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Improve Path Seeking Accuracy for Iterative
Reconstruction Using the Karush-Kuhn-Tucker
Conditions

Meng Wu, Andreas Maier, Qiao Yang, and Rebecca Fahrig

Abstract—TIterative reconstruction (IR) techniques have
demonstrated many advantages in X-ray CT reconstruction. The
statistical iterative reconstruction approach is often modeled as
an optimization problem including a data fitting function and
a penalty function. The tuning parameter value that regulates
the strength of the penalty function is critical for achieving good
reconstruction results. However, appropriate tuning parameter
values that are suitable for the scan protocols and imaging tasks
are often difficult to choose. In this work, we describe path
seeking algorithms that are capable of generating a series of IR
images with different strengths of the penalty function. We add
an optimization step in the path seeking algorithm to improve the
accuracy. Numerical simulation results have shown the proposed
true path seeking algorithm has 20% to 30% less errors than
the approximate path seeking algorithm [1].

Index Terms—CT, iterative reconstruction, path seeking, KKT
conditions

I. INTRODUCTION

Iterative reconstruction (IR) methods for 3D CT offer nu-
merous advantages such as the potential for improved image
quality and reduced dose, as compared to the conventional
methods such as filtered back-projection (FBP) [2], [3]. The
commonly used maximum likelihood (ML) problem in itera-
tive reconstruction is often ill-posed and generates incorrect
reconstructions, especially when the number of projections is
small, or the data is very noisy [4]. A common remedy is to
add a regularization to the ML problem and formulate it as a
penalized maximum likelihood problem (PML) with

= argmaxW¥(u) — BR(p), (D)
u=0

where W(y) is the log-likelihood function, R(y) is the penalty
function (also known as regularization function), and [ is the
tuning parameter that regulates the strength of the penalty
function. In this study, we consider the penalized weighted
least-squares (PWLS) algorithm
1z
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where A denotes the system matrix for the data acquisition
geometry, [ denotes the logged normalized projection, and w
is the least-squares weight.
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Fig. 1: Reconstruction path of the penalized maximum likeli-
hood iterative method.

The regularization function R(u) often penalizes the differ-
ences in the values of neighboring pixels [3]-[6], or produces
uniform point spread function [7]. Different tuning parameter
[ values generate different reconstructed images (solutions to
slightly different optimization problems). In fact, the values
of the tuning parameter S (0 < 8 < oo) in Eqn. (1) produce
a series of reconstructions (). The value of the tuning
parameter is critical to the reconstruction results. For example,
if 5 is too small, the regularization is not strong enough to
suppress noise and artifacts; if 3 is too big, the image exhibits
patchy behavior [3]. Figure 1 shows the relationship between
the PML reconstruction and the true image with different
tuning parameter values.

To the best of our knowledge, there is no perfect way of
deciding the value of 3 that would lead to the best recon-
struction for clinical use. Because of the high computational
load of IR, directly computing multiple solutions (u(/3)) via
numerical optimization would not be suitable for practical use.
Wu et. al. proposed an approximate path seeking algorithm
(APS) to efficiently compute a series of IR images p(3) with
different strength of regularization [1]. However, the APS
algorithm assumes that each of the newly computed images
are on or near the reconstruction path. Numerical errors and
acceleration techniques could cause accumulated errors in
the path seeking. The accumulated errors in the approximate
path seeking become more severe if the reconstruction path
is ”long”. Because each image on the path is a solution in
the series of the optimization problems, one can estimate
the current tuning parameter value in the middle of the path
seeking using the Karush-Kuhn-Tucker (KKT) conditions [9].
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An additional optimization step can be then carried out to
ensure the computed path images are on the reconstruction
path. In this paper, we first review the approximate path
seeking (APS) algorithm, and then describe a true path seeking
(TPS) to improve the accuracy.

II. METHODS
A. Approximate path seeking (APS)

Friedman proposed a fast generalized path seeking (GPS)
algorithm that produces solutions closely approximating the
path of the constrained regression problems [8]. The GPS
algorithm uses the ratio of the gradients to update one re-
gression variable each time, which is accurate and suitable
for a small regression problem. However, the number of the
variables in the image reconstruction problem is identical to
the number of voxels. Considering the heavy computational
load of calculating the gradient of the likelihood function
W (), we proposed to update a fraction of pixels each time
instead of one pixel. Moreover, a path direction is introduced
to improve the path seeking efficiency, which is defined as

dj = pj(B2) — pj(B1)s 3)

where 4;(82) and p;(31) are two solutions on the path with
B1 < B2. When 31 and (32 are close, we assume the partial
derivative of the penalty function follows
OR
R, - “
O

J
for all 8 € [51, B2]. This is equivalent to saying the path of
each pixel is locally monotonic in 3. Let us define the negative
gradient of the weighted least-squares and penalty function as

oylp) = =25 — — (A dig{w} (g - 1),
! %)
hj(p) = —aaR/Sj)-

The approximate path seeking algorithm is

Set up initial conditions:
Reconstruct two images x(51) and p(B2) for selected path
range [31, 2]
p=p(B1)
Loop {

D) d=p(B2) —p

2) Compute A = by (12)/g; (1)

3) Find S = {j|h;(p) - g; (1) > 0}

4) If (S is not empty) {

5)  pj =p; + Av-sign(A;) forall j €S

6) } Else {

7) I (A -d;<0), then \; =0

8)  Find ¢ such that P{|)\;| >t} <p

9 I (N[ =21, py = p; + Av-sign(A))

10) }
} Until || — p(B2)]| stops decreasing.

The variable p is the update percentage of the pixels in each
iteration, and Av > 0 is a small increment value, e.g. 1 - 3
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Fig. 2: 2D illustration of the approximate path seeking al-
gorithm. The yellow points (4 ... us) are the path images
computed by the approximate path seeking algorithm.

HU. At each step, the pixel-wise ratio of the two gradients
indicates the relative effects of the data fitting (likelihood)
and penalty functions at current p. Line 5 updates the pixel
if both gradients are in the same direction. Line 7 ensures the
algorithm only considers the rest of the pixels that have the
same updating direction as d;. Line 8 selects the pixels that
have the largest ratios of the gradients. The selected pixel is
then incremented by a small fixed amount (Av) in the direction
of ;. Figure 2 shows a 2D illustration of the approximate
path seeking algorithm. The green arrows dj...d, are the
direction vectors (line 1) toward final path image x(52); the
orange arrows are the fixed size updates to the image (line 9).
In each iteration, one out of two variables was updated by A,
in the same direction as d and .

In the previously described APS algorithm, the path image
goes from £i(51) to p(B2). We call it a forward model, because
it shows the effect of increasing the strength of the penalty
function. The path seeking algorithm can also work in the
opposite direction (backward model). We just need to change
the initialization to p(82), and use d; = p;(f1) — p; and

A = g5(1)/ i ()]

B. True path seeking (TPS)

The APS method assumes that the ratios of gradients (};)
and path direction (d;) select correct pixels to update. The
accuracy of the APS algorithm relies on that each newly
computed image is on or near the reconstruction path so that
the APS updates are tracking the effects of the regularization
instead of doing optimization. Numerical errors in reconstruc-
tions and acceleration techniques (e.g. inappropriate step sizes
and order subset method) could cause accumulated errors in
the APS. Not surprisingly, when the distance between 1(/51)
and p(B2) is large, the accumulated errors will be greater too.

Fortunately, the path images are supposed to be solutions
of a series optimization problems, which only have different
(3 values. Thus, if we can estimate the corresponding 5 value
of each path image, additional optimization steps can then be
executed to improve the accuracy of the path seeking. If each
estimated image is a close solution of the convex optimization
problem, the tuning parameter value can be estimated using
the Karush-Kuhn-Tucker (KKT) conditions [9]. The KKT
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condition for the PWLS problem is

9i(p") + B hi(p") —n; =0

n; - p; =0 forall j, (6)
nj 20

where 77 is the Lagrange multiplier of the non-negative
constrains. The KKT condition implies that if 44} # 0 then

95 (") + B - hy(p") = 0. ()

Therefore, the tuning parameter value 5 can be estimated by

[ 9i(p)
5 =~ Median { =

hi ()
Using the median is more numerically robust than using the
average, because the h;(4+*) can be a very small number. With

a way of estimating 3, we propose a true path seeking (TPS)
algorithm as

ijuj>o}. 8)

Set up initial conditions:

Reconstruct two images x(51) and p(B2) for selected path
range [31, (2]

p = p(Br)

Loop {

1) Estimate 8 using Eqn. (8)

2) u=u—oa(g(p)+p-hip).

3) d=p(B2) — p

4) Compute A; = hy (12)/lg; (1)

5) Find S = {jlh;(p) - g;(p) > 0}

6) If (S is not empty) {

7w =p; + Av-sign(A;) forall j € S
8) } Else {

9) If(A-d; <0), then \; =0
10)  Find ¢ such that P{|\;| >t} <p
1) I (] = 8), py = pj + Av -sign(})
12) }

} Until || — p(B2)]| stops decreasing.

Lines 1-2 are the additional minimization step in the TPS
algorithm to draw p closer to the reconstruction path. The
minimization step does not need to be executed for many
iterations because the image is already very close to the path
when step size is small. Figure 3 shows a 2D illustration of
the TPS algorithm. The image from the previous path seeking
step (orange points) are corrected by the minimization step
(red arrows) to more accurate path images (red points) before
the path seeking.

Moreover, computing the gradient g(p) requires forward
and backward projection that has high computation cost. The
gradients computed in line 2 may be reused in line 4. Reusing
the gradient reduces the computational cost, but the accuracy
of the path seeking step may be affected. We called the
algorithm using the newly re-computed gradients as TPS-1
and using previously computed gradient as TPS-2.
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Fig. 3: 2D illustration of the true path seeking algorithm. The
red points (i1 ...us) are the path images computed by the
true path seeking algorithm.

III. SIMULATIONS

A thorax XCAT phantom is used to simulate projections
for a Siemens SOMATOM 32 row clinical CT geometry in
3D. We reconstructed a 512 x 512 x 32 image from an
undersampled chest axial CT scan. The size of the original
sinogram is 768 x 32 x 721 (half scan), and we uniformly
undersampled the number of projection views from 721 to 91.
We used the total variation (TV, i.e., the L1 norm of the first-
order derivative) as the penalty function R, which has shown
many good properties in the sparse view reconstruction. The
unattenuated scan factor is 1 x 105 photon counts / pixel. The
direct optimization solutions of the PWLS problem for 20
values log spaced from 10 to 200 were achieved using the
ordered-subsets linearized augmented Lagrangian method [10]
with 100 iterations.

The update percentage p was set to 20%, with step size
Awv equal to 1 HU for both the APS and the proposed TPS
algorithms. Ordered subsets of 3 were used to approximate the
gradient g; in Eqn. (5) with a smaller number of projections.
A total of 40 path images with equal L, distances between
(B8 = 10) and p(8 = 200) were computed and stored using
both forward and backward path seeking models. The accuracy
of the path seeking algorithms was evaluated by comparing
the reconstructions using numerical optimization and the path
seeking.

IV. RESULTS

Figure 4 shows five frames in the path of the PWLS method
using the direct optimization and the TPS2 forward method.
Both approaches provided sequences of images from noisy
reconstructions with view undersampling artifacts to over
blurred images. The root-mean-squared-difference (RMSE)
and mean-absolute-difference (MAD) between the first (u(8 =
10)) and the last (u#(8 = 200)) images are 44 HU and
15.5 HU, respectively. Figure 5 shows eight frames of 6 cm
x 6 cm region-of-interest (ROI) of the path images using
direct optimization and the proposed path seeking (forward)
methods. The path images generated by the path seeking
algorithms are similar to the direct optimization results. The
path images using the path seeking algorithms are more evenly
spread between the first and last images. There are several
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Fig. 4: Five example images in the PWLS reconstructions path computed using the direct optimization (top) and the proposed
TPS2 algorithm (bottom). The display window is [-400, 400] HU.

Fig. 5: Sequences of path images of a 6 cm X 6 cm ROI using
the direct optimization and the proposed path seeking (forward
model) algorithms. From top to bottom: direct optimization,
APS, TPS1 and TPS2. The display window is [-100, 300] HU.
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Fig. 6: The RMSD and MAD measurements of the entire
path images generated by the proposed method compared to
a directly solved PWLS images. The solid lines are forward
model, and the dashed lines are backward model.

pixels in the image using the path seeking algorithms that are
updated slower than the rest of the image, because the total
path lengths of those pixels are too big for the small step size.
The TPS images haves smaller errors than the APS images
because the additional optimization step corrects those pixels
too. We expect that the errors due to the step size become
smaller when using larger number of projections.

Quantitive evaluations using RMSD and MAD are shown
in Figure 6. The 40 path images that are computed by the
path seeking methods were compared to one directly solved
PWLS image at 8 = 50 (the middle image in Figure 4 first
row). The closest path seeking images has RMSD around 10
HU and MAD about 4 HU. The RMSD is much larger than
the MAD because of the large errors in several pixels that are
also noticeable in Figure 5. The minimum differences using

the TPS to the direct optimization result are 20% to 30%
smaller than using the APS method in both RMSD and the
MAD. There is no big difference in accuracy between the TPS-
1 and TPS-2 method. Because the TPS-2 algorithm requires
only half times of computing the gradients compare to the
TPS1 algorithm, the TPS-2 version is much faster than the
TPS-1 version. The forward model is more accurate than the
backward model except when [ is very large.

V. CONCLUSION

In this work, we proposed to add an optimization step
in the path seeking algorithm to improve the accuracy. The
tuning parameter of the path images were estimated using the
KKT condition of the convex optimization problem. Numerical
simulation results have shown the proposed TPS algorithm has
20% to 30% less errors than the APS algorithm.
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