IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 34, NO. 1, JANUARY 2015

203

Axially Extended-Volume C-Arm CT
Using a Reverse Helical Trajectory
in the Interventional Room

Zhicong Yu*, Andreas Maier, Giinter Lauritsch, Florian Vogt, Manfred Schonborn, Christoph Kohler,
Joachim Hornegger, and Frédéric Noo

Abstract—C-arm computed tomography (CT) is an innovative
technique that enables a C-arm system to generate 3-D images
from a set of 2-D X-ray projections. This technique can reduce
treatment-related complications and may improve interventional
efficacy and safety. However, state-of-the-art C-arm systems rely
on a circular short scan for data acquisition, which limits coverage
in the axial direction. This limitation was reported as a problem
in hepatic vascular interventions. To solve this problem, as well as
to further extend the value of C-arm CT, axially extended-volume
C-arm CT is needed. For example, such an extension would enable
imaging the full aorta, the peripheral arteries or the spine in the in-
terventional room, which is currently not feasible. In this paper, we
demonstrate that performing long object imaging using a reverse
helix is feasible in the interventional room. This demonstration in-
volved developing a novel calibration method, assessing geometric
repeatability, implementing a reconstruction method that applies
to real reverse helical data, and quantitatively evaluating image
quality. Our results show that: 1) the reverse helical trajectory
can be implemented and reliably repeated on a multiaxis C-arm
system; and 2) a long volume can be reconstructed with satisfac-
tory image quality using reverse helical data.

Index Terms—Axially extended field-of-view, C-arm computed
tomography (CT), cone-beam image reconstruction, reverse helix.

I. INTRODUCTION

-ARM COMPUTED tomography (CT) is an X-ray
C cone-beam (CB) imaging technique that enables a C-arm
system to generate isotropic 3-D images in the interventional
room. Recent clinical reports [1]-[6] demonstrate that this tech-
nique is valuable for various tasks in the interventional room.
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For example, C-arm CT is used for localizing and assessing
chemoembolization as well as for placing stent grafts for aortic
aneurysms [3], [4], [1].

Currently, C-arm CT uses a circular short scan for data ac-
quisition. This setup results in undesirable CB artifacts [7], [8]
and only provides short coverage in the direction of the patient
table, which we call the axial direction. The short coverage is
limiting for hepatic vascular interventions [6], as well as for the
treatment of aortic diseases and structural damage in the verte-
bral body. This paper focusses on extending the length of the
field-of-view (FOV) in C-arm CT while using a trajectory that
allows exact and stable reconstruction.

Extended-volume C-arm CT is challenging because a C-arm
system can only rotate in a given direction over a limited angular
range, which is usually much less than 360°. In particular, the
helical trajectory that is commonly used in CT scanners is diffi-
cult to implement on a C-arm system. The helix could be created
as shown in [9]. However, this method requires the C-arm to
rotate in each direction at least 360°, which is not always pos-
sible; furthermore, it requires a long pause in X-ray exposure
that increases scan time and yields discontinuities in the data ac-
quisition that can be inconvenient when imaging with contrast
agent. The reverse helix that was proposed for extended-volume
imaging in image-guided radiation therapy [10] may be more at-
tractive for extended-volume C-arm CT. Here, we demonstrate
that the reverse helix can be robustly implemented on a C-arm
system. Because the reverse helix satisfies Tuy’s condition [11],
[12], this demonstration implies that exact and stable recon-
struction is also possible. However, this aspect is not our focus
as it was already nicely illustrated in [7] with real data from an
On-Board Imaging device in radiation therapy. Note that sev-
eral reconstruction algorithms for the reverse helix have been
reported [10], [13]-[15], and preliminary results related to our
work were presented in [16].

A number of considerations were taken into account in the
design of our demonstration. First, we chose to implement the
reverse helix on a multiaxis C-arm system so that the rotation-
plus-translation motion can be solely realized by the C-arm. The
patient bed was kept stationary for two reasons: 1) moving the
patient may not be practical in the middle of a surgical interven-
tion; 2) the floating patient table that is often used in the inter-
ventional room is not able to provide accurate translation mo-
tion. Second, an accurate geometrical calibration had to be de-
veloped to enable reconstruction, and also to identify how close
the realized motion is to the prescribed reverse helix. Many
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calibration methods for a single circular trajectory are avail-
able in the literature (see, e.g., [17]-[24]), however, none of
these methods was readily applicable to reverse helical scan-
ning. Third, attention had to be paid to motion repeatability,
because it is difficult to perform a single scan that simultane-
ously provides information for trajectory calibration and tomo-
graphic data of the patient. C-arm CT usually performs trajec-
tory calibration once and uses the calibrated trajectory in sub-
sequent tomographic scans. Fourth, there is the issue of data
corrections that are typically applied to handle physical limita-
tions in the data acquisition, such as beam-hardening, trunca-
tion, scatter and overexposure. Finding suitable corrections re-
quires extensive investigations. Such corrections have been de-
veloped for circular CB imaging [25]. Here, we decided to re-
strict our study to examining how well these developed correc-
tions apply to reverse helical data. Finally, there was the ques-
tion of how to perform reconstruction, particularly under the
condition that the data geometry would most likely slightly de-
viate from an ideal reverse helix. Exact algorithms such as those
presented in [14], [13] can be modified to account for such devi-
ations, but such effort was deemed too demanding at this stage
of our investigation. Instead, we decided to adapt the approxi-
mate Fusion-RFDK method [15] for which geometrical devia-
tions are much easier to handle. As mentioned above, demon-
strating the advantage of data completeness associated with the
reverse helix was not our focus.

The manuscript is organized as follows. First, we discuss
data acquisition in Section II. This discussion includes a brief
introduction to the multiaxis system being used, a description of
the reverse helix being implemented, a description of phantoms
chosen for our demonstration, and a presentation of reverse
helical data for one of these phantoms, demonstrating the
long axial coverage achieved by the reverse helix. Section III
presents the calibration method that was developed to assess the
geometry of the implemented reverse helix, and also presents
results demonstrating robustness in motion repeatability.
Section IV presents the reconstruction algorithm and discusses
practical issues associated with its implementation. Section V
presents reconstructions from the real reverse helical data
together with a quantitative comparison against results from a
short circular CB scan. The primary purpose of the comparison
is to show that long FOV imaging with the reverse helix is
achieved with no loss in image quality compared to what is
routinely used in the clinic. Finally, Section VI summarizes our
results and discusses future directions.

II. EXPERIMENTAL SETUP

In this section, we first describe the multiaxis C-arm system
that was used for our experiments, then provide implementa-
tion details for a five-turn reverse helix. Next, we describe the
testing phantoms, scanning parameters as well as data correc-
tion methods.

A. C-Arm System

The multiaxis C-arm system (Artis zeego, Siemens AG,
Healthcare, Forchheim, Germany [26, Fig. 1] is a floor-mounted
robotic arm at the end of which is attached a conventional
C-arm. This C-arm is equipped with a flat panel detector of
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TABLE I
PARAMETERS USED FOR THE REVERSE HELICAL TRAJECTORY
WITH THE MULTIAXIS C-ARM SYSTEM

Parameter Value
Source-to-detector distance 1200 mm
Detector A/D converter 16 bits

Detector size 300 mm x400 mm
Detector position mode landscape
Detector pixel size 154 pmx 154 pm
Detector binning mode 2X2
Source-to-rotational-axis distance 785 mm

Axial height of the helical turns 60 mm

Angular length per turn 240°

Angular step size 0.35°

Number of samples per turn 681

rotational axis

Fig. 1. Five-turn reverse helix. This reverse helix travels from A4, to 4. and
alternates the direction of rotation at kink points A%, A3, A2, and Af. Circled
numbers indicate the order of all helical turns. Rotational axis is viewed as the
long axis of the patient table.

size 300 mm x 400 mm and an X-ray source that is at a fixed
distance of 1200 mm from the detector. The detector can be
positioned in two modes: the landscape mode and the portrait
mode. In our experiment, we adopted the landscape mode to
maximize the radius of the FOV in the transverse direction,
which was approximately 130 mm.

The flat panel detector consists of 1920 x 2480 pixels of size
154 pm x 154 psm with a 16-bit A/D converter. Three modes are
available for binning: 1 x 1,2 x 2, and 4 x 4. In our experiment,
the 2 x 2 binning mode was selected, so that the effective pixel
size was 308 um x 308 pm. These data-acquisition-related pa-
rameters are listed in Table 1.

B. Reverse Helix Configuration

The reverse helix consists of multiple consecutive helical
turns. These helical turns share the same translation direction,
rotational axis, rotational radius, as well as angular length.
However, any two consecutive helical turns of the reverse
helix are composed of one left-handed helical turn and one
right-handed helical turn, and these two turns are connected
at a unique point called the kink point. For a mathematical
definition of the reverse helix, we refer to [10], [13], and [15].

We implemented a five-turn reverse helix, which is depicted
in Fig. 1. This reverse helix starts at A, ends at A, and includes
four reversals in the rotational direction, at the kink points A%,
A3, A}, and A The circled numbers indicate the order of the
helical turns: the first, third, and fifth turns are left handed,
whereas the second and fourth turns are right handed.

The five-turn reverse helix was implemented by rotating and
translating the C-arm of the multiaxis system around the patient
table, which was kept stationary. The rotational radius and the
angular length of each helical turn was set to be 785 mm and
240°, respectively. Along each helical turn, 681 X-ray source
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TABLE II
DOSE-AREA-PRODUCT MEASUREMENT FOR THE FIVE-TURN
REVERSE HELIX (MGY-CM?)

Ist 2nd 3rd 4th 5th total
Torso 60.27 60.60 60.59 60.61 60.64 302.70
CATSCB | 314.60 315.54 315.71 315.65 31541 | 1576.91

positions were uniformly sampled using an angular step size of
0.35°. Let the axial height of any helical turn on the reverse
helix be the distance between the orthogonal projection of its
endpoints onto the rotational axis. The axial height of all helical
turns was set to be 60 mm. The above mentioned parameters are
listed in Table 1.

It is important to note that C-arm systems are not able to pro-
duce perfect source trajectories due to their open design. The
exact X-ray source positions need to be estimated using a trajec-
tory calibration process. The configuration parameters listed in
Table I were only input values to the control system of the mul-
tiaxis C-arm system; systematic deviations and statistical fluc-
tuations should be expected between the input and calibrated
parameters.

C. Phantoms and Data Generation

We selected two phantoms for data acquisition. The first one
is a torso phantom embedded with a SAWBONES spine (Saw-
bones Europe AB, Malmd, Sweden). The torso phantom was
made of foam and was of size 400 mm x 200 mm x 550 mm,
whereas the SAWBONES spine was of length 360 mm. The
torso phantom was placed in the prone position and so that the
entire SAWBONES spine was within the FOV. Projection data
of the torso phantom were truncated in both the axial and trans-
verse directions due to the limited size of the panel detector.
However, data truncation in the transverse direction with this
phantom is known to have little impact on image reconstruc-
tion, because the attenuation coefficient of the foam surrounding
the SAWBONES spine is close to that of air (namely, about
—800 HU at 90 kVp).

The second phantom is composed of the the CATPHAN
phantom (The Phantom Laboratory, Greenwich, NY, USA) and
the Siemens CB phantom (QRM, Moéhrendorf, Germany) that
were placed in-line along their axial direction to emulate a long
object. We call this combination the CATSCB phantom. The
CATSCB phantom was positioned along the patient table so as
to fully fit within the FOV, hence the projection data for the
CATSCB phantom were truncated in the axial direction but not
in the transverse direction.

The torso phantom was scanned using (90 kVp, 43 mA) with
average pulsewidth 3.1 ms, whereas the CATSCB phantom was
scanned using (91.2 kVp, 122.8 mA) with average pulsewidth
7.3 ms. The dose-area-product measurement for each turn of the
reverse helix is listed in Table II. In each case, no beam filtration
was used, and an antiscatter grid was placed in front of the de-
tector. The raw data of both phantoms were first transformed by
a logarithm operation to estimate the line integrals of the X-ray
attenuation coefficient. To account for classical physical limita-
tions in the data acquisition process, three corrections based on
the methods presented in [25] were subsequently applied to the
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Fig. 2. Preprocessed projections of the CATSCB phantom. Three data correc-
tions were applied: overexposure correction, scatter correction and beam hard-
ening correction. Top to bottom: the first to the fifth helical turn. Each column
presents projections at the same azimuthal angular position. The angular dis-
tances from the second, third, and fourth columns to the first column are 80°,
160°, and 230°, respectively.

line integrals: 1) overexposure correction; 2) scatter correction;
and 3) beam hardening correction. Note that these corrections
are optimized for a circular data acquisition.

Preprocessed projection data of the CATSCB phantom
(Fig. 2) show that continuous scanning with great coverage
along the axial direction was achieved by the reverse helical tra-
jectory. Similar observations were made for the SAWBONES
spine of the torso phantom.

III. TRAJECTORY CALIBRATION

Because of its open design, a C-arm system cannot produce
a perfect source trajectory. The source and the detector posi-
tions produced by a C-arm system always need to be estimated
by a calibration process. Several methods have been suggested
to calibrate a circular trajectory for C-arm systems (see, e.g.,
[17]-[24]), but none of them is ready to use for the reverse helix.
To geometrically calibrate a reverse helix, we decided to extend
the method in [22], [23], which has been reliably used in clinical
settings. Hereafter, we describe this extension, and show results
obtained with it. Then, we discuss robustness in repeatability,
which is crucial for practical utilization of the reverse helix, as
joint scanning of the patient and the calibration phantom is not
convenient and may not even be possible in clinical routine.

A. CB Geometry and Coordinate Systems

All vectors are denoted using an underlined lowercase letter.
A vector may also be referred to by its components (or coor-
dinates for a position vector). Thus, 2 could be identified as
(z,9)T in 2-D, or as (x,y, 2)T in 3-D. Fig. 3 illustrates our CB
geometry. A flat panel detector is used. The current source po-
sition is denoted as Oy, the orthogonal projection of Oy onto the
detector as g4, and the source-to-detector distance (|Os04]) as
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Fig. 3. Cone-beam geometry with four coordinate systems. Origins of the
world coordinate system, the source coordinate system, the detector coordinate
system and the image coordinate system are located at O,,, (O,. Oy, and
O, respectively. Oy is the current source position and O4 is the orthogonal
projection of (J; onto the detector. Distance between O, and O4 is D. Here, -
is a point in the world coordinate system and ¢ is the CB projection of r in the
image coordinate system as created from (J;.

D. Also, the unit vector from Oy to O; is called ¢, and the de-
tector plane is spanned by two orthonormal vectors, ¢,, and ¢,
such thate, X ¢, = ¢,,.

Geometrically, the data acquisition can be fully described
with four coordinate systems. The first one, called the world
coordinate system, is defined by a calibration phantom. It is of
origin O, and is spanned by three orthonormal vectors, ¢,., e,
and e,. Any point in this system can be identified by (+, s, ) co-
ordinates. The second one is the source coordinate system, the
origin of which is at the current X-ray source position Os. It is
spanned by ¢,,, e,,, and e,,. The third one is the detector coordi-
nate system. Its origin is at Oy and it is spanned by ¢, and e,,.
Any point in the detector plane can be identified by (u, v) co-
ordinates in this system. The fourth one is the image coordinate
system, which is introduced to describe the detector pixel grid
where the projection data are primarily presented. This system
is spanned by ¢- and j-axes that are parallel to e,, and ¢,,, respec-
tively, with origin, O;, chosen as one corner of the detector. Each
position vector i in the image coordinate system is expressed in
pixel units.

B. Calibration

Consider a point r in the world coordinate system and its CB
projection # in the image coordinate system. As discussed in
[22], these two points, r and 7, can be related by a projection
matrix P that contains all needed CB geometrical information:
source position, detector position and detector orientation. The
calibration process aims at estimating the projection matrix P
for each source position.

To estimate the projection matrix P, enough pairs of r and
¢ points have to be identified for each source position. For cir-
cular CB imaging, this goal can be achieved using the PDS-2
phantom [22], [27] that contains specially arranged spherical
balls. Positions of these balls in the world coordinate system
can be obtained from the manufacturer and positions of the pro-
jections of these balls in the image coordinate system can be
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Fig. 4. Left: Siemens PDS-3 phantom with 10-bit encoding. Right: projection
of the calibration phantom. Ten balls inside the rectangle identifies a unique
number.

obtained using image segmentation techniques. The special ar-
rangement of the balls involves an 8-bit encoding scheme that
allows linking the projection of the balls to their positions in the
calibration phantom. Unfortunately, the PDS-2 phantom is only
206 mm long and thus too short for long object imaging. To cal-
ibrate the reverse helix, a modified PDS-2 phantom that uses a
10-bit encoding scheme was developed. This phantom is called
the PDS-3 phantom.

The PDS-3 phantom is shown in Fig. 4 (left). It consists in a
450-mm-long cylindrical wall that contains 400 spherical balls.
The balls are uniformly distributed on a helix of radius about
70 mm. Half of the balls have a diameter of 3.2 mm and the other
half have a diameter of 1.6 mm. A ball of large radius represents
a logic 1, whereas a ball of small radius represents a logic 0.
The 400 balls are arranged on the helix such that any sequence
of 10 consecutive balls corresponds to a unique number, which
defines the position of each ball in the sequence. For example, in
Fig. 4 (right), the 10 balls in the dashed box represents a unique
binary sequence, 1111011101, which gives an index in a table
that specifies where the balls of the sequence are located within
the phantom.

The cylindrical wall of the phantom was manufactured with
a state-of-the-art computer-numerical-control device (OKUMA
LB400M-C1250, Abraham GmbH, Burgthann-Oberferrieden,
Germany) that guaranteed an accuracy of about 5 um in po-
sitioning of the holes where the balls were inserted. The balls
were made of stainless steel with a reported accuracy of 19 pm.
The holes were of conical shape and of size slightly smaller than
the ball size. The balls were inserted with pressurization so that
they could hold in place by internal forces. The placement ac-
curacy achieved with pressurization was of about 20 pzm.

To make proficient use of the 10-bit-encoding feature, the
PDS-3 phantom should be placed in the center of the FOV such
that its centerline is as parallel as possible to the patient table.
Note that the centerline of the PDS-3 phantom is the ¢-axis. This
configuration ensures detection of a good number of 10-bit se-
quences so that enough pairs of vectors r and i can be obtained
(at least 11 pairs are needed but more pairs are useful to im-
prove accuracy). Using the optimization method in [22], projec-
tion matrix P can be reliably computed for any view for which
enough pairs are obtained, and the CB geometrical information
can be extracted from P as explained in [28].

Based on the above calibration principles, we obtained the
calibrated reverse helical trajectory in the (r, s,%) world coor-
dinate system; see Fig. 5. The calibrated reverse helical trajec-
tory moves downwards along the ¢-axis; in the right of Fig. 5,
the first helical turn appears on the top and the fifth helical turn
appears on the bottom. The orthogonal projection (in the top
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Fig. 5. Calibrated reverse helix. Top left: orthogonal projection onto the
(r, s)-plane; bottom left: orthogonal projection onto the (r,t)-plane; right:
3-D view. Trajectory moves downwards along the ¢-axis. Unit used for each
axis: mm.

left of Fig. 5) of the calibrated trajectory onto the (r, s)-plane
yields five arcs that are very close to each other, indicating
that the rotation axis used for the reverse helix is fairly close
to the #-axis. However, these two axes are not aligned, as can
be observed from the orthogonal projection of the trajectory
onto the (r,t)-plane (Fig. 5, bottom left). If the two axes were
aligned, the projection of the left handed turns would not have a
slope close to zero. Since the calibration phantom was (roughly)
aligned with the patient table, we can conclude that we suc-
ceeded in creating a reverse helix that would enable scanning
the patient along the table.

C. Trajectory Repeatability

We now examine how well the reverse helical trajectory can
be repeated. Consider two reverse helical trajectories that are
calibrated with the same PDS-3 phantom placed at the same
location with the same orientation. We analyze the similarity of
these two calibrated trajectories by comparing the CB projection
of a number of points that are uniformly distributed on a cubic
Cartesian grid of cell side A, within a cylinder of radius 7, that
is centered on the £-axis.

Let m and n be the indices for helical turns and X-ray source
positions in each helical turn, respectively. For the nth X-ray
source on the mth helical turn, we can calculate two CB projec-
tions for any point by using the projection matrices from the first
and second calibrated trajectories. Let .J be the total number of
points whose projection is inside the detector, and let ¢ ;... be

Zjmn

the jth point. Let cf;,,,,, and ¢5,, ., be the projections of ¢;,,,,,

using projection matrices from the first and second calibrated
trajectories, respectively. As a figure-of-merit, we compute the
root-of-mean-square error (RMSE) for the nth X-ray source on
the mth helical turn, denoted as o,,,,,, using

J
9 1

mn 7 Z

: 2
Toun = Bjmnll
Jj=1

— jmn

)

gljmn

p p . . .
Here, ¢i,,,,, and ¢y;,,,, are expressed in the image coordinate
system, so that o,,,,, is in detector pixel unit.
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Fig. 6. RMSE measurement for experiment A using a virtual cylinder phantom
that is of radius r. = 130 mm and cell side A, = 10 mm. Vertical axis is of
detector pixel unit, i.e., 0.308 mm/pixel.

Note that other methods may be used for evaluating the re-
peatability of the reverse helical trajectory. For example, in [29],
projection matrices are decomposed to obtain CB scan param-
eters, e.g., X-ray source positions, source-to-detector distances
and detector orientations, and evaluations are performed for each
individual parameter. However, these parameters are typically
strongly correlated, so that errors present in each individual pa-
rameter may cancel each other to a certain extent when they are
together employed to perform backprojection; the accuracy of
back-projection directly impacts the quality of image reconstruc-
tion. Therefore, for our purpose, examining the similarity of pro-
jection of points is superior to examining that of each individual
CB scan parameters. This approach was similarly used in [27].

We have conducted two experiments, A and B, on the same
day. Each experiment consisted in performing two testing runs
of the reverse helix with the PDS-3 phantom kept unchanged.
From one experiment to the next, the phantom was taken out
then replaced on the patient table. We computed the RMSE of
(1) for each X-ray source position in both experiments using
r. = 130 mm (which is identical to the radius of the FOV) and
A, = 10 mm; altogether 25850 points were used. The RMSE of
each X-ray source position for experiment A is shown in Fig. 6;
a similar result was obtained for experiment B. We also com-
puted the mean and standard deviation (std) of RMSEs using all
X-ray source positions for both experiments. The mean and std
of the RMSE of Experiment A are 0.79 and 0.32, respectively,
whereas those of Experiment B are 0.87 and 0.27, respectively.
These results and Fig. 6 both demonstrate that an average accu-
racy of about 0.8 detector pixel (with pixel size of 0.308 mm)
can be achieved in the CB projections of the reverse helical tra-
jectory. This accuracy indicates satisfactory repeatability of the
reverse helical trajectory in the sense that, in average, the error
is at sub-detector-pixel level.

IV. IMAGE RECONSTRUCTION

This section describes our image reconstruction scheme,
which consists of two steps: trajectory registration and the
Fusion-RFDK method. Recall from Section III-B that the
t-axis deviates from the rotational axis of the calibrated reverse
helical trajectory. Similarly to circular CB imaging [19], such
a deviation increases complexity in image reconstruction as
well as regarding estimation of an appropriate FOV. Trajectory
registration aims at reducing this complexity by transforming
the calibrated reverse helix to another Cartesian coordinate
system that is spanned by (x,y, ) axes. Image reconstruction
is performed in this (x,y,z)-coordinate system using our
Fusion-RFDK method [15].
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A. Trajectory Registration

Let (e,,¢,.¢.) and zy = (20. Yo, 20)T be the basis vectors
and the origin of the (z, y, z)-coordinate system, respectively.
The trajectory registration process aims at finding e, ¢, ¢,
and x, such that the calibrated reverse helix in the (x, y, 2)-co-
ordinate system satisfies the following requirements as good as
possible: 1) the rotational axis is the z-axis; 2) the translation
of the reverse helix is along the e, direction; 3) the first X-ray
source position of the first helical turn lies on the z-axis. Vectors
€rs €y €., and L, are obtained as follows.

First, we explain how to get e, e, and ¢,. Let g, =

(Trmns Smny tmn )T be the (r, s,¢) coordinates of the nth X-ray
source position on the rnth helical turn. We define

— . T _
Yupn = (rmﬂna SafBn: ta;’?’n) =U0g, — Qon

where {«, 5} = 1,..., M, with M being the total number of
helical turns. By construction, if a_, and ag, both belong to
the right-handed or left-handed helical turns, vector Uy gy, MAY
be expected to be parallel to the rotational axis. This observation

indicates that the unit vector e, can be obtained by

N
€, = argmin Z Z ”1—)01,371, X QZHQ - X(HQZHZ - 1)
{e.} (a,3)e¥ n=1

2

where V = {(a, B)la =1: M;8=1: M;« # 8;mod(a +
3,2) = 0} with mod(«z, 2) being equal to & modulo 2, x is the
operator for cross product, x is a Lagrange multiplier, and N is
the total number of X-ray source positions per helical turn. The
definition of ¥ ensures that @, ,, and a,, belong to the same type
of helical turns (left- or right-handed), whereas the Lagrange
multiplier makes sure that ¢, is a unit vector. By taking the
gradient of the expression on the right side of (2) with respect to
e, and setting the result to zero, we obtain Ae, = x e,, where
A is expressed as

- 2 2
N Saﬁn + toz,’}n

§ E [ —TasnSasn

(a,3)€W n=1 _Toaﬂntozﬂn

—TapnSafn _Taﬁnta Bn

2 2
Taﬁ'n + taﬂn

—Sagntagn .
_Saﬁntaﬁn Tigjn + SiﬂnJ
Therefore, ¢, is an eigenvector of A.

Matrix A is positive definite and symmetric, hence there are
three eigenvectors of A. Note that the sign of an eigenvector is
a degree of freedom. In this paper, we selected the eigenvector
of A that minimizes the right side of (2) as ¢, and we chose the
sign of ¢ such that it points in the direction of translation of the
reverse helix. Givene_, ¢, and e, are calculated using

ap —(ag; e, )e, e, =c. xe,.

[
ey — (@ - eell’ -

Co

Now, we clarify how to obtain z, = (g, yo, z0)” . Because
a;; must lie on the z-axis, we have zg = a;; - ¢,. If we assume
the reverse helix is perfectly shaped with its rotational axis being
parallel to the #-axis and through (£, 7o, 0)7, then the distance
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Fig. 7. Registered reverse helix, in the (x, y, z)-system. Left: orthogonal

projection onto the (, y)-plane; middle: onto the {, z)-plane; right: onto the
(¥, z)-plane.

between X-ray source a.,,,,, = (Tyun, Smnstmn)? and the rota-
tional axis is equal to the rotational radius, which is denoted as
I?. Mathematically, it can be expressed as

(ri1 — 33‘0)2 + (811 — 230)2 R?

(ro1 —20)* + (s21 —%0)* | ~ | R?
We estimate (g, yg) by solving the above equation in a least
square sense.

Once e,, e, €., and z, are obtained, trajectory reg-
istration can be achieved by transforming X-ray source
positions and detector orientations from the world coor-
dinate system to the (z,y,z)-system, as explained below.
Let ¢ be an X-ray source position in the world coordinate
system, and let b = (b, by, b.)” be the corresponding coor-
dinates of ¢ in the (z,y, z)-system. Then b = Qi1(a — z,),
where Q1 = (e,.e,.e,). Also, let (¢,,¢€,,¢€,) be the
detector orientation after registration. Then, we have
(el el en) = Qile, e, ¢,). Note the source-to-detector
distance and the detector center are not changed by the trajec-
tory registration process as they are intrinsic parameters.

The registered trajectory meets all three requirements that
were mentioned at the beginning of this subsection. See Fig. 7
for a graphical representation. Note from this figure how the
registered trajectory is close to an ideal reverse helix unlike the
unregistered trajectory.

We now analyze how close the registered reverse helix is to an
ideal one. Let b,,,, be the orthogonal projection of X-ray source
b onto the (. y)-plane. Let A be the azimuthal angle of b, which
is the counterclockwise polar angle of b, from the x-axis. Let
AX be the angular step size of A; AX is positive for counter-
clockwise rotation and negative for clockwise rotation. Three
observations can be made. First, the rotational radius is very
close to the input value listed in Table I; the mean and standard
deviation of ||b,,, || are 783.94 mm and 0.41 mm, respectively.
Only small systematic deviations as well as statistical fluctua-
tions are present; see the top row of Fig. 8. The systematic devi-
ations may be caused by gravity, whereas the statistical fluctua-
tions may be produced by small errors in the calibration process,
such as inaccuracies in segmentation and modelization of the
X-ray source focal spot as a single point. Second, the magnitude
of the angular step size is in excellent agreement with the input
value listed in Table I. The mean and standard deviation of |A )|
are 0.35° and 0.01°, respectively; see the second row of Fig. 8.
Third, as expected, the z coordinate increases linearly with the
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Fig. 8. Geometrical accuracy of the registered reverse helix. Top: rotational
radius (mm); middle: absolute angular increment | AX| of X-ray source positions
(degree); bottom: = coordinates of X-ray source positions (mm).

source index as shown in the bottom row of Fig. 8. However,
slight slope deviations can still be observed both within each he-
lical turn and across consecutive helical turns. These deviations
may be attributed to imperfection in our trajectory registration
process. Indeed, we have observed in a numerical experiment
that a deviation as small as 0.2° in the polar angle of the rota-
tional axis in spherical coordinate system can yield such devi-
ations. This small deviation in the polar angle could also yield
nonuniformity in the axial height of the helical turns. It was ob-
served that the axial heights of the left-handed and right-handed
helical turns are about 64 and 56 mm, respectively; see Fig. 7.
However, the registered trajectory was deemed suitable enough
to define the FOV, and to perform image reconstruction using
our Fusion-RFDK.

Based on the analysis above, we conclude that: 1) the tra-
jectory registration process is practically satisfying; and 2) a
close-to-ideal five-turn reverse helix can be practically imple-
mented on a multiaxis C-arm system.

B. Fusion-RFDK

The Fusion-RFDK method presented in [15] was only de-
signed for two helical turns that were the same axial height.
Thus, this method was not ready-to-use in our real data situation,
because the registered trajectory consists of more than two turns
and exhibits slightly different axial heights for different helical
turns. An extension of the Fusion-RFDK method was created to
accommodate these aspects. This extension is described here-
after.

We start the description of the Fusion-RFDK method by fo-
cussing on one basic cycle of the reverse helix, as illustrated in
Fig. 9. This basic cycle is composed of one lower and one upper
helical turn that are connected at the kink point K of z coordi-
nate called zk. Let the axial heights of the lower and the upper
helix be H1, and Hy;, respectively.

Also, let £21, and 2y be two volumes-of-interest (VOI) asso-
ciated with the lower and the upper helical turns, respectively.
Both €, and €2¢ are cylinders of radius r that are aligned on
the z-axis and overlap in a region of axial height Hr that is cen-
tered on the kink plane (2 = zk). Let 2/ = z — zk. Cylinder
Q2L extends over 2/ € [—Hy/2, Hr/2], whereas 2y extends
over 2’ € [—Hyg/2, Hy/2]. The region of overlap, called the
fusion zone, is denoted as Qp = Qp, N Qy. The union of
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z=2¢ — Hy/2

low:er helical turn

Fig. 9. Principles of Fusion-RFDK for one basic cycle. Lower (left-handed)
and upper (right-handed) helical turns share the kink point /{ with z coordinate
zk . Two volumes, denoted as {21, and (2v, are reconstructed by the ramp-kernel
based FDK algorithm using projection data from the lower and upper helical
turns, respectively. These two volumes overlap each other in a fusion zone given
byz € [zx —Hy /2, zx + Hy /2]. In the fusion zone, €2, and 2y are combined
by a fusion process using weighting functions wr, and wy.

and QQy is called €2¢, and this union is the region over which re-
construction is performed for the basic cycle. By construction,
HF S HL and HF S HU.

Reconstruction over £2¢: goes as follows. First, we obtain two
reconstructions, denoted as fr,(z) for z € Qp and fu(z) for
x € y, by independently applying the ramp kernel based Feld-
kamp—Davis—Kress (RFDK) method [30], [31] to the lower and
the upper helical turns, respectively. Second, we combine fr,(z)
and fu(z) by a fusion process using a pair of weighting func-
tions. Let fo(z) be the final image for z € ¢, then we have
foe(z) = wrfr(z) + wu fu(z), where

1 7 e [_HL/27_HF/2]
’ 2 Z/ﬂ' T ! ‘
wp(z’) =< cos 2Tl +) “€ [-Hp/2, Hp /2]
0 7 e [HF/27HL/2]

and wy(2') =1 — wi(2') for 2’ € [-HL/2, Hy/2].

Now, we discuss how reconstruction is performed when the
reverse helix consists of several turns. The easiest way to under-
stand the reconstruction concept is to picture the reverse helix as
a sequence of successive cycles, each characterized by a label,
p, that identifies the successive kink points (The first cycle con-
sists of the first and second turns; the second cycle consists of
the second and third turns; and so on). For each cycle, we have
two volumes, now called €2} and Q) that overlap over a given
fusion zone and define together a volume 2,. Reconstruction
is performed over each volume €2, using the equations above.
By definition, the successive 02, sets continuously form a long
volume (with no gap and no overlap). This arrangement is de-
picted in Fig. 10 for cycles of index p and p + 1.

Note that a slightly different treatment was adopted for the
first and last cycles. In the first cycle, the z coverage for 2y,
is extended so that the portion of €1, below the kink point is
Hyp/2 4+ (Hy — Hy)/2 instead of H1,/2. In the last cycle, the
z coverage for Qy is extended so that the portion of €2; above
the kink point is Hy; /2 4+ (Hy — Hr)/2 instead of Hy: /2. This
change was introduced so as to better use the data available over
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Fig. 10. Tllustration of volumes involved in reconstruction from two successive
cycles, of index p and p+1. In particular, notice how €27, and SZI;r ! complement
each other to form a long volume.

the first and last helical turns while not allowing reconstruction
within a region of length Hr centered on each endpoint of the
reverse helix, where noticeable CB artifacts are expected [16].
Aside from illustrating how volumes from subsequent cycles
form together a long volume, Fig. 10 also shows the volume
over which the RFDK method needs to be applied for each turn
of the helix, except the first and the last turn. This volume starts
at a distance Hr /2 before the first point on the turn and ends at
a distance Hy /2 after the last point on the turn. In other words,
it is centered on the midpoint of the helical turn (that is to say
in z) and is of length equal to the axial length of the helical turn
plus Hr. For the first and last helical turns, the volume is of
length equal to the axial length of the helical turn. According
to the above description and Table I, the length of the volume
covered in our experiment is expected to be: (5 x 60—Hy) mm.

C. Practical Issues

Four aspects deserve special attention when implementing
the Fusion-RFDK method for real data. First, for each basic
cycle, the kink plane needs to be specified. By definition, the
kink plane is perpendicular to the z-axis and goes through the
kink point. However, this kink point will usually not exist due
to finite sampling. In this paper, we define the z coordinate of
the kink point as the average of the z coordinates of the last
X-ray source position of the lower helical turn and the first X-ray
source position of the upper helical turn.

Second, the detector size imposes constraints on the distance
covered by each helical turn, as well as Hy. Let Hy be the height
of the detector along the z-axis, and let H,,, be the largest dis-
tance covered over one helical turn (recall that we are allowing
the helical turns to cover different distances). To make sure that
sufficient projection data are available for image reconstruction,
H,.x and Hp have to satisfy the following relation (with p
being the radius of the ROI)

HF+2H1nax S Hd(R_P)/D (3)

Third, the backprojection step in the RFDK method should
be carefully implemented, because the increment in A varies
from view to view. We have included this nonconstant angular
increment in the back-projection step using the trapezoid rule.

Fourth, we adjusted the Parker-like weighting function as fol-
lows. Consider a helical turn and a line diverging from one
source position on this turn. First, we orthogonally project this
line and the helical turn onto the (z, )-plane and obtain a line
L and curve C in this plane. Because the angular length of each
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Fig. 11. Left: reconstructions of the torso phantom using the reverse helical
data from the multiaxis C-arm system; voxel size: 0.5 mm x 0.5 mm x 0.5 mm.
Right: reconstructions from a state-of-the-art CT scanner; voxel size: 0.791
mm X 0.791 mm x 0.3 mm. CT image on the right was linearly transformed
such that its CT numbers for foam and air are equivalent to those of the reverse
helix image on the left. Axial length: 274 mm,; display window: [—1000, 640]
HU.

helical turn is less than 360°, there are at most two intersections
between £ and C. If £ has one intersection with C, we set the
weight to 1. If there are two intersections, one of them is the
projection of the current source, and the other one intersects C
between the projection of two other sources. The angular posi-
tion of this intersection can be computed by linear interpolation
and considered as the complementary angle of the projection of
the current source position.

V. RESULTS

In this section, we first present image reconstruction results
from the reverse helical trajectory, comparing them either with
results from a CT scan or against a graphical depiction of the
ground truth, depending on the phantom. The purpose of this
comparison is to assess anatomical/structural accuracy as well
as getting acquainted with the visual appearance of reverse helix
results. Next, a more quantitative comparison is performed by
benchmarking the reverse helix results against those obtained
with a classical circular short scan.

A. Extended-Volume Reconstruction Results

Reconstructions of voxel size 0.5 mm x 0.5 mm x 0.5 mm
and 0.2 mm x 0.2 mm X 0.2 mm were obtained for the torso
and CATSCB phantoms, respectively; see Figs. 11 (left) and
12 (bottom row). For these reconstructions, the ramp filter was
applied with a Hamming window, and a fusion length of Hy =
30 mm was used.

The two reconstructions are 274 mm long. They demonstrate
a smooth variation of attenuation coefficients along the axial di-
rection with no pattern that can be easily related to geometrical
aspects of the trajectory such as the kink points. Slight CB arti-
facts can be noticed in Fig. 11, which is not surprising since the
Fusion-RFDK algorithm is an approximate method. However,
no abrupt changes due to the nature of the data acquisition are
observed in these CB artifacts.

Both reconstruction results demonstrate high anatom-
ical-/structural accuracy. The anatomical appearance of the
torso phantom was validated using reference images obtained
from a state-of-the-art medical CT scanner (SOMATOM Def-
inition, Siemens AG, Healthcare, Forchheim, Germany); see
Fig. 11 (right). Note that a linear transformation was applied to
the CT image such that the CT numbers for foam and air are,
in average, equivalent to those in the reverse helix image; this
transformation was needed due to differences in X-ray source
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Fig. 12. Top row: ground truth, as provided by QRM (M&hrendorf, Germany).
Bottom row: reconstruction results of the Siemens CB phantom from the reverse
helical trajectory. Left to right: contrast pattern, resolution pattern and MTF
edge pattern. Voxel size: 0.2 mm X 0.2 mm x 0.2 mm; display window from
left to right: [—500, 1000] HU, [—1000. 2000] HU and [—1000, 2000] HU.

spectra. Slight misalignment can be observed between these
two images, because the two images are not registered. Also,
the position of the SAWBONES spine relative to the torso
foam slightly changed between the two scans, due to the foam
being only loosely attached to the spine. This change in relative
position explains the strong shading below the second vertebra
from the left in Fig. 11 (right). Except for these differences, our
reconstruction results are highly consistent with the CT images.

The structural accuracy of the CATSCB phantom was verified
using the ground truth provided by QRM [32]. Fig. 12 demon-
strates that our reconstruction results are in good agreement with
the ground truth for this phantom as well. There are three con-
trast patterns in the Siemens CB phantom, Fig. 12 shows the
one that has the following four contrast steps: 60 HU, 90 HU,
120 HU, and 200 HU. Note that these contrast steps are defined
for 120 kVp, and the Siemens CB phantom in our experiment
was scanned at 91.2 kVp. Hence, the contrast steps shown in
the bottom left of Fig. 12 maybe slightly different from the ref-
erence numbers.

B. Comparison With Circular CB Imaging

In this section, the reconstructions from the reverse helical
trajectory are compared to results obtained from a circular short-
scan, both by visual inspections and using quantitative metrics.
The primary purpose of this comparison is to verify that the
longer axial coverage of the reverse helix are acceptable in com-
parison with images used in clinical routine.

The circular trajectory was implemented on the same mul-
tiaxis C-arm system. It consists of 638 X-ray source positions
with an angular step size of 0.37°, covering a total angular
length of 236.06°. The torso phantom was scanned using
(90 kVp, 43 mA) with average pulsewidth 3.1 ms, whereas
the CATSCB phantom was scanned using (90 kVp, 137 mA)
with average pulsewidth 6.3 ms. The dose-area-product mea-
surements for the torso and CATSCB phantom were 60.451
mGy-cm? and 304.961 mGy-cm?, respectively. Note that these
numbers are comparable but not exactly the same as those used
for each turn on the reverse helix. These slight differences are
due to utilization of predefined protocols.
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Fig. 13. Reconstructions of the torso phantom. Top row: results from the re-
verse helical trajectory; the slice distance to the kink plane is, from left to right,
0 mm, 30 mm, and 60 mm. Bottom row: results from the circular trajectory; the
slice distance to the circular plane is, from left to right, 60 mm, 30 mm, and
0 mm. Voxel size: 0.5 mm X 0.5 mm X 0.5 mm; display window: ftanchor +
[—=500, 500] HU. Display anchor gtancnar Was calculated individually for each
slice using pixels within the indicated circles.

Circular CB data were acquired for both the torso phantom
and the CATSCB phantom. Image reconstruction was per-
formed using the RFDK method with Hamming apodization of
the ramp filter. Two 160-mm-long volumes of voxel size 0.5
mm X 0.5 mm X 0.5 mm and 0.2 mm x 0.2 mm x 0.2 mm were
reconstructed for the torso and CATSCB phantom, respectively.
These volumes were centered on the trajectory plane. Because
the circular and reverse helical data acquisitions involved
different angular positions for the first source position when
scanning the torso phantom, registration was needed to com-
pare the reconstructions of the torso phantom. This registration
was achieved manually using bilinear interpolation. Due to this
interpolation, the circular CB reconstructions of the torso phan-
toms may appear slightly smoother. For the CATSCB phantom,
the data acquisitions involved the same angular position for the
first source position, so that the reconstructed volumes were
close to each other and registration was deemed not necessary.

We start the comparison with a visual inspection. Slight low-
frequency differences were observed between the results from
the reverse helical trajectory and those from the circular tra-
jectory. These differences were seen as a combination of CB
artifacts and residual errors from physical effects. To account
for these low-frequency differences in image display, we intro-
duced a display anchor called figpcnor- For each slice, we select
ahomogeneous region and calculate the mean of the CT number
in this region. This mean value is the display anchor and is used
as a reference point for the display window. For example, con-
sider the first column of Fig. 13. First, we select two equivalent
homogeneous regions in these two images, which are indicated
by the two circles. Then we individually calculate a display an-
chofr, fianchor, fOr each image using pixels in this region and set
the display window to jtanchor + [—500,500]. In this way, the
grayscale values of the two images being compared are brought
to the same level.

Different observations were made between the transverse
and axial directions. In the transverse direction, the reverse
helix images were in general comparable to those from the
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Fig. 14. Reconstructions of the torso phantom. Top: sagittal view; bottom:
coronal view. Left: 274 mm images from the reverse helix; right: 160 mm im-
ages from the circular trajectory. Voxel size: 0.5 mm x 0.5 mm x 0.5 mm; dis-
play window: grancher + [—300, 300] HU. The display anchor piancher Was
calculated individually for each slice using pixels within the indicated white
boxes.

circular trajectory. One trajectory may outperform the other in
some regions, but overall the performance was fairly similar;
see Fig. 13. In the axial direction, CB artifacts significantly
vary with slice position for the circular trajectory, whereas they
appear more uniform and less noticeable for the reverse helix;
see Fig. 14. Given the properties of FDK reconstruction with a
circular trajectory, this difference is not surprising. Indeed, for
the circular trajectory, Tuy’s condition is only satisfied in the
trajectory plane; the further a slice is away from the trajectory
plane, the less complete the data is for image reconstruction
and the stronger CB artifacts can be. In contrast, the reverse
helix satisfies Tuy’s condition everywhere within its convex
hull and provides projection data evenly along the axial direc-
tion. This advantageous feature of the reverse helix helps both
reducing and uniformly distributing CB artifacts along the axial
direction, as far as utilization of Fusion-RFDK is concerned. If
the reconstruction algorithm had been exact, CB artifacts could
have been fully avoided. Pearson et al. [7] nicely illustrated
this aspect using real reverse helical data versus circular data.

Now, the results from the two source trajectories are quan-
titatively compared by using four sections of the Siemens CB
phantom [32]: Section G (plain), Section A (contrast), Section
D (spatial resolution), and Section F (MTF edge). First, we study
uniformity using the plain section. We averaged 10 slices within
the plain section for both the reverse helix and the circular tra-
jectory; these averages are shown in the top row of Fig. 15.
Capping artifacts are observed in both images. These capping
artifacts appear mainly near the boundary of the phantom and
vary according to position on this boundary; see the profiles in
the middle and bottom rows of Fig. 15. The capping artifact is
stronger in the image from the reverse helix than in that from the
circular trajectory, possibly because the data correction methods
used in our experiment are optimized for circular CB images,
not for reverse helical images.

Second, contrast-to-noise ratio (CNR) was investigated using
the contrast pattern. Recall from Fig. 12 that the contrast pattern
has four different contrast steps. We call the linear attenuation
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Fig. 15. Average of 10 slices within the plain section (Section G) of
the Siemens CB phantom. Top left: result from the reverse helical tra-
jectory; top right: result from the circular trajectory. Voxel size: 0.2
mm x 0.2 mm x 0.2 mm; display window: grancher + [—500,300] HU.
The display anchor, jiunchor, Was calculated individually for each image
using pixels within the centered black circle. Middle and bottom rows show
the profiles of the top left and right images, respectively. Each profile was
subtracted by the corresponding ftancnor. Vertical axes: HU; horizontal axes:
pixel index.
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Fig. 16. Contrast pattern (Section A) of the Siemens CB phantom. Left: ter-
minology for LAC and size; middle: the contrast pattern; right: illustration for
CNR calculation.

coefficients (LACs) for the contrast of 60 HU, 90 HU, 120 HU,
and 200 HU as LACgp, LACyy, LAC120, and LACaqg, respec-
tively; see Fig. 16. For each LAC, there are disks of five different
diameters: 2 mm, 4 mm, 8 mm, 16 mm, and 32 mm; see [32].
We refer to these disks as being of sizes, sivey, sizeg, sizejg,
and sizegs, respectively.

The disks are on four concentric circles; see the dashed circles
in Fig. 16. For CNR measurement, we selected the disks ofsizeg
and size4 that are located on the middle two circles. The disks
on the outermost circle were not included due to overlap with
capping artifacts, whereas the disks on the innermost circle were
not used due to poor detectability.

For each selected circle, three disks of the same LAC and
the same size form a cluster. For example, in Fig. 16, the three
black disks located on the second outermost dashed circle can be
identified as (LACaqg, sizeg ). For each cluster, we first calculate
the CNR of each disk, then compute the average of all three
CNRs as the final CNR of the cluster. Fig. 16 illustrates how
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TABLE III
CNR COMPARISON BETWEEN THE REVERSE HELICAL TRAJECTORY
(LEFT: RVH) AND THE CIRCULAR TRAJECTORY (RIGHT: CIRC) USING THE
CONTRAST PATTERN (SECTION A OF THE SIEMENS CB PHANTOM)

RVH [ Circ LACgo LACgo LAC129 LAC200
sizeg 093083 | 1.52|1.36 | 2.00 | 1.81 | 2.87 | 2.67
sizeq 091075 | 1.29|1.28 | 1.73 | 1.61 | 2.71 | 2.34
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Fig. 17. Results of the resolution pattern (Section D) of the Siemens CB
phantom. Top left: image result from the reverse helical trajectory; top right:
image result from the circular trajectory. Voxel size: 0.2 mm x 0.2 mm x 0.2
mm; display window: ftanchor + [1300, 1900] HU. The display anchor ftanchos
was calculated individually for each image using pixels within the centered
white circle. Middle and bottom rows show the profiles along the gray circular
curve segments of the top left and right images, respectively. Each profile was
subtracted by the corresponding ftanchor -

the CNR was computed for any given disk. Let ;1q and o4 be
the mean and standard deviation of the LAC of the pixels inside
the disk (black), respectively. Let x4, and o1, be the mean and
standard deviation of the LAC of the background pixels (gray
ring), respectively. The CNR of the disk was defined by

ONR =l —al [\t 4ad 2. @

The CNR results are listed in Table III. As expected, for the
same LAC, the CNR of sizeg is higher than that of size4. Also,
note that the reconstruction result used for Table III was not
in the fusion zone, thus it only used projection data from one
single helical turn. Given that the exposure associated with one
helical turn was comparable to that associated with the circular
trajectory, Table III indicates that the two trajectories produced
images of comparable contrast.

Finally, spatial resolution was examined using both the res-
olution and the MTF edge patterns. From a visual inspection,
the results from both source trajectories clearly have compa-
rable spatial resolution; see Fig. 17. The profiles along the white
curve segments in both images are very similar to each other.
According to the data sheet of the Siemens CB phantom [32],
both images have spatial resolution around 1.4 LP/mm.

The modulation transfer function (MTF) was computed using
the edge spread function corresponding to the edge indicated
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Fig. 18. Resolution assessment using the edge pattern (Section F of the
Siemens CB phantom). MTF curves were measured using the edge indicated
by the arrow.

by the arrow in Fig. 18. The resulting MTF curves in Fig. 18
are very close to each other. Note that the maximum detectable
spatial frequencies (corresponding to the 0.1 MTF value) for
the two MTF curves are both around 1.3 LP/mm, which is in
agreement with the observations from Fig. 17. Hence, both vi-
sual inspections and quantitative measurements suggest that the
spatial resolution for the reverse helix is comparable to that for
the circular trajectory.

VI. DISCUSSION AND CONCLUSION

We have successfully demonstrated that long FOV imaging
using a reverse helix is feasible in the interventional room. This
demonstration involved developing a novel calibration method,
assessing repeatability, implementing a reconstruction method,
and quantitatively evaluating image quality.

In our demonstration, the reverse helix was realized without
moving the patient table by using the motion flexibility offered
by a multiaxis C-arm system. Using translation of the patient
table together with a rotation of the C-arm would have been an-
other approach. However, moving the patient may not be prac-
tical, particularly in the middle of a surgical intervention. More-
over, the patient table in the interventional room is a floating
table that is not designed to allow precise motion control in the
same way as a CT table is. Thus, using patient table translation
may not be possible.

The reverse helix that we implemented consisted of five turns
0f 240° covering each an axial distance of 60 mm. This five-turn
reverse helix was successfully calibrated using a novel method,
which is an extension of the approach used in [22] and [23]. The
extension involved introducing a new calibration phantom, the
PDS-3 phantom, that is 450 mm long and uses a 10-bit encoding
scheme. This phantom is sufficient to calibrate as many as seven
turns of 60 mm. For a longer coverage, this phantom could
simply be extended using more balls. We have also demon-
strated that the five-turn reverse helix can be in average re-
peated with subdetector-pixel accuracy. However, this repeata-
bility was only examined within a short period of time (less than
2 h). Repeatability within a much longer period of time, such as
within one year, will be investigated in the future as it is of great
importance for clinical practice. For circular CB scans, the tra-
jectory is typically calibrated only once a year. Note also that
repeatability was only investigated for the 2 X 2 binning mode.

Image reconstruction was performed using our Fusion-RFDK
method with several adaptations that allowed accounting for
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slight geometrical deviations. High anatomical and structural
accuracy was demonstrated for two phantoms. Moreover,
a quantitative comparison against a short circular scan was
performed. The primary purpose of this comparison was to
verify that the extended coverage is achieved with satisfactory
image quality. Except in the fusion zones, the Fusion-RFDK
method performed reconstruction at each point using the
same amount of projections as the short circular scan; in the
fusion zone, the amount was double. Results from the reverse
helix demonstrated comparable spatial resolution (about 1.3
LP/mm); milder CB artifacts; and also comparable CNR in a
region outside the fusion zones, where similar X-ray exposure
is used for reconstruction. However, slightly more pronounced
capping artifacts were observed with the reverse helix. Further
investigations are needed to identify how to better mitigate
these capping artifacts.

Because the reverse helix provides complete data, reconstruc-
tion with no CB artifacts could have been demonstrated by using
an exact algorithm rather than the Fusion-RFDK method. Such a
demonstration was not the focus of this paper, particularly as the
data completeness advantage of the reverse helix over the cir-
cular scan has already been nicely demonstrated with real data
by Pearson et al. [7]. However, we plan to apply various exact
algorithms to our data in the future and compare their perfor-
mance.

In our comparison, the short circular scan provided a
160-mm-long volume whereas the five-turn reverse helix
yielded a 274-mm-long volume. In both cases, the radius of the
reconstructed volume was 130 mm, which corresponds to using
the detector in the landscape mode. Thus, two short parallel
circular scans would have provided a little more coverage
with 2.5 times less exposure, but these advantages would be
at the cost of CB artifact and noncontinuous data acquisition.
Continuity of the trajectory is known to be a key ingredient for
mitigation of motion artifacts, which has been used extensively
in CT (e.g., [33]). If the comparison was done with full parallel
circular scans (which reduces the strength of CB artifacts) and
if the reverse helix was implemented with rotations of 200° and
a pitch of 80 mm, four turns on the reverse helix would provide
the same axial coverage as two full scans with only 11% more
exposure. In this comparison, the reverse helix would allow
continuous data acquisition and yield complete data, with 400°
of data for each axial slice. Conservative parameters (240°
and 60 mm) were used in our implementation of the reverse
helix because we did not know ahead of time how accurately
the reverse helix could be implemented. Also, we would like
to point out that there is a lot of unexplored features of the
reverse helix acquisition in terms of angular coverage per turn,
utilization of data redundancies and beam collimation. For
example, for imaging the carotid artery from the aortic arch to
the brain, the multiaxis C-arm system that we used in this paper
allows the angular coverage per turn to be as high as 400°,
which brings richness in terms of image reconstruction.

Technically speaking, there is still a large body of knowledge
that needs to be built to identify what is the best way to perform
long-object imaging in the interventional room. First, further
image reconstruction algorithm developments could be bene-
ficial for the reverse helix, particularly in terms of data require-
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ments. Second, the reverse helix is not the only complete tra-
jectory that can be implemented for long-object imaging using
a multiaxis C-arm system. Comparison with other trajectories
[34], [35], including a set of parallel circular scans, is of high
interest to us and will be considered in the future. Although this
paper was focused on the reverse helix, the knowledge that was
acquired gives us strong optimism that other trajectories can be
as robustly implemented.
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