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Abstract—Abstract--- In this paper, we proposed a novel scatter 

correction approach for cone beam computed tomography based 

on Klein-Nishina formulation. Also a principle was proposed that 

the photons intensity distribution was determined by the 

attenuation coefficient μ and the path length l by deducting this 

formulation, which declares that two pencil beams pass through 

two objects with the same values of μl could result in same photons 

intensity distribution, i.e., point spread function (PSF), even if the 

corresponding μ and l are different. The simulation and 

experimental results demonstrated the feasibility of our approach, 

as well as the comparison with the beam stop array (BSA) method 

for evaluation. 

 
Index Terms—Scatter, Klein-Nishina, CBCT 

 

I. INTRODUCTION 

WING to the rapid scanning process and sufficient X-ray 

utilization, cone beam computed tomography (CBCT), a 

technology on the frontier of medical imaging research, has also 

been applied in various areas such clinical diagnostics and basic 

research. However, during the imaging process of the CBCT, 

Compton scattering contributed by the interaction between the 

X-ray and the material causes scattering artifacts, which 

decreases the image contrast and resolution, resulting in 

negative effect to diagnosis[1]. Since higher imaging quality is 

required in applied CBCT systems, scatter artifacts have to be 

corrected before or during image reconstruction. Many scatter 

correction methods have been proposed in literatures[2], and J. 

Boone has classified them into two categories: software 

correction and hardware correction[3]. 

II. METHODS 

A. Approach derivation 

According to Klein-Nishina scatter cross section formula, the 

 
 

relationship between the photons intensity distribution, which 

is represented by point spread function (PSF), and the geometry 

parameters, the physical properties of the object could be 

derived. Here the full width tenth maximum (FWTM) was 

adopted to indicate the cut-off frequency of the PSF. It is noted 

that here we just take the single scatter into consideration and 

spectral effects is not considered. When considering small 

percentage of Rayleigh scattering, the possibility that the 

incident photon reaching the point 𝑃(𝑟,  ) can be calculated 

by Eq. 1. 
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where K is the global constant encompassing several constant 

terms and g'(r, ) means the probability of the incident photon 

reaching the point P(r, ).It is easy to find that 𝑓(𝜃) is monotone 

decreasing with the parameter 𝜃. As a result, g'(r,   ) is 

monotone decreasing with the parameter 𝑟.This complies with 

the laws of PSF. Besides, it is obvious to take 𝜇𝑠 𝑠 as one 

variable. Though the integral variable 𝑠 occurs alone 

somewhere without the attenuation coefficient 𝜇𝑠, however, 

when it occurs with the air gap g, which is much larger than 

𝑠, as a result, it is reasonable to omit 𝑠 occurring alone. So, 

the Eq. 2 is simplified to be: 
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Till now an inference can be summarized that g′(𝑟,  ) has 

one-to-one mapping relationship with 𝜇𝑠𝑡, and the larger 𝜇𝑠𝑡 

the larger FWTM of the 𝑃𝑆𝐹.   

 

As is known to everybody, the intensity detected by the 

X-ray detector contains both the real information and the 

scatter information, which can be delineated by: 

1 (4)real scatterI I I   

where 𝐼1 , 𝐼𝑟𝑒𝑎𝑙, 𝐼𝑠𝑐𝑎𝑡𝑡𝑒𝑟are matrices with a dimension of 𝑚 × 𝑛 

and indicate the detected information, real information and 

scatter information respectively. If 𝐼𝑟𝑒𝑎𝑙 and the 𝑃𝑆𝐹 of each 

point of 𝐼𝑟𝑒𝑎𝑙 are known, 𝐼𝑠𝑐𝑎𝑡𝑡𝑒𝑟 can be calculated by the 

following equation: 
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where 𝐼𝑠𝑐𝑎𝑡𝑡𝑒𝑟(𝑖, 𝑗)  means the value of 𝐼𝑠𝑐𝑎𝑡𝑡𝑒𝑟 at position 

(𝑖, 𝑗)  while 𝑃𝑆𝐹(𝑖, 𝑗)  indicates the PSF at the position (𝑖, 𝑗) , 

namely, when the incident photons enter the object along the 

direction of the source point to the position (𝑖, 𝑗), it will have 

the corresponding 𝑃𝑆𝐹. Here 𝑃𝑆𝐹 is defined as a matrix with a 

dimension of 𝑚𝑝𝑠𝑓 × 𝑛𝑝𝑠𝑓. However, in practice, all these are 

unknown, so we should substitute these parameters with some 

parameters that are already known or could be measured. So 

here, we substitute the 𝐼𝑟𝑒𝑎𝑙 with 𝐼1 as the scatter fraction does 

not change the characteristic of real information so much due to 

the low frequency of the scatter information. As to the 𝑃𝑆𝐹 

processing, the threshold segmentation is conducted on 𝐼1 . 

According to our inference, the same 𝜇𝑠𝑡, results in the same 

𝑃𝑆𝐹. As a result, only one 𝑃𝑆𝐹  is needed by each segment, 

which greatly reduces the complexity of the calculation and it 

also enabled highly paralleled calculation, because each 

segment could be organized parallel to the each other, and in 

the same segment, each point could be organized parallel to 

each other as PSF is the same within a segment. There are many 

types of PSF to choose from, such as Gaussian function and 

Poisson function, etc. The cutoff frequency of the PSF, namely 

the FWTM of the PSF needs to be determined. Because of the 

one-to-one map relationship between the 𝑃𝑆𝐹 and 𝜇𝑠𝑡, lots of 

𝑃𝑆𝐹 could be obtained through Monte Carlo simulation with 

different 𝜇𝑠𝑡 . It is very easy to construct a database, which 

shows the value of 𝜇𝑠𝑡 and the corresponding𝑃𝑆𝐹. 

 

B. Phantom study 

A standard QRM scatter phantom and a BSA (Beam Stop 

Array) phantom were used to testify the effect of the scatter 

correction method. The phantom structure and geometric 

parameters are shown in Fig. 2. 

360 projection images with and without a BSA phantom were 

obtained with one full angle scan. The BSA phantom was 

placed between the X-ray source and the object. The distance 

from the X-ray spot to the rotation axis and the detector was 

375mm and 625mm respectively and the BSA phantom was 

approximately 50mm to the rotation axis. Once the projection 

images with BSA phantom were obtained, the scatter fraction 

was obtained by the typical method proposed by R. Ning. The 

projection images obtained without BSA phantom were 

segmented to two parts because of the simple structure of the 

phantom. The principle of the segmentation is that both of the 

 
Figure 1.  The X-ray scatter schematic diagram used to derive the PSF: a 

photon enters the object perpendicularly from the position δ , and scatters at 

the position a distance of s from the bottom surface. The scatter angle is θ , the 

air gap is g . The photon reaches the image plane at the position P(r, ) 

  

Figure 2. The QRM scatter phantom 
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two parts are approximately half of the initial image. Then the 

scatter matrix was obtained by Eq. 13 with the FWTM of the 

PSF set to be (89,169) according to the Monte Carlo simulation 

database, which means the FWTM of the PSF is 89 pixel size 

to lower 𝜇𝑠𝑡 and 169 pixel size to higher 𝜇𝑠𝑡 as our detector is 

1944*1536 size with a 0.0748mm pixel size. Here, Our PSF 

assumed a Gaussian form as the simulation experiment shows 

a good Gaussian linefit. After the scatter fraction elimination, 

the corrected projection images (our method and BSA method) 

were reconstructed to a 1024*1024*1024 size image using 

FDK reconstruction method with geometry calibration 

respectively. 

III. RESULTS 

The reconstruction results are shown in Fig 3 and Fig 4. Fig3 

shows the reconstructed images with and without scatter 

correction while Fig 4 shows corresponding pixel value along a 

line drawn in Fig 3 (the line pass through the two brightest 

discs). The line in all of the images share the same position.  

IV. CONCLUSION 

It is obviously to see that the image quality improvement 

after the scatter correction and image quality with scatter 

correction using our approach is comparable to image quality 

with the BSA method from Fig 3, 4. Fig 3intuitive shows the 

image quality improvement, especially in the region around the 

brightest discs, where the scatter artifacts is much more serious 

when compare Fig 3(a) with Fig 3(b), (c). Fig 4 shows the 

homogeneity of the image through the CT value along the line 

that pass through the center of the two brightest discs. It is easy 

to find that the homogeneity is much better after scatter 

correction, and the homogeneity of the image obtained with 

scatter correction through our approach and BSA method are 

comparable.  
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Figure 3. The image reconstruction of the QRM scatter phantom (a) without scatter correction, (b) 

with scatter correction with our method, and (c) with scatter correction with BSA method. 

Figure 4. The corresponding pixel values along the lines drawn in Fig 3. 
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