisa Rey compra el colchón duro que tanto le gusta.

Ayer fui al médico.
Qué le pasa? Me preguntó.

7 Yo le dije: Ay doctor! Donde pongo el dedo me duele.
Tiene la uña rota?.
Sı́.
Pues ya sabemos qué es. Deje su cheque a la salida.

3.3. Technical specifications of the device

The device is based on a board with a micro sized open develop-
ment platform called ODROID-U2. It has an ARM Cortex-A9
quad core processor with 2GB of RAM memory and its opera-
tion frequency is 1.7GHz. The board is equipped with a micro
SD card port to store the operating system (OS) and the data.
The OS running on the board is Ubuntu 12.10. The algorithms
used to record speech were written in Python. Additionally, the
device has a 7” LCD monitor used to give visual feedback to the
patient. A wireless keyboard is used to type the data of the user.
The audio signal is captured using a h250 Logitech headset.
The ODROID-U2 includes an audio codec MAX98090 which
operates with up to 24 bits. Figure 2 illustrates the technical
characteristics of the device.

Figure 2: Technical characteristics of the device

4. Experiments and results
The experiments are divided into two parts. First, the signals are
considered in their original version, i.e. without the SE proce-
dure. Second, the SE algorithm is applied. The speech tasks are
evaluated separately. The results are presented in terms of accu-
racy, specificity, and sensitivity. Accuracy is the general perfor-
mance of the system, while specificity and sensitivity indicate
the capability of the system to detect pathological and healthy

speakers, respectively. The results can be reported more com-
pactly using the receiver operating characteristic (ROC) curve.
Typically the area under the ROC curve (AUC) is used as a mea-
sure of the general performance of the binary classification sys-
tems. These statistics are commonly used to evaluate the per-
formance of medical systems [18]. Table 3 contains the results
obtained using features calculated upon the voiced segments.
The accuracies range from 71% to 86% when the signals are
considered without the SE procedure. When the recordings are
processed considering the SE procedure the accuracies range
from 64% to 82%. Although the best results in voiced features
are not obtained with the enhanced signals, note that the accura-
cies increased in three of the speech tasks after applying the SE
algorithm. Note also that the highest accuracies with the voiced
features are not obtained when the SE is applied. Even, there
are several cases e.g., speech tasks 2, 4, 6, and 7, where the ac-
curacy decreased after applying the SE algorithm. This result
is similar to those obtained in [11], which motivate us to do a
detailed analysis of such behavior in future experiments.

Table 3: Results for features estimated from voiced segments.
ST: Speech task numbered according to Table 2. Sig: Signal.
Acc (%): Accuracy. Sens (%): Sensitivity. Spec (%): Speci-
ficity. AUC: Area under the ROC curve. Orig: Signal without
SE. SE: Signal with SE.

ST Sig Acc Sens Spec AUC
1 Orig 71± 26 92± 27 50± 52 0.78

SE 82± 25 71± 47 93± 26 0.94
2 Orig 75± 26 79± 43 71± 47 0.78

SE 64± 36 47± 57 57± 51 0.71
3 Orig 71± 26 64± 49 86± 36 0.77

SE 79± 25 100± 0 57± 51 0.85
4 Orig 86± 31 92± 27 79± 43 0.89

SE 79± 25 79± 43 79± 43 0.80
5 Orig 79± 25 86± 36 71± 47 0.84

SE 82± 25 79± 43 86± 36 0.80

6 Orig 86± 23 71± 47 100± 0 0.86

SE 75± 26 71± 47 79± 43 0.75
7 Orig 79± 25 100± 0 57± 51 0.84

SE 71± 26 100± 0 43± 51 0.76

Table 4 contains the results obtained using the features cal-
culated upon the unvoiced segments. The accuracies range from
78% to 99% when the original signals are considered. The re-
sults obtained when the SE algorithm is applied range from 91%
to 99%. Note that in six of the seven speech tasks the accuracy
increased when the SE procedure is applied. The only excep-
tion was the second speech task, where the accuracy decreased
from 95% to 91%. Note also that, for the read texts, with the
enhanced and with the original speech recordings the accuracies
achieved 99%. This result can be likely explained because the
read texts contain more variety of words, syllables, and accents.

The best results with both feature sets (voiced and un-
voiced) in sentences were obtained with the sixth speech task.
In order to show such results more compactly, Figures 3 and 4
include the ROC curves obtained with this sentence character-
ized with voiced and unvoiced features, respectively. For the
sake of comparison, the curves obtained with and without SE
are included in both figures. Note that the accuracy obtained
with the voiced features decreases when the SE algorithm is ap-
plied. Conversely, the accuracy of unvoiced features increases
when the SE algorithm is applied.



Table 4: Results for features estimated from unvoiced segments.
ST: Speech task numbered according to Table 2. Sig: Signal.
Acc (%): Accuracy. Sens (%): Sensitivity. Spec (%): Speci-
ficity. AUC: Area under the ROC curve. Orig: Signal without
SE. SE: Signal with SE.

ST Sig Acc Sens Spec AUC
1 Orig 92± 19 96± 13 87± 34 0.96

SE 93± 17 92± 25 95± 17 0.96
2 Orig 94± 15 91± 27 98± 8 0.96

SE 91± 20 100± 0 81± 40 0.91
3 Orig 86± 23 100± 0 72± 47 0.87

SE 97± 12 100± 0 94± 24 0.95
4 Orig 93± 18 100± 0 86± 36 0.97

SE 94± 16 100± 0 89± 33 0.97
5 Orig 78± 25 91± 26 65± 49 0.83

SE 90± 20 92± 23 87± 32 0.94
6 Orig 86± 23 100± 0 72± 47 0.86

SE 97± 12 100± 0 94± 24 0.98
7 Orig 99± 3 100± 0 99± 5 0.99

SE 99± 1 100± 0 99± 1 0.99
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Figure 3: ROC curves obtained from the voiced frames of the
sixth speech task with and without the SE method

5. Conclusions
A method to discriminate between PD speakers and HC consid-
ering speech samples recorded in non-controlled noise condi-
tions is presented here. A total of six sentences and a read text
uttered by 28 speakers (14 with PD and 14 HC) were evaluated.
A SE algorithm is applied to improve the quality of the record-
ings. The method to discriminate speakers with PD and HC
consists on the characterization of voiced and unvoiced frames
separately. The highest accuracies obtained with the voiced
frames range from 64% to 86%, while the results with unvoiced
frames range from 78% to 99%. The SE algorithm improves
the accuracy obtained with the unvoiced frames in up to 11 per-
centage points. The opposite effect is observed in the results
with the voiced frames, where the accuracy decreases in about
11 percentage points when the SE algorithm is applied in some
of the speech tasks. This result motivates us to continue study-
ing the influence of different SE algorithms in different envi-
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Figure 4: ROC curves obtained from the unvoiced frames of the
sixth speech task with and without the SE method

ronments and speech tasks, in order to state which technique
is more convenient according to each task and characterization
method. The incorporation of prosody features into the frame-
work of this device, such that allow the evaluation of speech
characteristics related to timing, duration, and speech rate, is
also planned for the near future.

Finally, as the recordings were collected using an open
source platform and a commercial headset, this work is a step
forward to the development of portable devices to assess the
speech of people with PD. The platform presented here will be
publicly accessible in the near future, allowing the community
to improve the system functionalities. The use of this device
to follow the speech therapy of PD patients and to assess their
neurological state is also expected in the future.
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