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Purpose: Three-dimensional (3D) volume-of-interest (VOI) imaging with C-arm systems provides
anatomical information in a predefined 3D target region at a considerably low x-ray dose. However,
VOI imaging involves laterally truncated projections from which conventional reconstruction algo-
rithms generally yield images with severe truncation artifacts. Heuristic based extrapolation methods,
e.g., water cylinder extrapolation, typically rely on techniques that complete the truncated data by
means of a continuity assumption and thus appear to be ad-hoc. It is our goal to improve the image
quality of VOI imaging by exploiting existing patient-specific prior information in the workflow.
Methods: A necessary initial step prior to a 3D acquisition is to isocenter the patient with respect to
the target to be scanned. To this end, low-dose fluoroscopic x-ray acquisitions are usually applied from
anterior–posterior (AP) and medio-lateral (ML) views. Based on this, the patient is isocentered by
repositioning the table. In this work, we present a patient-bounded extrapolation method that makes
use of these noncollimated fluoroscopic images to improve image quality in 3D VOI reconstruction.
The algorithm first extracts the 2D patient contours from the noncollimated AP and ML fluoroscopic
images. These 2D contours are then combined to estimate a volumetric model of the patient.
Forward-projecting the shape of the model at the eventually acquired C-arm rotation views gives
the patient boundary information in the projection domain. In this manner, we are in the position to
substantially improve image quality by enforcing the extrapolated line profiles to end at the known
patient boundaries, derived from the 3D shape model estimate.
Results: The proposed method was evaluated on eight clinical datasets with different degrees of
truncation. The proposed algorithm achieved a relative root mean square error (rRMSE) of about
1.0% with respect to the reference reconstruction on nontruncated data, even in the presence of severe
truncation, compared to a rRMSE of 8.0% when applying a state-of-the-art heuristic extrapolation
technique.
Conclusions: The method we proposed in this paper leads to a major improvement in image quality
for 3D C-arm based VOI imaging. It involves no additional radiation when using fluoroscopic
images that are acquired during the patient isocentering process. The model estimation can be readily
integrated into the existing interventional workflow without additional hardware. C 2015 American
Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4914135]

Key words: computed tomography, volume of interest imaging, truncation correction, extrapolation,
fluoroscopic image

1. INTRODUCTION

Three-dimensional (3D) C-arm based volume-of-interest
(VOI) imaging is a valuable tool in interventional radiology
for therapy planning and guidance. It is capable of providing
3D anatomical information in a predefined target region at
considerably low x-ray dose. In neurointerventions, some
applications only require a small VOI to be imaged, e.g.,
examination of a deployed stent or coil, resulting in severe
truncation of the projection data. However, conventional
reconstruction algorithms generally yield images with heavy
truncation artifacts from these laterally severely truncated

projections.1 Such artifacts manifest as cupping-like effects
and incorrect Hounsfield unit (HU) values.

So far, various approaches concerning the correction of
truncation have been proposed in the literature. A major cat-
egory among these methods is based on estimating the miss-
ing data using a heuristic extrapolation procedure: Ohnesorge
et al.2 used a symmetric mirroring extrapolation scheme to
reduce the truncation artifacts from objects extending outside
the measured field of view (FOV). Hsieh et al.3 suggested a
method that approximates the missing measurements by
integrals along parallel rays through a 2D water cylinder. Some
functions that fit the missing portion of the patient, such as
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a square root function or a Gaussian function, also have
been investigated by Sourbelle et al.4 and Zellerhoff et al.5

Although these methods can be carried out without a priori
information, they rely on heuristics. The degree of accuracy
of these extrapolation estimates highly depends on the level
of truncation. They may be difficult to correct for the severe
truncations that could be encountered in VOI scans.

Later, Maltz et al.6 observed that the thickness of the
patient could be estimated by calculating water-equivalent
thicknesses from the measured attenuation profiles, so that
the unknown patient boundary can be approximated. However,
in practice, the presence of any nonwater tissue (air, bond,
or metal implants) might result in a substantial over/under-
estimation of the actual object thickness.

In contrast, Ruchala et al.,7 Wiegert et al.,8 and Kolditz
et al.9 suggested that patient size and shape information can be
obtained from an a priori low-dose CT scan, if available. By
forward-projection of this a priori CT volume, the collimated
regions in the VOI acquisition can be extended in an accurate
manner. These additional scans, however, may interrupt the
interventional workflow and cost extra radiation dose to the
patient. Also, additional registration step is required due to
repositioning of the patient between two scans. Alternatively,
Sen Sharma et al.10 suggested acquiring an additional scan
but with only a small set of nontruncated projections. Then,
interpolation and extrapolation steps are applied on this sparse
set of nontruncated projections, followed by a combination
with the subsequently acquired truncated projection data in
the sinogram domain. The image quality of reconstructions,
however, highly depends on the number of nontruncated
projections. Yu et al.11 developed a VOI/ROI reconstruction
scheme that is able to use two global nontruncated projections
to cope with truncation artifacts. But the method was based
on compressed sensing iterative techniques.

Chityala et al.,12 Chen et al.,13 and Schafer et al.14 proposed
a different method that irradiates parts of the scan FOV at a
lower dose. In this case, a nonuniform VOI beam filter is
applied to reduce dose outside the VOI. Therefore, projections
will not be truncated, but data acquisition might become less
flexible due to the fixed VOI size and filter thickness. More-
over, dose reduction benefits may also be reduced compared
to the fully truncated data.

Dennerlein and Maier15 reformulated the Feldkamp–Davis
–Kress (FDK) algorithm16 into a reconstruction scheme that
is less sensitive to transaxial data truncation. For this purpose,
the standard high-pass ramp filter was decomposed into a local
Laplace filter and a nonlocal low-pass filter. Although the
method is robust to severe truncation, a global scaling/offset
artifact is typically observed in the reconstruction volume that
has to be compensated (Xia et al.17).

Although it has been proven that reconstructions from
severely truncated data yield no unique solution in general, a
theoretically exact solution has been developed by Ye et al.,18

Kudo et al.,19 Yu et al.,20,21 and Yang et al.,22 namely, interior
tomography, based on the idea of differentiate backprojection
(DBP) with different a priori knowledge on a ROI. Such
knowledge could be a known subregion inside a ROI (Ye et al.18

and Kudo et al.19) or a sparsity model of a ROI (Yu et al.,20,21

F. 1. Illustration of fluoroscopic x-ray projections from medio-lateral view
and anterior–posterior view, respectively. They require considerably low
x-ray dose and are usually applied prior to a 3D scan, to examine if the
diagnostic VOI is optimally centered. The red outlines indicate the extracted
boundary information.

Yang et al.,22 and Katsevich et al.23). Then, a projection onto
convex sets (POCS) algorithm or total variation (TV) based
compressed sensing was used to reconstruct images from fully
truncated data, depending on which a priori information is
available.

In this paper, we present a patient-bounded extrapolation
method that leads to major improvements in the accuracy
of 3D VOI imaging, even in the presence of severely
truncated data. The method does not require any additional
hardware and can be readily integrated into the existing
interventional workflow. It is based on the fact that prior to
a 3D scan, two fluoroscopic x-ray acquisitions are generally
performed from anterior–posterior (AP) and medio-lateral
(ML) views, to isocenter the patient with respect to the target
to be scanned, see Fig. 1. These fluoroscopic acquisitions
require considerably low x-ray dose. The fundamental idea
of the proposed method is to estimate a 3D shape model of
the patient from these low-dose nontruncated fluoroscopic
images and then exploit this patient-specific a priori shape
knowledge for the extrapolation of truncated projections.

2. METHODS

This section starts with an overview of the proposed
patient-bounded extrapolation method, which consists of the
following steps. First, we estimate the rough 3D patient shape
based on two fluoroscopic projections, using per-slice ellipse
fitting. Forward-projecting this 3D model for any projection
angle acquired during the actual VOI scan gives the patient
bounded information for the corresponding projection. Then,
detruncated projection data could be obtained by adapting the
extrapolated profile to fit the known profile boundary points.
The flowchart of the algorithm is illustrated in Fig. 2. The
details are elaborated in Secs. 2.A–2.E; also see Fig. 3 for
notations.

2.A. Patient shape model estimation using slice-wise
ellipse

The first step is to extract the boundaries from fluoro-
scopic images shown as the red outlines in Fig. 1. Here, we
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F. 2. Flowchart of the proposed patient boundary extrapolation procedure.

can readily detect the edges by using an empirically preset
air/tissue threshold. Suppose, uAP

lb =
�
uAP

lb ,vi,1
�
, uAP

rb , uML
lb , and

uML
rb are the homogeneous coordinates of the segmented left

and right boundary points at detector row vi of the 2D
fluoroscopic images from AP and ML view. Let Pλ ∈ R3×4

be the projection matrix at the C-arm rotation angle λ that
maps position x= [x,y,z] in the C-arm coordinate frame to a
position u= [ωu,ωv,ω] in the 2D projection plane

u=Pλ


x
1


. (1)

The matrix Pλ can be decomposed as follows:

Pλ=

Pλ13 | pλ4


= [AR | At], (2)

where R ∈ R3×3 denotes the rotation matrix, t ∈ R3 denotes
the translation vector, and A ∈ R3×3 the intrinsic parameter
matrix.

Then, we can compute the direction unit vector eAP
m , eML

m of
the ray that connects the source to the middle point of the two
boundaries, i.e., uAP

m =
�
uAP

lb +uAP
rb

�
/2 and uML

m =
�
uML

lb +uML
rb

�
/2

as

eAP
m =

(PAP
13 )−1uAP

m

∥(PAP
13 )−1uAP

m ∥2
, eML

m =
(PML

13 )−1uML
m

∥(PML
13 )−1uML

m ∥2
, (3)

where P−1 denotes the pseudo-inverse of the matrix P.
Now the ray equations can be expressed as

lAP
m (t)= sAP+ teAP

m and lML
m (l)= sML+ leML

m , (4)

where sAP and sML denote the x-ray source positions at AP
and ML views, which can be computed using s=−P−1

13p4 and
t, l ∈R.

Then, the center of the fitted ellipse x0 is estimated by
computing the intersection of the two rays lAP

m and lML
m . Here,

we confine to breaking the problem down to a 2D line
intersection by setting the third component of the 3D lines
to zero, i.e., sAPIz = sMLIz = 0 and eAP

m Iz = eML
m Iz = 0, where

Iz =
�
0 0 1

�T . The reason to make such an approximation
is that we only need to compute the u-axis coordinates of the
object boundary in the forward projection procedure. The v-
axis coordinates are already given as the detector row indexes
where we extracted the outline information, i.e., vi. Then, the

F. 3. Illustration of the patient-bounded extrapolation scheme. (Left) Contour-bounded slice-wise ellipse fitting. (Right) Forward-projection of the boundaries
of the previously estimated patient shape model at a given C-arm rotation view provides the patient boundary in the projection domain.
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F. 4. Illustration of how to approximate the ellipse radii Rx and Ry. To
estimate Rx for instance, we need to compute the x-axis distance between
x0 and xr (a point located on the line lAP

r that has the same y-axis coordinate
as x0). Such an approximation is valid due to the small fan angle in C-arm
system.

problem is to solve the intersection of the following 2D line
equations:




y = ax+b
y = cx+d

, (5)

with

a =
eML
m Iy

eML
m Ix

, b= sMLIy−asMLIx,

c=
eAP
m Iy

eAP
m Ix

, d = sAPIy−asAPIx, (6)

where Ix =
�
1 0 0

�T and Iy =
�
0 1 0

�T .
So far, we computed the first two components of the

intersection point x0. To establish a 3D model in the volume
domain, the third component of x0 can be approximated by
the third component of the closest point between the two 3D
lines lAP

m and lML
m , which is given by

x0IzB xcloIz (7)

with the closest point determined by (see Appendix for the
derivation)

xclo= sAP+

��
sML−sAP�×eML

m

�
·
�
eAP
m ×eML

m

�
�
eAP
m ×eML

m

�2 eAP
m . (8)

Now, we need to determine the radii Rx, Ry of the ellipse.
The line equation of the rays from AP view that connects
the patient boundary and source can also be expressed
as (e.g., right boundary) lAP

r (h) = sAP+ heAP
r , where eAP

r is
computed using uAP

rb similar to Eq. (3). Suppose, xr is
the point located on the line lAP

r that satisfies xrIy = x0Iy,
i.e., with the same y-axis coordinate as x0; also see Fig. 4
for illustration. Then, the radius along the x-axis Rx can be
approximated as follows:

Rx = (xr−x0)Ix. (9)

F. 5. Comparison of an extrapolated line with/without cosine smoothing in
the transition region.

In analogy, we can use the boundary from ML view to
determine the radius of the ellipse along the y-axis Ry.

So far, for each detector row vi, we computed an associ-
ated ellipse that is used to approximate a slice of the patient
outline in the volume domain. This ellipse is parametrized by
the center x0 and two radii Rx and Ry.

2.B. Patient boundary estimation for arbitrary
projections

With the estimated ellipse in the volumetric image do-
main, we can compute the left and right patient boundaries of
that ellipse for any given C-arm rotation angle λ as follows:

xλlb= x0−reu, (10)

xλrb= x0+reu, (11)

where r =
�

Rycos λ
�2
+ (Rxsin λ)2 and eu denotes the unit

vector in detector row direction.
Then, we forward-project these voxel positions onto the

2D projection plane using Eq. (1), also cf. Fig. 3,

uλlb=Pλ


xλlb
1


uλrb=Pλ



xλrb
1


. (12)

The estimated patient left and right boundaries at the
detector row vi and rotation angle λ, i.e.,

�
uλlb,vi

�
and

�
uλrb,vi

�
,

can be obtained with uλlb=uλlbIx/u
λ
lbIz and uλrb=uλrbIx/u

λ
rbIz.

2.C. Bounded VOI projection profile extrapolation

Based on the estimated patient boundaries in the VOI
scan projection data, we are in the position to apply any
extrapolation technique and adapting it according to the
restriction that the extrapolated profile must end at the known
patient boundaries. In this paper, we adapt the water cylinder
approach of Hsieh et al.3 by expanding or compressing the
initial extrapolated lines to fulfill this restriction. Let gλ, v (u)
be the projection data at the given detector row v and rotation
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F. 6. Visualization of a head phantom shape extracted from the noncolli-
mated 3D reconstruction (left) and the 3D volumetric model estimated from
two orthogonal projections with different ellipses in each slice (right).

angle λ. Then, extrapolation is carried out row-wise as

gwat
λ, v (u)= 2µ


R2− ξ2(u−uw)2, (13)

where µ denotes the water attenuation coefficient, uw denotes
the location of the fitted cylinder with respect to the detector
row, and R denotes the radius. As described in Hsieh’s work,3

the parameters uw and R can be determined by

uw =
gλ, v (ut)g′λ, v (ut)

4µ2 , R=


gλ, v (ut)

4µ2 +u2
w, (14)

where ut and g′
λ, v
(ut) denote the truncation boundary position

and slope of the truncation projection boundary samples,
respectively.

In contrast to the formulation by Hsieh et al., in Eq. (13),
we introduce ξ that serves as a scaling factor to stretch
or shrink the extrapolated profiles. The values of ξ can be
computed by using the boundary index ub (here, we do not
distinguish the left or right boundary. Both are denoted as ub)
that we obtained in Sec. 2.B,

ξ2=
R

ub−uw
. (15)

2.D. Bounded square root function extrapolation

As an alternative, we also investigate the square root func-
tion extrapolation that was proposed by Sourbelle et al.4 For

a given detector row v and rotation angle λ, the extrapolation
function is provided as

gsqr
λ, v
(u)=


α ·u2+ β ·u+γ. (16)

To determine the parameters α, β, and γ, the following
continuity equations are used:

gλ, v (ut)=

α ·u2

t + β ·ut+γ, (17)

g′
λ, v (ut)= β+2α ·ut

2gλ, v (ut) , (18)

where ut and g′
λ, v
(ut) denote the position and slope of the

truncation edge, respectively.
We integrate the patient boundary information into

Eq. (16) such that the extrapolated profile ends at ub,

gλ, v (ub)=

α ·u2

b
+ β ·ub+γ = 0. (19)

Thus, the three parameters α, β, and γ can be determined
using these three equations.

2.E. Cosine-based transition smoothing

To enforce the smoothness of the transition region, the
measured data gλ, v (u) and the extrapolation data gλ, v (u) are
combined by a cosine-like smooth weighting function in a
predefined transition interval. The range of the transition
interval is empirically determined as 1/30 of the number
of the pixels at the measured projection row. For the right
side of truncated image for instance, the transition interval
is [utrans,ut] and the extrapolated values in this transition
interval can be computed as follows:

gtrans
λ, v (u)= gλ, v (u) · (1−ω(u))+gλ, v (u) ·ω(u), (20)

with the weight function ω(u) given by

ω(u)= 1
2
+

1
2

cos
(
π

u−ut

ut−utrans

)
, (21)

where gλ, v (u) indicates the extrapolated data by using either
method proposed in Secs. 2.C or 2.D. Figure 5 shows a
comparison of an extrapolated line with and without applying
the cosine smoothing in the transition region.

F. 7. Comparison of a nontruncated projection (left), a laterally truncated projection after applying the patient-bounded extrapolation (middle) and after the
conventional water cylinder extrapolation (right).
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F. 8. Comparison of the nonbounded traditional extrapolation and patient-bounded extrapolation in a severe truncation case. Line profiles at projection views
of λ=−40◦ (left), λ= 20◦ (middle), and λ= 80◦ (right). Note that the bounded ellipse parameters are estimated using two single projections from λ=−90◦ (ML)
and λ= 0◦ (AP). The shaded regions indicate the measured part of projections in VOI scan.

3. EVALUATION
3.A. Experiment setup

The proposed method was validated and evaluated on
eight clinical head datasets (data courtesy of Street Luke’s
Episcopal Hospital, Houston, TX, and Rush University
Medical Center, Chicago, IL). All datasets were acquired on
a C-arm system with 496 projection images (1240×960 px)
at a resolution of 0.308 mm / px. Even though a practical
implementation would involve the extraction of the patient
boundaries from low-dose fluoroscopic data, for proof of
concept, we here confined to extract the boundaries from two
projections (λ=−90◦ and λ= 0◦) of a noncollimated 3D scan.
All datasets were virtually collimated (by setting the area
outside region of interest to zeros) to a medium FOV (in a
diameter of 80 mm in the volume domain) and a small FOV
(in a diameter of 45 mm). The reconstruction results are onto
a volume of 5123 with an isotropic voxel size of 0.4 mm3.

3.B. Reference methods

The standard FDK reconstruction16 of nontruncated data
is used as the reference for both qualitative and quantitative
evaluation in each clinical case. The original, nonbounded
water cylinder extrapolation (Hsieh et al.3) was investigated
as a baseline and compared to our proposed algorithm for the
two extrapolation schemes (Secs. 2.C and 2.D).

Suppose, the patient outline is exactly known from all
projections, instead of only two. This could be potentially
realized by deploying an optical tracking system (e.g., sur-

face camera) to capture the patient outline and transform the
outline in the C-arm coordinate system.24 In this manner, the
extrapolation scheme could be improved by incorporating
a more accurate patient boundary information. We refer to
this method as camera-based extrapolation. In this paper, we
simulate this camera-based extrapolation method by ending
the extrapolation lines at the boundary position detected from
nontruncated projections. Note that this simulation is ideal
in a sense that it does not account for some practical issues,
e.g., inaccuracies caused by camera occlusions or potential
errors that may be introduced by coregistration/calibration of
the optical tracking system to the C-arm system.

3.C. Image quality metrics

To quantify image quality, three quantitative metrics were
used: the root mean square error (RMSE), the relative root
mean square error (rRMSE) (i.e., the RMSE divided by the
total intensity range), and the correlation coefficient (CC).
These image quality metrics are computed by using the
reference FDK reconstruction from nontruncated data as
reference over the entire VOI region.

3.D. Results

An example of the estimated ellipse model (only every
tenth row is visualized) compared to the actual head phantom
shape extracted from a FDK reconstruction on nontruncated
data is shown in Fig. 6. Although fine shape details could
not be preserved, the rough outline of the object is nicely

F. 9. Comparison of (from left to right) the FDK reconstruction from nontruncated projection data, VOI reconstruction corrected by the conventional water
cylinder extrapolation, VOI reconstruction from truncated data corrected by the proposed method, and VOI reconstruction from truncated data corrected by the
camera-based method. The dashed ellipses indicate the estimated outline of the patient and solid circles indicate the ROI.

Medical Physics, Vol. 42, No. 4, April 2015
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F. 10. Transversal slices of clinical data 1 (medium truncation) reconstructed by (from left to right): FDK on nontruncated data, heuristic water cylinder
extrapolation, patient-bounded extrapolation, and camera-based extrapolation in the grayscale window [−1000,1000]. The yellow circles indicate the ROI.

described in the 3D ellipse model (see the similarity of the
curvature of the back of the head).

Figure 7 shows a comparison of a nontruncated projection,
a laterally truncated projection after applying the proposed
extrapolation scheme and after conventional heuristic-based
water cylinder extrapolation. The line profiles of the extrap-
olated projections over projection views of λ=−40◦, λ= 20◦,
and λ = 80◦ are presented in Fig. 8. We can see that since
water cylinder extrapolation solely relies on local continuity
at the truncation boundary, there is no guarantee that extrapo-
lation lines will describe the real outline of the patient. On the
other hand, the proposed bounded extrapolation (Sec. 2.C)
fits the data outside the measured FOV more accurately, even
for projections that differ from AP and ML view and in
case of severe truncation. Similar observations can also be

obtained in the reconstruction slices. From Fig. 9, we can see
that the fitted ellipse estimated by the proposed method more
describes the real object support (see the dashed ellipse) than
the conventional extrapolation scheme, even though only
VOI is of diagnostic interest.

More reconstruction results using different truncation
correction methods from more different datasets are pre-
sented in Figs. 10–13, respectively. Comparison of the line
profiles indicated as the dashed line in the slices is shown in
Fig. 14. The quantitative evaluations for medium truncation
and for severe truncation are summarized in Tables I and II,
respectively. For visual inspection in the medium truncation
case, the heuristic-based water cylinder extrapolation and
patient-bounded methods (bounded water cylinder extrapola-
tion and camera-based approach) avoid cupping-like trunca-

F. 11. Transversal slices of clinical data 2 (off-centered VOI, medium truncation) reconstructed by (from left to right): FDK on nontruncated data, heuristic
water cylinder extrapolation, patient-bounded extrapolation, and camera-based extrapolation in the grayscale window [−1000,1000]. The yellow circles indicate
the ROI.

Medical Physics, Vol. 42, No. 4, April 2015
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F. 12. Transversal slices of clinical data 3 (severe truncation) reconstructed by (from left to right): FDK on nontruncated data, heuristic water cylinder
extrapolation, patient-bounded extrapolation, and camera-based extrapolation in the grayscale window [−1000,1000]. The yellow circles indicate the ROI.

tion artifacts and produce acceptable reconstruction results.
The portions of the patient inside the FOV are visually
comparable to the reference FDK reconstruction, see Fig. 10.
The line profiles shown in Fig. 14 (top) confirm this observa-
tion, although water cylinder extrapolation exhibits a slight
intensity increase close to the truncation boundary.

However, it becomes more challenging to the correction
algorithms when it comes to an off-centered VOI case or
severe truncation case. The water cylinder extrapolation
yields truncation-induced cupping and large offset on gray
values; see Fig. 11 for an off-centered VOI case and Figs. 12
and 13 for severe truncation case. These truncation artifacts
can also be clearly observed from the line profile of the water
cylinder extrapolation [see Fig. 14 (bottom)]. In contrast, the
proposed method is still robust to these particular truncation
cases. It is also interesting to see that the proposed patient-
bounded extrapolation yields visually comparable results to
that of camera-based extrapolation scheme, even though the
3D shape model of the former method is only estimated from
two projection views.

Quantitative accuracy is improved considerably by the
proposed method: the average RMSE reached as little as 34.4

F. 13. Sagittal slices of clinical data 3 (severe truncation) reconstructed by
(from top to bottom): FDK on nontruncated data, heuristic water cylinder ex-
trapolation, patient-bounded extrapolation, and camera-based extrapolation
in the grayscale window [−1000,1000]. The yellow rectangles indicate the
ROI.

gray values in the case of the medium truncation, compared
to 139.9 from the heuristic water cylinder extrapolation. In
the severe truncation case, the water cylinder extrapolation
reconstruction is of substantially degraded quality image
(RMSE of 420.4), due to the residual truncation artifacts,
while the proposed method still retains a reconstruction of
high quality (RMSE of 54.9). In terms of rRMSE, a relative
error of about 1% was achieved by the proposed method,
yielding an error reduction by a factor of 8 compared the
heuristic water cylinder extrapolation method. Consistent
with the visual inspection, the camera-based extrapolation
is slightly superior to the proposed method (RMSE of 30.4

F. 14. Plots of line profile (indicated as the dashed line in the transversal
slice) for each algorithm in the medium truncation case (top) and in the severe
truncation case (bottom).
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T I. Quantitative evaluation of the different truncation corrections for the medium scan FOV. Note that the
given RMSE, rRMSE, and CC are the average over all eight datasets.

Water cylin.a Bounded water cylin. Bounded sqr. Camera based

RMSE 139.9 ± 70.8 34.4 ± 15.0 53.4 ± 21.8 30.4 ± 11.0
rRMSE (%) 2.48 ± 1.36 0.67 ± 0.41 1.00 ± 0.61 0.58 ± 0.30
CC 0.945 ± 0.044 0.994 ± 0.003 0.993 ± 0.004 0.995 ± 0.002

acf. heuristic water cylinder extrapolation from Ref. 3

gray values vs 34.4 gray values in medium truncation and
50.8 gray values vs 54.9 gray values in severe truncation).
The correlation coefficients for both methods always achieve
0.99.

4. DISCUSSION

The method we proposed in this paper leads to a major
improvement in image quality for 3D C-arm based VOI
imaging, compared to the purely heuristic-based extrapo-
lation methods.2–6 Experimental results underline that this
particularly applies for severe truncation case. As opposed
to the algorithms suggested in Refs. 12–14, the proposed
method involves no additional radiation when using the
fluoroscopic images that are acquired anyway during the
patient isocentering process. The model estimation can be
readily integrated into the existing interventional workflow
without additional hardware. Furthermore, the newly pro-
posed method poses little constraints on the availability of
prior image data such as preoperative scans7–9 collected dur-
ing the intervention. Any such constraint would immediately
imply a restriction of the applicability of the algorithm to
a workflow that provides exactly the required data. There
may also be a delay caused by registration of the patient.
Although interior tomography yields a theoretically exact
localized reconstruction from fully truncated data, both the
POCS method and TV based compressed sensing are compu-
tationally expensive.21 Therefore, these iterative methods do
not meet the requirement for interventional use. Regarding
computation times of the proposed method, slice-wise ellipse
fitting and patient boundary estimation are computationally
efficient since only the boundary points are involved with
small vector/matrix multiplications. For proof of concept, a
CPU implementation of our method was executed on one
core of a 2.20 GHz CPU, yielding only 7 s additional time
with respect to the standard water cylinder implementation3

for reconstruction of the severely truncated projections using
the same configuration described in Sec. 3.A.

The proposed method is well-suited for neurointerven-
tions since: (1) the ellipse is a good model for the head
and (2) the low-dose fluoroscopic images are usually non-
collimated and cover the entire object of interest. Also, the
current extrapolation scheme is based on stretch or shrink of
the initial extrapolation line so that it ends at the precomputed
boundary. Future work could involve the integration of the
known anatomical structures, e.g., high density skull. To
this end, we could first generate an anatomy atlas from
various investigated patient skulls. Then, we perform a
registration on the representative atlas image in order to
align it to the measured fluoroscopic images. Finally, by
incorporating the registered skull atlas into the 3D ellipse
model, the extrapolation lines may approximate the missing
measurements in a more accurate manner.

A limitation of the proposed method is that the imaged
object should be fully covered in the fluoroscopic images
from both views. Note that this requirement may not be
fulfilled for a body scan due to limited size of the flat
detector in a C-arm system. For this proof of concept study,
we used a global threshold to extract patient outlines from
the two projections. This may not be feasible in a clinical
setting when objects such as the patient bed or head support
are present in the scan FOV. In this case, more advanced
segmentation techniques are needed.

The evaluation results showed that the 3D shape model
estimated by only two perpendicular views yields reconstruc-
tions of high accuracy. It is qualitatively and quantitatively
comparable to the camera-based extrapolation in which the
patient outline is known from all projections. Currently, we
only incorporated the exploited patient boundary information
into the water cylinder extrapolation3 and the square root
function extrapolation.4 But, theoretically, this information
can also be applied to other extrapolation schemes.2,5,6

From the quantitative evaluation, we can see that patient-
bounded water cylinder extrapolation performs better than
patient-bounded square root extrapolation in the medium
truncation case. This is because when the truncation is mild,
the stretched or shrinked extrapolation lines from a water

T II. Quantitative evaluation of the different truncation corrections for the small scan FOV. Note that the
given RMSE, rRMSE, and CC are the average over all eight datasets.

Water cylin. Bounded water cylin. Bounded sqr. Camera based

RMSE 420.4 ± 88.9 54.9 ± 22.3 57.7 ± 19.9 50.8 ± 15.9
rRMSE(%) 8.02 ± 3.01 1.04 ± 0.55 1.05 ± 0.34 0.95 ± 0.43
CC 0.899 ± 0.040 0.991 ± 0.006 0.990 ± 0.007 0.992 ± 0.004
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cylinder model fit the missing data better than a square
root function. However, in case of severe truncation, the
two approaches become comparable. Therefore, it would
be also interesting to incorporate the patient boundary
information into other extrapolation techniques and compare
their performance.
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APPENDIX: DETERMINATION OF THE CLOSEST
POINT OF TWO 3D LINES

To compute the closest point of two 3D lines lAP
m and lML

m ,
we establish lAP

m (t)= lML
m (l) and solve for t,
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