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Abstract
This paper explores the analysis of low-frequency components
of continuous speech signals from people with Parkinson’s dis-
ease, in order to detect changes in the spectrum that could be
associated to the presence of tremor in the speech. Different
time-frequency (TF) techniques are used for the characteriza-
tion of the low frequency content of the speech signals, by pay-
ing special attention on the ability to work in non-stationary
frameworks, due to the need for the analysis of long enough
time segments, where the assumptions of stationary can not
be met. The set of variables extracted from the TF represen-
tations includes centroids and the energy content of different
frequency bands, along with entropy measures and nonlinear
energy operators, which are used as features for the automatic
detection of people with Parkinson’s disease vs healthy con-
trols. The discrimination capability of the estimated features is
evaluated using three different classification strategies: GMM,
GMM-UBM, and SVM. Furthermore, the information provided
by different TF techniques is combined using a second clas-
sification stage. The results show that the changes in the low
frequency components are able to discriminate between people
with Parkinson’s and healthy speakers with an accuracy of 77%,
using one single sentence.
Index Terms: Parkinson’s disease, time-frequency analysis,
continuous speech characterization, pathological voice detec-
tion.

1. Introduction
Parkinson’s disease (PD) is a neurological disorder character-
ized by the progressive loss of dopaminergic neurons in the sub-
stantia nigra of the midbrain [1], and affects different functions
performed in the basal ganglia, including the control of vol-
untary movements, procedural learning, and movements of the
jaw and eyes [2]. As consequence, the voice of patients with
PD is affected in many ways: reduced or monoloudness, hoarse
or strangled phonation, monopitch intonation and variable ar-
ticulation rate. In this sense, recent studies [3], [4], [5] sug-
gest that PD can affect different subsystems of speech produc-
tion including respiration, phonation, articulation, and prosody.
Moreover, due to the deficits in motor speech, one of the com-
mons effects for all of the subsystems of speech production, is
the introduction of low frequency components known as tremor
[6, 7], which, if detected in an early stage of the disease, which
could turn into a relevant bio-marker for diagnosis and treat-
ment assessment.

Several works in the state of art have been focused on the
automatic detection of voice pathologies based on acoustic mea-

sures extracted from pronunciation of sustained vowels [8], [9].
However, if the speech signal loses part of its quasi-periodic
behaviour due to the presence of pathology, and such affecta-
tion of the voice involves not only the phonatory processes, but
also the dimensions of articulation and prosody (as in the case
of PD), the analysis of speech signals must include additional
exercises as word pronunciation, phrases and/or monologues.
This is because sustained vowels alone are not suitable for as-
sessing voice quality and communication skills [10], and also
because they do not incorporate dynamic aspects of continuous
speech (e.g. co-articulations, onset and offset effects etc.) [11].

In general, techniques based on the analysis of continuous
speech samples rely on some segmentation procedure to iden-
tify the voiced, unvoiced, and silence periods. This is due to the
fact that measures that quantify periodicity and regularity (e.g.
Harmonic-to-Noise ratio, cepstral peak prominence, and pitch
amplitude) are valid only in the voiced regions [12]. Addition-
ally several acoustic measures are based on methods that make
assumptions of signal stationarity, which are not fully satisfied
in continuous speech signals due to, for instances, the variations
of pitch periods, rhythm, intonation and other suprasegmental
features [13]. Moreover, the mixture of voiced, unvoiced, and
silent periods itself leads to non-stationary conditions [12].

Several works in the literature have addressed the problem
of detection of PD using different kind of features and dimen-
sions (phonation, articulation and prosody) [4], [5], [14], report-
ing successfully results; however, most of the works that an-
alyzed continuous speech used voiced/unvoiced segmentation,
which for the fact of resolution in time, prevent the capture of
low frequency changes in the speech signals that for people with
PD, could be associate to tremor [15].

A different way to extract features from continuous speech
signals is to use a non-stationary technique directly, thereby
avoiding the need for any segmentation procedures and allow-
ing the analysis of longer frames making more feasible to detect
low-frequency changes. In this sense, in recent years, several
time-frequency (TF) techniques of analysis have been applied
successfully in the context of speech. Multi-resolution analysis
based on wavelet theory is one of the most widespread methods.
Wavelet transform (WT) is particularly well suited for TF analy-
sis and for the characterization of singularities in non-stationary
signals, and has been effectively used in developing measures
for the screening of pathologies in speech [16]. In [17] it was
proposed a voice disorders identification algorithm by using the
energy of coefficients obtained from a discrete wavelet trans-
form (DWT) to feed a Neural Network classifier. The authors
reported classification rates about 90%. A more recent work
presented in [18], reports good results (around 100%) in the



context of pathological voice quality assessment, using a char-
acterization based on WT and a Support Vector Machine (SVM)
as pattern recognizer. Another kind of TF techniques used in the
context of speech include modulation and Wigner-Ville-based
spectra. In [19], a recent approach used the spectral modula-
tion to detect changes in the acoustic spectrum of pathological
voices yielding to detection rates around 94.08%. On the other
hand, Wigner-Ville distribution (WVD) is a valuable and effec-
tive method for the analysis of non-stationary signals. It allows
a better simplicity and characterization of the time-dependent
spectra in comparison to STFT, and it has also been success-
fully used in the context of speech [20].

One of the drawbacks of the TF analyses is that the spectra
generated by the different techniques contain a large amount of
data, that prevent their direct usage in pattern recognition sys-
tems, and therefore in most of the cases, a dimensionality re-
duction or sub-characterization stages is required. In this sense,
this work analyzes the low-frequency components of continu-
ous speech signals uttered by PD patients and healthy controls
(HC), using three different TF techniques, in order to determine
whether characteristics associated with low-frequency compo-
nents of the speech signals can be used to detect the presence
of PD. The spectra are in turn characterized based on subband
energy analysis and spectral subband centroids [21], [22] and
the automatic detection is performed using Gaussian Mixture
Models (GMM), GMM-Universal Background Model (GMM-
UBM) and SVM based detectors. Furthermore, the information
provided by the different TF techniques is combined using a
second classification stage as proposed in [23].

The paper is organized as follows: section 2 presents the
proposed methodology and a brief description of the methods
applied in this work; section 3 provides details about the ex-
perimental framework and section 4 shows the results obtained.
Finally, in section 5 some conclusions arisen from the results
are presented.

1.1. Methodology

Figure 1 shows a schematic of the methodology used for the
classification system. Three different TF techniques of analysis
are used: Wavelet Packet Transform (WPT), modulation spec-
tra (MS) and WVD. The speech signals were computed on a

Figure 1: General diagram of the proposed system.

frame-by-frame basis using 262 ms windows shifted by 64ms
as proposed in [19]. The spectra obtained by MS and WVD
were characterized with centroids and the energy content of dif-

ferent frequency bands. In the case of WPT, the Teager-Kaiser
energy operator (TKEO) and entropy measures were computed
in decomposition bands [24]. Besides, due to the computational
cost of some the TF techniques, the speech signals were down-
sampled to 11025Hz. The performance of the proposed system
was evaluated in two stages: first, the features extracted from TF
techniques were used separately to feed pattern classifiers based
on GMM, GMM-UBM and SVM. After the first stage, the out-
puts of the best classifiers were merged together using a SVM
classifier to take the final decision. In the following, every stage
of the process will be briefly described.

1.2. Wavelet packet transform (WPT)

The WPT is a generalization of DWT that provides accurately
detailed information across time and frequency domain of a
speech signal. WPT structure gives ability to advance on the
wavelet packet tree nodes where each subband is divided into
two smaller subbands with equal frequency range [18]. WT-
based methods have advantages over traditional Fourier trans-
forms for representing functions that have discontinuities and
sharp peaks, and for accurately deconstructing and reconstruct-
ing finite, non-periodic or non-stationary signals [18]; hence
WT has the advantage of using a variable length window for dif-
ferent frequency components. In this work, the Daubechies10
wavelet was used, and all the coefficients from second to fifth
level of decomposition were considered for the characterization.
The set of features includes the following measures [24]:

• The normalized log energy: this measure is calculated
according to (1):

E(k) = log

[∑Nk
n=1[d(k, n)]2

Nk

]
(1)

where d(k, n) is the coefficient of the k-th level of de-
composition in the n-th sample, and Nk is the number
of coefficients [24].

• The normalized log energy of TEO: It is a nonlinear oper-
ator used for taking advantage of the existence of multi-
ple components on a signal x = {x(1), x(2), ...}, which
in this case corresponds to the sequence of coefficients
obtained from each of the k decomposition levels [24].
TEO is used here to model the changes in the speech
signal due to non-linear effects in vocal tract and it is
defined as:

TEO(x, n) = x(n)x∗(n)− x(n+ 1)x∗(n− 1) (2)

where (∗) corresponds to complex conjugate. For a
whole signal segment, the logarithm of average TEO is
used to obtain a better resolution of the characteristic; it
is computed as:

ETEO(k) = log

[∑Nk
n=1 |TEO(x, n)|

Nk

]
(3)

• Shannon and log energy entropy: Entropy is a measure
of the unpredictability of a random variable. In this
work, two entropy measures were computed on each of
the decomposition levels: the non-normalized Shannon
entropy and the “log energy” entropy described by:

SE(k) = −
b∑
j=1

[|p(j)|2 · log
∣∣p(j)2

∣∣] (4)



LEE(k) = −
b∑
j=1

log
∣∣p(j)2

∣∣ (5)

where b is the number of bins used for the definition of
the probability mass function, and p(j) is the probability
that one of the coefficients falls into j-th bin.

1.3. Modulation Spectra (MS)

Modulation spectra may be seen as a non-parametric way to rep-
resent the modulation present in the speech which is introduced
by the presence of pathologies [19]. The most common modula-
tion frequency analysis for a discrete signal, initially employs a
short-time Fourier transform, and subsequently, the magnitude
of the spectrum is used for a second frequency analysis with an-
other Fourier transform [19]. Figure 2 shows a representation
of MS obtained from a normal and a pathological speech signal
(uttered by a patient with PD). It is possible to observe that for
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Figure 2: Spectrogram of MS for normal and pathological
voice.

pathological speech signals, most of the energy at the modula-
tions corresponding to fundamental frequency and its harmon-
ics, is localized in the lower acoustic frequencies.

1.4. Wigner-Ville distribution (WVD)

The Wigner Distribution is a popular method for TF analysis of
mono-component signals. Several derived applications of this
method have been proposed in different domains [25]. WVD
provides a high resolution in both TF planes, but only for mono-
component signals. In multi-component cases the technique
is not suitable due to the cross-term artifacts of the aliasing.
To overcome this problem, a widely accepted window function
such as the Hamming, can be applied to the WVD to smooth
the cross-terms (smooth windowed WVD or smoothed pseudo
WVD (SPWVD)). For the sake of comparison, figure 3 shows
a representation of WVD obtained from a normal and a patho-
logical speech signal (PD).

1.5. Characterization of dynamic features

Unlike WPT, MS and WVD spectra were characterized with
spectral centroids and the energy content at different frequency
bands. These features are considered effective methods of
combining the frequency and magnitude information from the
power spectrum [22]. The centroid of the power spectrumX(f)
with frequency f can be estimated by:

Cv =

∫ Fs/2

0
fHv(f)Xγ(f)df∫ Fs/2

0
Hv(f)Xγ(f)df

(6)
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Figure 3: Spectrogram of WVD for normal and pathological
voice.

where Fs is signal sampling frequency, Hv(f) is the filter cen-
tered at the subband v, and γ is a parameter that decides the
dynamic range of the spectrum used in the computation of the
centroid. The expression (6) can be implement in the discrete
time n by

Cv [n] =

∑W
w=1 wHv[w] |Xγ [n,w]|2∑W
w=1 Hv[w]|Xγ [n,w] |2

(7)

where Hv[w] is the discrete version of the filter bank Hv(f).
The energy around each centroid with fixed bandwidth ∆w is
computed by means of:

Êv[n] =

Cv [n]+∆w∑
W=Cv [n]−∆w

|X [n,w]|2 (8)

1.6. Classification

The classification was performed individually per each TF tech-
nique using three different standard classifiers in the context of
speech: GMM along with the GMM-UBM strategy [26], and
SVM. The information provided by the different TF techniques
was combined using a second classification stage where the out-
puts of the best classifiers in the first stage were used as inputs
for the second stage [23]. In all the cases, the decision was taken
by averaging the outputs of the classifiers per each frame of a
speech recording, in order to have a global decision per speaker.

2. Experimental framework
2.1. Corpus of Speakers

The database used in this work is fully described in [27]. It
includes several speech exercises such as sustained vowels, iso-
lated words, several sentences and monologues. The voice sam-
ples were uttered by 50 PD patients and their age and gender-
matched healthy controls (HC). The recordings were captured
in noise controlled conditions, in a sound proof booth that was
built at the Cı́nica Noel, in Medellı́n, Colombia; the registers
were sampled at 44.1 KHz with a resolution of 16 bits. The
participants are Colombian Spanish native speakers and all of
the patients were diagnosed by neurologist experts and none
of people in the HC group has history of symptoms related to
PD or any other kind of movement disorder syndrome. The
mean values of their neurological evaluation according to the
UPDRS-III and Hoehn & Yahr scales [28] are 36.7± 18.7 and
2.29 ± 0.8, respectively. For this work, the Spanish sentence:
“Los libros nuevos no caben en la mesa de la oficina” was used
for the experiments.



2.2. Experimental setup

The validation was carried out using a cross-validation strat-
egy with 10 folds. Training and testing samples were chosen
randomly but maintaining the balance in age and gender. As
pointed out before, three methods of classification were used
during the experiments. For the GMM and GMM-UBM strate-
gies, there were evaluated different numbers of Gaussian com-
ponents (G) (from 2 to 6), with diagonal covariance matrix. For
the SVM, the regularization parameter C and RBF kernel pa-
rameter γ were adjusted. The grid values for C included [0.1
1 10 100 1000] and for γ included [0.0001 0.001 0.01 0.1 1 10
100]. The performance of the system was measured in terms of
accuracy (Acc), sensitivity (Sens) and specificity (Spec). Also
the ROC curves and Area under the curve (AUC) are provided.

3. Results and discussions
Table 1 shows the results of the first stage of classification ob-
tained with the three different TF techniques, where each fea-
ture set is considered separately. The accuracy obtained from
the three methods is very similar, being WPT the best tech-
nique yielding to 73% of recognition rate. It is worth to note
that while WPT provides the best accuracy and specificity, MS
and WVD achieved better sensitivity than WPT, which is very
valuable in the medical context. This result suggests that the
information provided by the three TF techniques could be com-
plementary for the evaluation of PD patients, therefore in the
following the systems with the best performance per each of the
TF techniques, were merged together into one system. Table 2

Table 1: Results obtained for the TF techniques in stage 1
Features classifier % Acc % Sens % Spec Parameters

MS
GMM 64.0±16.3 58.0±22.0 60.1±24.4 G=2

GMM-UBM 60.0±10.9 64.0±18.4 63.5±18.4 G=2
SVM 68.0±10.7 86.0±16.4 50.0±17.0 C=10, γ=0.1

WVD
GMM 70.0±16.1 62.0±28.9 71.3±20.2 G=4

GMM-UBM 71.0±16.6 62.0±31.9 72.1±18.5 G=6
SVM 71.0±10.4 82.0±14.7 60.0±21.1 C=0.1, γ=0.1

WPT
GMM 63.0±14.2 70.0±19.4 60.5±25.8 G=3

GMM-UBM 63.0±14.1 68.0±21.5 64.0±16.5 G=3
SVM 73.0±9.0 72.0±23.5 74.0±21.2 C=100, γ=0.001

shows the best results of the first stage of classification along
with the combination stage. In this case, the overall perfor-
mance of system was better than any of the former individual
evaluation, achieving a classification rate of 77% and reducing
the confidence interval. The specificity of the whole system was
also better in comparison with those reported in Table 1. More-
over, the sensitivity and specificity of the whole system show
quite balance. On the other hand, and with the aim of present
the results in a more compact way, the ROC curves for each of
the results in Table 2 with their corresponding AUC are shown
in figure 4. It is worth to note that, according to the ROC curves,
WPT does not present better accuracies than MS and WVD. In
this case, WVD is the technique with better expected perfor-
mance confirming the need for the fusion of the information
provided by the different TF representation. As expected, the
best AUC was obtained with the fusion of MS, WVD and WPT.

4. Conclusions
This paper undertook different approaches to the analysis of
low-frequency components of continuous speech signals by us-
ing three different TF techniques. The results shown that, for
the database used, the changes in the energy components can

Table 2: Results obtained with the best classifier in stage 1 and
the fusion using a SVM classifier

Feature % Acc % Sens % Spec Parameters

MS 68.0±10.7 86.0±16.4 50.0±17.0 C=10. γ=0.1
WVD 71.0±10.4 82.0±14.7 60.0±21.1 C=0.1.γ=0.1
WPT 73.0±9.0 72.0±23.5 74.0±21.2 C=100. γ=0.001

Fusion 77.0±6.4 78.0±14.8 76.0± 22.7 C=1000. γ=0.0001
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Figure 4: ROC curves for the different methods of TF analysis
with their corresponding AUC.

differentiate between normal and Parkinsonian speech signals,
with an accuracy around to 77%, using a single sentence. The
MS analysis shown that, unlike normal voices, the energy com-
ponents of speech from people with PD are mainly located at
very low acoustic and modulation frequencies.

For all the TF techniques used, the best performance was
obtained when the classification was carried out using SVM.
Furthermore, by taking into account the second classification
stage, an absolute improvement of 4% in the accuracy rate,
along with a lower variance was reached. This fact suggest that
the information provided by the different techniques is comple-
mentary and also that more reliable predictions can be made
when the fusion of classifiers is considered.

The use of TF techniques allows to find low-frequency
components of continuous speech that could be associated to
an indicator of the presence of PD. Further additional analy-
ses should include other sentences with different phonetic and
prosodic content, in order to get a better characterization of the
low-frequency components under different efforts. Also, the
combination of the features derived from TF analysis must be
combined with other kind of characterizations, in order to es-
tablish the real contribution of these kind of techniques as part
of a multi-task system for the detection and assessment of PD
patients.
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