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Abstract. Ablation guided by focal impulse and rotor mapping (FIRM)
is a novel treatment option for atrial fibrillation, a frequent heart ar-
rhythmia. This procedure is performed minimally invasively and at least
partially under fluoroscopic guidance. It involves a basket catheter com-
prising 64 electrodes. The 3-D position of these electrodes is important
during treatment. We propose a novel model-based method for 3-D re-
construction of this catheter using two X-ray images taken from different
views. Our approach requires only little user interaction. An evaluation
of the method found that the electrodes of the basket catheter can be re-
constructed with a median error of 1.5 mm for phantom data and 3.4 mm
for clinical data.

1 Introduction

Atrial (Afib) fibrillation is one of the most common heart arrhythmia. In par-
ticular, for persistent Afib, ablation guided by focal impulse and rotor map-
ping (FIRM) has been proposed as an alternative to traditional treatment op-
tions [11]. To perform a FIRM-based ablation procedure, a multielectrode basket
catheter is placed first in the right atrium and then into left atrium during the
case. The basket catheter’s shape resembles an ellipsoid when imaged under X-
ray (see Fig. 1). It has eight splines, each spline comprising eight electrodes. One
marker electrode can be identified by its larger size. The catheter is used to record
the electrical signals in the atria. Using the Topera RhythmView 3-D electro-
physiological mapping system (Topera Inc., Palo Alto, CA, USA), the position
of electrical anomalies, so-called rotors can be found. This position is determined
relative to the splines and the electrode positions of the basket catheter and in-
dicates endocardial substrate maintaining the arrhythmia, that may be ablated.
A method is required to remap the rotor position from its basket catheter-based
coordinate system to the anatomical positions in the left and right atrium.

As of now, remapping and associated catheter navigation is performed using
the EnSite Velocity mapping system (St. Jude Medical, St. Paul, MN, USA).
However, the use of the EnSite system is problematic for at least two reasons.
First, current healthcare economics leave very little financial room to use a sec-
ond mapping system during an Afib ablation procedure. Second, it is known
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Fig. 1: Basket catheter, displayed left, as seen in two X-ray views taken from
different directions. The basket catheter comprises eight splines carrying eight
electrodes. Each spline has a marker electrode highlighted with ellipses (right).

that an impedance-based localization system such as Ensite Velocity may suffer
from electrical field distortions [6]. As an alternative to the mapping system, we
propose a method based on two X-ray images taken from different directions to
detect and reconstruct the basket catheter in 3-D. This is a challenging task as
the catheter is usually deformed by the atria. This results in a complex structure
compared with other electrophysiological catheters such as the coronary sinus
catheter and the circumferential mapping catheter [9].

1.1 Related Work

Image based 3-D catheter detection or reconstruction methods require usually
the detection of features, e.g., the center line or electrodes of the catheter. The
3-D catheter can then either be generated bottom up from these features, or, in
a top-down manner, i.e., an an initialization of 3-D curve can be approximated
towards the features. Hoffman et al. [9] proposed to use a bottom up strategy
which detects the center line of a catheter in two different views first. Then it
uses epipolar geometry to reconstruct an 3-D point cloud. They also proposed
a method to find the correct order of a subset of points in the point cloud to
reconstruct the catheter. Using 3-D curve segments as the feature rather than a
3-D point cloud, Delmas et al. [5] proposed a method to estimated the optimal
ordered subset of 3-D curve segments and applied constraints to reconstruct the
catheter. Using top-down strategy, Mauri [3] proposed a method using B-snakes
to formulate the catheter detection and reconstruction as an energy minimization
problem. Unfortunately, none of these approaches can be applied to our problem
as the basket catheter has a complex structure. Furthermore, it is not always
possible to extract the basket catheter splines as the contrast can be very low.

We present a top-down approach to reconstruct the shape of a basket catheter
in 3-D using two 2-D X-ray images acquired from different directions. For recon-
struction of the rather complex structure of the basket catheter, we propose to
use a statistical shape model. The model is adapted to the electrodes and wires
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extracted in two 2-D images. Our method has been designed for the basket
catheter, but can inspire reconstruction methods for other complex catheters.

2 Method

The method to detect the basket catheter comprises three steps. In the first
step, we train the shape model of the basket catheter based on annotated ground
truth data. In the second step, we detect the electrodes and splines of the basket
catheter in the X-ray images taken from two different viewing directions. Us-
ing these 2-D points, we reconstruct all possible 3-D electrode candidates using
triangulation. In this step, the user is is also asked to specify the start and the
end of the basket catheter at least one of the marker electrodes. The marker
electrodes determine the order of the catheter splines. In the last step, the ini-
tialization of the model will be performed and the model will be matched to
the extracted features in the 2-D images. A different, possibly more intuitive
approach, may have been to assign electrodes to splines followed by 3-D recon-
struction. However, it might be difficult to compute this assignment, especially
if splines connecting the electrodes are not well visible, and an exhaustive search
would possibly take too long to execute in a clinical environment.

2.1 Basket Catheter Spline Model

We describe each single spline of the basket catheter using a statistic shape
model [4]. The choice to use a shape model was motivated by the desire to
constrain the basket catheter reconstruction problem as much as possible yet
being able to use prior knowledge about the expected deformation. The model is
trained using the 3-D electrode positions of M splines which origin from several,
differently deformed catheters. We combine the basket catheter’s start point
pi1 ∈ R3, eight electrodes pi2, . . . ,pi9 and the basket’s end point pi10 of the ith

spline in a vector x′i
x′i =

(
pTi1, . . . ,p

T
ik, . . . ,p

T
i10

)T
(1)

Such a description is established for each of the M basket catheter splines.
To build the statistical shape model, the data needs to be normalized first. The
normalization involves a rotation and translation in 3-D, scaling is not necessary,
as the size of the catheter is standardized. We normalized the data x′i so that the
start point pi1 and the end point pi10 lie both on the y-axis. The middle point
between these two points is defined as origin. Furthermore, during alignment we
make sure that the eight electrodes pi2, . . . ,pi9 have minimum distance to the
X − Y plane and and that their x-coordinates are positive. So, the alignment
for point pik in ith catheter spline can be formulated as

xik = RY
i Ri(pik + ti) (2)

where xi =
(
xTi1, . . . ,x

T
i10

)T ∈ R30 denotes the normalized and aligned points, ti
and Ri denote the translation and rotation for normalization, and RY

i denotes
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the rotation along the Y axis for alignment. Then we follow the steps from
Cootes et al. [4], calculate the mean shape x̄, the deviation dxi from the mean
and the covariance matrix Σ as

x̄ =
1

M

M∑
i=1

xi dxi = xi − x̄ Σ =
1

M

M∑
i=1

dxidx
T
i (3)

By calculating an eigenvalue and eigenvector decomposition of the covariance
matrix Σ, we get unit eigenvectors vk (k = 1, . . . , 30) with corresponding eigen-
values λk in descending order. Using the first Nm modes of variation V =
(v1, . . . ,vNm

) and the corresponding weight factors b′ = (b1, . . . , bNm
), we can

generate new shapes x′ of the model as

x′ = x̄+ Vb′ (4)

In the remainder of the paper, we use Nm = 3 modes of variations.

2.2 Electrode and Spline Detection

We detect the electrodes in the image I(x, y) using the determinant of the Hessian
matrix H [10] of a scale space representation

L(x, y;σ2) = I(x, y) ∗G(x, y;σ2) (5)

obtained by a convolution with a Gaussian kernel G(x, y;σ2) of size σ. To detect
blobs of different sizes, different values of σ should be chosen. Steger [12] stated
that the center point of a bar-shaped profile with a width of 2w can be extracted
when σ ≥ w/

√
3. With prior knowledge of electrodes’ dimensions wp and the

projection geometry information of the C-arm, we can estimate a minimal scale
σmin. Let m be the perspective magnification factor of the X-ray system and sp
be pixel spacing. Based on the length wim of the electrode as it appears in the
X-ray image (in pixels), we select the scale as

σmin =
wim

2
√

3
with wim =

wp ·m
sp

(6)

We use two different scales, σmin and 2σmin, to calculate the determinant of the
Hessian matrix for each pixel. Then we apply a threshold on the determinant of
the Hessian to obtain an electrode mask image. The threshold level is selected
such that a certain percentage of image pixels is extracted as the number of
image pixels covered by electrodes is roughly known in advance. We then select
the possible positions of the electrodes denoted as eA

i and eB
i in image A and

B. Therefore, the local maximum of the determinant of the Hessian in each
connected component of the mask image is selected as electrode center. Finally,
the user is required to mark the start point p̃A1 , p̃B1 and the end point p̃A10, p̃B10
of the basket catheter by clicking on them in the 2-D images of plane A and B,
respectively. Additionally, either one or eight spline marker points are marked
in both views. The 3-D position of the start point p̃1, end point p̃10 and the
marker electrode(s) are obtained using triangulation.
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2.3 Point Cloud Generation

We use epipolar geometry to search for correspondences between electrodes in
associated two-view images. When searching for correspondences, we introduce
some margin for acceptance. This acceptance range depends on the X-ray system
used. For a bi-plane system, the acceptance range will be only a few pixels to
compensate the blob detection error due to limited precision or residual camera
calibration error. For mono-plane systems, patient motion might occur between
the two acquisitions from different views. Therefore, we accept a higher margin
and apply additionally a motion compensation using the marked 2-D catheter
start points p̃A1 , p̃B1 and the marked 2-D endpoints p̃A10, p̃B10 of image plane A and
B, respectively. This motion compensation is applied to the projection matrix
PA associated with plane A by multiplying it with a 3-D translation matrix
T =

(
1 | (tx, ty, tz)

T
)
. The T are selected such that the distance between the

projection rays from p̃A1 and p̃B1 and the distance between the projection rays of
p̃A10 and p̃B10 is minimal. For each possible point correspondence, a 3-D point is
triangulated [8].

Finally, the catheter splines are extracted using a vesselness filter [7, 2]. After
applying a threshold, distance maps IAds and IBds to the splines in image A and
B, respectively, are computed.

2.4 Model Initialization and Adaption

Length Adaption Using the 3-D start point p̃1 and the end point p̃10 marked
by the user, we perform an initialization of all single splines of the basket catheter
model. Let p̂k1(b′) and p̂k10(b′) be the start point and end point of kth spline
when using b′ as parameters. We select the parameter vector bk = (bk1, bk2, bk3)T

of the kth spline such that ‖p̃1 − p̃10‖ = ‖p̂1(b′)− p̂10(b′)‖. As this is an under-
termined problem, we propose two different ways of adding constraints. One is
called most probable model which is estimated by optimizing following equation

bk = argmin
b′

‖p̃1 − p̃10‖ − ‖p̂1(b′)− p̂10(b′)‖ − a0 · N (b′; 0,Σ) (7)

For the second approach, we manually define a set of different ratios between
bk1, bk2 and bk3. With these extra constraints, the problem becomes determined
and can be solved. We use these parameters for all eight splines and distribute
them with equal angle spacing around the axis defined by the start point p̃1
and the end point p̃10 to get a model of the whole basket catheter. As shown in
Fig. 5, the shape of the model can be very different subject to the same start
and end point.

Rotation Initialization Starting with this initial model, we also need to esti-
mate the rotation α = (α1, . . . , α8) of each single spline. In case we have eight
marker electrodes as input, the rotation for all single splines is computed such
that their distance to their respective marker electrode is minimal. With one
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Fig. 2: Different possible shapes with same start point p̃1 and end point p̃10

marker electrode input, the whole basket catheter is rotated such that the dis-
tance of the marker electrode to its respective spline is minimal. Based on the
result, we estimate further the rotation of the other remaining splines. We de-
fine therefore an energy-term D to describe the difference between the projected
model and the extracted features in both images as

D(b,α) = a1 ·

(∑
i

min
k
d
(
eAi ,S

A
k (bk, αk)

)
+
∑
i

min
k
d
(
eBi ,S

B
k (bk, αk)

))
︸ ︷︷ ︸
Distance of each detected electrode to projected splines of the model

a2 ·

(∑
i

min
j,k

d
(
eAi ,p

A
k,j(bk, αk)

)
+
∑
i

min
j,k

d
(
eBi ,p

B
k,j(bk, αk)

))
︸ ︷︷ ︸
Distance of each detected electrode to projected electrodes of the model

a3 ·

∑
k,j

min
i
d
(
eAi ,p

A
k,j(bk, αk)

)
+
∑
k,j

min
i
d
(
eBi ,p

B
k,j(bk, αk)

)
︸ ︷︷ ︸
Distance of each projected electrode of the model to detected electrodes

(8)

where pAkj ∈ R2 denotes the projection of the jth electrode on the kth spline in

the image A. The projection of the complete kth 3-D spline in image A is denoted
as SA

k . Their projections in image B are denoted by pBk,j and SA
k , respectively.

The rotation is estimated by minimizing the energy D

α = argmin
α1,...,α8

D(b, α1, . . . , α8) (9)

Outlier Reduction The initialization described at the beginning of this sec-
tion assumes that the basket catheter is symmetrical, i.e. the parameter vector
bk is the same for each spline. To cover also asymmetrical cases, we will use
the 3-D electrode point cloud to adapt the initialization. As we have potentially
many outliers in the 3-D point cloud, we will perform an iterative outlier re-
duction and model estimation algorithm. This Algorithm, which is described in
Algo. 1, assigns 2-D electrodes to 3-D splines to detect and eliminate spurious
correspondences.
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Algorithm 1 Iterative Outlier Reduction and Model Estimation

1: Compute for all electrodes eAi detected in image plane A the set C(eAi ) of corre-
sponding electrodes in image B

2: for each iteration step t = 1 : N do
3: for each eAi do
4: find the two splines S1

t , S2
t for which their projection S1A

t , S2A
t in image A

is closest to eAi
5: compute their projections S1B

t , S2B
t in image B

6: delete from C(eAi ) the point ck which maximizes min(d(ck,S
1B
t ), d(ck,S

2B
t ))

7: end for
8: reconstruct a new 3-D point cloud using the remaining correspondences
9: estimate the model Mt with respect to the new point cloud

10: estimate the rotation αt

11: end for

Image-based Model Adaption Finally, we adapt the model such that it
fits to both images by altering the weighting b = (bT1 , . . . , b

T
k ) and rotation

α = (α1, . . . , α8). We introduce therefore an additional energy term

R(b,α) = a4 ·
∑
k

N (bk; 0,Σ)︸ ︷︷ ︸
Model likelyhood

+ a5 ·
∑
k

IAds(S
A
k (bk, αk)) + IBds(S

B
k (bk, αk))︸ ︷︷ ︸

Distance of projected splines to detected 2-D splines

(10)
for the final optimization of b and the rotation α

b,α = argmin
b,α

D(b,α) +R(b,α) (11)

3 Evaluation and Results

For evaluation, we used three different setups. In the first case, the basket
catheter was deformed by tape and put into a bottle. A total of 18 different
experiments were performed by inserting the basket catheter such that it as-
sumed a different shape each time. Then, a C-arm CT was acquired. As a result,
18 3-D volumes were generated, each containing a differently deformed basket
catheter. Also, a series of associated X-ray images taken from different angles
was acquired for each volume. In each of the 18 volumes, the positions of the 3-D
electrodes were annotated and served as ground truth. For evaluation, two X-ray
images, taken from perpendicular view directions, were selected for each of the
18 basket catheter placements. They were taken as the input for our algorithm.

For the second setup, the catheter was placed into a thorax phantom. Then
we took four bi-plane image pairs with perpendicular viewing angles at different
dose settings. Unlike in the previous experiment, in this case the basket catheter
was identically deformed. We used this set to evaluate the performance of our
approach with respect to different noise levels.
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Fig. 3: The coordinates of a subset of the annotated electrodes, normalized and
aligned with mean shape of the basket catheter spline model (shown left) and
the first mode of variation (displayed right). As most of the variation spreads
in the X-Y plane, we projected the mean shape and the variation of the basket
into the X-Y plane.

We also included one clinical data set in the evaluation taken from a mono-
plane system. Here, the basket was placed in the right atrium along with other
electrophysiological catheters. The ground truth positions of the electrodes of
the basket catheter were obtained, both for the bi-plane setup and the clinical
data, by triangulation of annotated electrodes in both views.

3.1 Result of the Spline Model Training

For training of the basket catheter model, we used the 3-D electrode coordinates
annotated from the C-arm CT data sets. For evaluation using the C-arm CT
data set, a leave-one-out crossvalidation was performed. The resulting model
and the first mode of variation is shown in Fig. 3.

3.2 Basket Catheter Reconstruction Results

C-arm CT Data Set The results of the evaluation using the C-arm CT data
sets are shown in Fig. 4. We also investigated how marking all instead of a
single spline marker electrode and outlier reduction changed our outcomes. We
found that the median error was between 1.7 mm and 1.5 mm. The maximum
errors are 24.2 mm and 32.2 mm for single marker annotation without and with
outlier reduction, respectively. The respective maximum errors when all markers
are annotated are 15.3 mm 24.1 mm. However, we did also encounter outliers
of up to 32.2 mm depending on the kind of information provided by the user.
Comparing different user interactions, we see that the result improved somewhat
when the positions of the eight marker electrodes were provided. Unfortunately,
the improvements were limited, both for knowing all marker electrodes and also
when applying outlier reduction methods.
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Fig. 4: Evaluation result of C-arm CT data with different electrode selection
strategies. The median errors are 1.7 mm and 1.6 mm for single marker anno-
tation without and with outlier reduction, respectively. The respective median
errors when all markers are annotated are 1.6 mm 1.5 mm. Results with an error
of a 1.5 inter-quartile range above the median error are not shown in the figure.

Fig. 5: Images of basket catheter in phantom and overlay of the reconstructed
basket catheter. The X-ray dose and image quality improved from left to right.

Bi-plane Views with different X-ray Dose Figure 5 shows qualitative re-
sults using images from the bi-plane data set, quantitative results are presented
in Figure 6. The result shown in Fig. 6 indicate that our method performed bet-
ter as the signal to noise ratio improved, i.e., as the X-ray dose was increased.
This experiment shows that our method can also perform well at a low SNR.

Clinical Data In Fig. 7, we show the clinical data with the basket catheter in
the right atrium. In this case, we used single marker selection without outlier
reduction. The result is also shown in this figure. With our method, we reached
a median error of 3.4 mm and a maximum error of 12.5 mm, respectively.

4 Discussion and Conclusion

When comparing a 3-D representation of a basket catheter computed by our
method from two views to its counterpart generated using C-arm CT, we found
a median error below the clinical important threshold of 3mm [1]. Unfortu-
nately, we also encountered large maximum errors. They were caused by heavily
deformed and twisted basket catheters in the data set, these cases are not very
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Fig. 6: Evaluation result with biplane X-ray data acquired at different dose levels.
Image A has the poorest SNR, image D has the best SNR.

Fig. 7: Left anterior oblique (LAO) 45◦ view and right anterior oblique (RAO)
30◦ view of the basket catheter in the right atrium.

clinically relevant as the basket catheters would need to be repositioned in such
a situation to obtain a signal reading that can then be reliably processed further.
The performance of outlier reduction is also restricted as in some case, some of
the electrodes are positioned where multiple splines cross. In such a case, it is
also hard for the algorithm to decide which spline the electrode should be as-
signed to. This problem could be approached by using a consensus based method
in the future. In the clinical data set, however, the result was less satisfactory
with a median error of 3.4 mm. This error is the consequence of very low-dose
data acquisition resulting in X-ray images with a low SNR. In such a situation
our electrode detection algorithm identifies many potential electrode positions
which do not belong to the basket catheter. Any overlap of the basket catheter
with other catheters is also problematic. In such a case, some electrodes of the
basket catheter might not be visible and additional electrodes may be intro-
duced that are not associated with the basket catheter. More work on robust
basket electrode detection is needed to improve the result. Furthermore, the out-
lier reduction algorithm should be extended to assign e.g. probabilities to point
correspondences. This which might also improve the result.
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