Gender—-dependent GMM-UBM for tracking Parkinson’s disease progression

from speech

T. Arias-Vergara!, J.C. Vasquez-Correa!, J.R. Orozco-Arroyave!?, J.F. Vargas-Bonilla!, T.

Haderlein?, E. N6th?

IFaculty of engineering. Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellin, Colombia
ZPattern Recognition Lab, Friedrich-Alexander-Universitit Erlangen-Niirnberg, Germany

Email: tomas.ariasQudea.edu.co

Abstract

Parkinson’s disease (PD) severity is evaluated by neurol-
ogist experts by means of several tests. One of them is
the Movement Disorder Society—Unified Parkinson’s Dis-
ease Rating Scale (MDS—UPDRS). The main hypothesis is
that changes in the speech of PD patients reflect changes in
their neurological state. In this study we use the Gaussian
Mixture Model-Universal Background Model approach to
track the disease progression per speaker. Speech record-
ings from 62 PD patients were captured from 2012 to 2015
in three recording sessions. The validation of the models
is performed with recordings of 7 patients (3 male and 4
female). The models were trained using speech recordings
from male and female patients separately. According to the
results, it is possible to track the disease progression with
a Pearson’s correlation of up to 0.88 for males and 0.53 for
females.

Keywords: Parkinson’s disease, Disease progression, User
modeling, Gaussian Mixture Model, MDS—UPDRS-III.

1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder
characterized by the progressive loss of dopaminergic neu-
rons in the midbrain [1]. PD symptoms include tremor,
rigidity, slowed movements and speech impairments [2].
The severity of PD varies among the patients, i.e., the pro-
gression of the disease and the symptoms experienced for
some patients varies from person to person. The neuro-
logical state of PD patients is evaluated with the Move-
ment Disorder Society—Unified Parkinson’s Disease Rat-
ing Scale (MDS—UPDRS). This is a perceptual scale used
to assess the motor and non-motor capabilities of PD pa-
tients [3]. The complete scale is divided into four parts.
In this study we consider only the third part of the MDS—
UPDRS (MDS-UPDRS-III) because it evaluates the mo-
tor abilities of the patients. The scale includes only one
item to evaluate speech impairments; however, speech dis-
orders affect the majority of PD patients [4]. Since PD
severity is evaluated by neurologist experts according to
their own clinical criterion, the inter—expert—variability of
the test could be high. Thus, it is important to develop
computer aided systems to support the clinical diagnosis
and to assess the disease progression objectively. There
are studies focused on monitoring the disease progression
from speech over the time. In [5] voice signals captured
in two different recordings sessions are considered. The
speech is perceptually evaluated considering four terms:
voice, articulation, prosody, and fluency. The authors also
correlated the perceptual speech scores with the speech
item of the UPDRS. The prediction of the disease severity

according to the UPDRS is presented in [6]. In that study,
speech recordings were collected once per week during six
months. The authors modeled speech extracting several
acoustic measures. The prediction of the UPDRS score
was possible using a Classification And Regression Trees
(CARTs) approach. The authors do not guarantee speaker
independence in the validation process. Other work has
focused on the assessment of the disease severity predict-
ing the UPDRS/MDS-UPDRS motor score [7-9]. In these
studies the speech recordings are captured once per patient.

In this paper we propose a methodology to track the PD
progression from speech signals collected in three record-
ing sessions. The disease progression is assessed indi-
vidually following a user-modeling approach. A sepa-
rate analysis of female and male patients is also consid-
ered with the aim to analyze the gender—dependence of
the proposed approach. In this study, a Gaussian Mix-
ture Model adapted from a Universal Background Model
(GMM-UBM) is considered for modeling the progression
of the disease. A subset of the patients recorded was con-
sidered for the adaptation process.

The rest of the paper is organized as follows: Section
2 contains the data description and methods for modeling.
Section 3 contains the results. Section 4 describes the con-
clusion derived from this study.

2 Methods and materials

Speech recordings from 62 patients were collected in three
recording sessions within a period of three years. A subset
of seven patients participated in the three recording ses-
sions, and they are considered for tracking the disease pro-
gression using individually-adapted models. One patient is
selected to be modeled. The remaining group of speakers
used to train the UBM is selected depending on the ex-
tracted patient (male or female). We consider the UBM
as the baseline to assess the disease progression according
to its distance to the adapted model. Three different UBMs
are trained for each group of speakers (males and females):
(1) with recordings of the PD patients, (2) with speech of
healthy speakers, and (3) with both groups of speakers.
The models are built with several features extracted from
the voiced (v) and unvoiced (uv) segments of the speech
signals. The final model per speaker consists of three sin-
gle models, one per recording session. The disease pro-
gression is evaluated calculating the distance between the
background model and the speaker model. Finally, the cor-
relation between the distance measures estimated for each
recording session and the three neurological scores is cal-
culated. The process is summarized in Figure 1 and further
details are provided in the following subsections.
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Figure 1: Proposed methodology

2.1 Data description

Speech recordings from 34 males and 28 females were col-
lected from 2012 to 2015. A professional audio setting
was used for the first two sessions, and the third session
was recorded with the device presented in [10]. All of
the patients from the three sessions were diagnosed by a
neurologist expert according to the MDS—UPDRS-III [3].
Only 3 of the 34 male patients (MP) participated in the
three recording sessions. For the females only 4 patients
are present in all sessions. A Healthy Control (HC) group
is also considered. Speech recordings from 31 males and
31 females were captured. None of the participants in the
HC group has a history of symptoms related to PD or any
other kind of movement disorder. Each subject in the HC
group was recorded one time. All the participants of the
tests followed the set of speech tasks presented in [11]. In
this study, only the reading of a phonetically balanced text
with 36 words was considered.

Table 1: Distribution of patients recorded in all sessions.
MPi (i € {1,2,3}): Male Patients. FPi (i € {1,2,3,4}):
Female Patients. Session i (i € {1,2,3}): MDS-UPDRS-
11 scores obtained on each recording session.

Patient Age Session1l Session2 Session 3
MP1 64 28 19 13
MP2 59 6 8 24
MP3 68 14 25 7
FP1 55 29 26 26
FP2 51 38 49 44
FP3 57 41 35 33
FP4 56 43 10 19

2.2 Voiced/unvoiced characterization

Voiced and unvoiced segments are extracted and grouped
separately to characterize the read text task. Hamming
windowing with 20 ms length and time shift of 10 ms is ap-
plied. The set of features extracted from the voiced frames
include the jitter, the shimmer, and 12 Mel-Frequency Cep-
stral Coefficients (MFCCs). For unvoiced frames the set
of features include 12 MFCCs and the log energy of the
signal distributed in 25 Bark bands. To compensate for
the channel acoustic condition, cepstral mean subtraction
is applied.

2.3 Gaussian Mixture Model-Universal Back-
ground Model

We assess the disease progression from speech by model-
ing the speakers from Table 1. User models are obtained
using GMM-UBMSs. The GMM approach allows to repre-
sent the distribution of arbitrary probabilistic densities. For
this reason, in speech processing such an approach is used
to represent the feature vectors from one speaker. When
several speakers are considered for training, the model is
called UBM. GMMs are defined as parametric probabilis-
tic models represented as a linear combination of M Gaus-
sian densities. For a D-dimensional feature vector x, a
GMM is defined as

M
p(x|A) =Y wipi(z) (D
i=1

The GMM is parametrized by the mixture weights w;, a
D—x1 mean vector p;, and a DD covariance matrix X;
[12]. The parameters of the Gaussian mixtures can be de-
noted as A = (w;, t4,%;) and the Gaussian densities as

pi(x) = W%‘P{—%(w —p) T (@)} (2)

In this study, the UBM was trained with a number of Gaus-
sians that ranges from 2 to 1024 in 2" steps with n €
{1,2,3...,10}. One patient is selected to be modeled. The
remaining speakers are used to train the UBM. Depend-
ing on the selected patient, the UBM is trained including
only male or female speakers. Next, the parameters of the
UBM are updated and adapted with the feature vector of
the selected patient. The adaptation is performed using the
Maximum A Posteriori (MAP) rule. Then, we compute the
distance between the UBM and the adapted model. Three
adaptations (one per recording session) are performed for
each patient. The resulting user model contains 3 distance
values.

2.4 Distance computation

The Bhattacharyya distance measures the dissimilarity be-
tween two probabilistic distributions. We use equation 3 to

calculate the distance between the UBM (@, fi,£) and the
adapted models (w, p,X) [13].
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Table 2: Pearson’s correlation between the predicted scores and the real
MDS-UPDRS-III. Seg: Voiced/unvoiced segments. MPi/FPj (i € {1,2,3}),
(j € {1,2,3,4}): Pearson’s correlation between the predicted scores and the
real MDS—-UPDRS-III score per patient. Avg: Average value of the correla-

tions per patient.
Male Speakers Female Speakers

Trainingset Seg MP1 MP2 MP3 Avg | FP1 FP2 FP3 FP4 Avg
PD \Y 099 099 0,71 090 |-0,50 099 097 -025 0,30
uv -033 052 098 039 ]|-036 098 045 056 0,40
HC \ 099 096 0,76 090 | -0,50 099 084 096 0,57
uv  -0,67 0,51 0,77 0,20 | 0,01 0,24 -0,28 0,07 0,01
PDHC \ 09 099 0,76 091 |-0,58 099 -0,10 0,34 0,16
uv 065 053 099 0,72 |-020 087 088 0,18 043
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Figure 2: Normalized scores for the female patients considering the Bhattacharyya distance (Grey dotted line) and the
MDS-UPDRS-III labels (Black solid line) using features from voiced segments. (A) FP1, (B) FP2, (C) FP3, (D) FP4

2.5 Regression model

The disease severity according to the MDS—-UPDRS-III is
estimated using a linear Support Vector Regressor (SVR).
This method is applied to validate that the features imple-
mented are suitable to assess the neurological state of a pa-
tient. The prediction (7)) is measured with the e—insensitive
loss function L(y,¥y), which ensures the existence of the
global minimum, and it is computed with Equation 4.

0 ifly—yl<e
ly—y|—e  otherwise

L.5) = { @

The parameters of the regressor C' and ¢, are optimized in
the training set in a grid search with C' € {1074,1073,1072 -
...,100} and € € {1074,1073,1072,107!,1,10,20}. The
performance is evaluated using the Pearson’s correlation
coefficient r between the predicted values and the MDS—-
UPDRS-III labels.

3 Experiments and results

3.1 Validation of voiced and unvoiced features

The suitability of the features to predict the MDS—-UPDRS-
IIT scores is evaluated using an SVR following a leave-
one-speaker-out cross-validation strategy. Three different
training sets were used to predict the MDS—UPDRS-III
scores for males and females. The train sets are formed
with: (1) only patients (SVR-PD), (2) only healthy speak-
ers (SVR-HC), and (3) the combination of PD patients and
HCs (SVR-PDHC). Additionally, voiced and unvoiced fea-
tures were used to train each model separately. In general,
the features from voiced segments produce the highest cor-
relations for male speakers. A correlation of up to r =0.91
is obtained for males. For the female speakers, the highest
correlation is obtained with features from voiced segments
(r = 0.57). Additionally, a correlation of up to » = 0.72

is obtained for male speakers when only features from un-
voiced segments are included in the SVR-PDHC training
set. However, for female speakers only correlations of up
to r = 0.43 are obtained using features from unvoiced seg-
ments. This results can be explained considering the small
data set used for validation i.e. 3 male and 4 female. Ad-
ditionally, Table 2 shows that FP4 has a strong variation
in the correlations. Note also that FP4 in Table 1 has the
highest variation in the MDS-UPDRS-III which affects
the correlations obtained using the SVR approach.

3.2 Experiments with GMM-UBM

The same groups of speakers used to train the SVR are
used to train the UBMs (UBM-PD, UBM-HC, and UBM-
PDHC). Then, individual GMMs are adapted for each pa-
tient. The highest correlations are obtained using unvoiced
features both for males and females. For males, a Pear-
son’s correlation of up to r = 0.73 is obtained training
the UBM—-PDHC. For the case of the females, a correla-
tion of up to r = 0.53 is obtained for the UBM-PD. The
more accurate modeled speakers are MP1 (UBM: r =0.93,
SVR: r = 0.99) for males and FP2 for females (UBM:
r = 0.80, SVR: r = 0.99). Note that in Table 3 MP2,
FP1, and FP4 have the lowest performance in the models.
These results are explained considering that MP2 and FP4
have strong variations in the MDS—UPDRS-III scores and
FP1 has almost no variation. The best individual results
when HC and PD speakers are considered for training are
shown in Figure 2 and Figure 3. The x-axis of the fig-
ures represents the recording session and the y-axis repre-
sents the normalized value of the Bhattacharyya distance.
The normalization is performed with respect to the max-
imum value of each vector (MDS-UPDRS-III for black
solid lines and distances for dotted gray lines). This proce-
dure is only with the aim of depicting comparable curves
(MDS-UPDRS-III and the distances) in the same picture.



Table 3: Pearson’s correlation between dpy, and the real MDS-UPDRS—
I11.Seg: Voiced/Unvoiced segments. MPi/FPj (i € {1,2,3}), (j € {1,2,3,4}):
Pearson’s correlation between dgy, and the real MDS—-UPDRS-III score per
patient. Avg: Average value of the correlations per patient.

Male speakers Female Speakers
UBM Seg MP1 MP2 MP3 Avg | FP1 FP2 FP3 FP4 Avg
PD \% 090 -0,79 044 0,18 | 0,51 0,14 0,68 -0,05 0,32
uv 09 -091 0,78 028 | 0,61 0,65 090 -005 0,53
HC \Y 0,80 -1,00 0,89 0,23 | -0,98 0,80 0,90 -0,28 0,11
Uuv 099 094 072 088 | -0,51 039 042 048 0,19
PDHC V 093 -0,99 082 025 052 0,70 094 -0,22 048
Uv 095 0,45 0,78 0,73 |1-0,82 0,23 0,61 -1,00 -0,24
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Figure 3: Normalized scores for the male patients considering the Bhattacharyya distance (Grey dotted line) and the
MDS-UPDRS-III labels (Black solid line) using features from voiced segments. (A) MP1, (B) MP2, (C) MP3

4 Conclusions

A method to assess the progression of PD from speech of
male and female speakers is presented. The method al-
lows to model the disease progression of each patient con-
sidering individually adapted models using a GMM-UBM
approach. The adapted models are used for tracking each
patient’s neurological state considering speech signals cap-
tured over the time. For each group of speakers (males and
females), three different UBMs were trained: PD patients,
healthy controls, and the combination of both. The Bhat-
tacharyya distance (one per recording session) between the
adapted models and the trained UBM was computed for
each patient. The Pearson’s correlation between the com-
puted distances and the real MDS—UPDRS-III scores was
estimated. According to the results for the GMM-UBM
approach, the highest correlation between the Bhattachar-
rya distance and the MDS—UPDRS-III score for males is
r = 0.88 (average value) training with the HC group. For
females the highest average correlation is » = 0.53 when
the UBM is trained using only the PD group. In the case of
the SVR approach the best results obtained for males was
approximately r = 0.90 using features from the voiced seg-
ments in the three groups of speakers. For the females the
best results were obtained in the HC group (r = 0.57). The
mismatch in the results can be explained considering the
small data set used for training and validation. Moreover,
the variations in the MDS-UPDRS-III affects the perfor-
mance of the models. Including more people for training
the UBMs could increase the performance of the user mod-
els, since the GMM—-UBM approach performs better with
more data. Currently, the data collection is still ongoing in
order to improve the number of patients and recording ses-
sions, thus in the near future we will be able to validate this
approach with a relatively high number of PD speakers.
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