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Abstract. In this paper we propose a methodology for the automatic
detection of Parkinson’s Disease (PD) by using several glottal flow mea-
sures including different time-frequency (TF) parameters and nonlinear
behavior of the vocal folds. Additionally, the nonlinear behavior of the
vocal tract is characterized using the residual wave. The proposed ap-
proach allows modeling phonation (glottal flow) and articulation (resid-
ual wave) properties of speech separately, which opens the possibility to
address symptoms related to dysphonia and dysarthria in PD, indepen-
dently. Speech recordings of the five Spanish vowels uttered by a total
of 100 speakers (50 with PD and 50 Healthy Controls) are considered.
The results indicate that the proposed approach allows the automatic
discrimination of PD patients and healthy controls with accuracies of up
to 78% when using the TF-based measures.
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1 Introduction

Parkinson’s Disease (PD) is the most common neurodegenerative disorder in
patients older than 65, it affects about 1.5 million of people in the United States
of America, and the cost of their treatment will rise up to 50 million dollars in
2040 [1]. The speech symptoms of people with PD (PPD) include problems in
respiration, phonation, articulation, and prosody [2]. Usually research related to
PD is focused on measuring and identifying patterns in speech, using computa-
tional intelligence and pattern recognition techniques [3, 4], and it is showing a
feasible detection. Such techniques also allow to model phonation, articulation,
and prosody phenomena [5]. However, the phonation and articulation processes
are clearly defined. When they are analyzed from speech recordings, the informa-
tion from both processes are combined, making it difficult to conclude whether
the results come from phonatory or articulatory impairments. This is the case
in studies analyzing the nonlinear behavior directly from the speech signal [6,7],
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where the authors did not conclude which impairment causes the nonlinear be-
havior in PD detection. In order to analyse only the phonation process by means
of glottal closure patterns from the speech signal, it is necessary to apply tech-
niques that separate the information contributed by the articulators and the
glottis.

Abnormalities in the phonation process have been observed in the glottal
closure pattern of PPD through laryngeal videoscopic examination [8]. It has
revealed that the irregular glottal closure pattern is the most frequent symptom
in PD speech, leading to a perceptual impression of breathy voice. Vocal fold
bowing and slowed vibration are also observed [9]. These changes are caused by
impairments in the movements of various muscles, tissues, and organs, which are
involved in the voice production process [10], showing a highly nonlinear behav-
ior. Laryngeal videoscopy is expensive and time consuming, thus the analysis
of glottal patterns from speech signals is a good alternative to perform similar
screenings. The glottal signal can be extracted from speech by means of Glot-
tal Inverse Filtering (GIF) techniques [11]. GIF allows to estimate the glottal
volume velocity waveform, i.e. the glottal flow from a speech signal, in which
the effects of the vocal tract and lip radiation are cancelled; once the glottal
flow is estimated, it is possible to reconstruct a residual wave by subtracting
the glottal spectral components from the speech signal, and then phonation and
articulation phenomena are considered separately.

This paper is focused on automatic detection of PD, considering glottal and
residual flows with acoustic and nonlinear approaches. The aim of the work is
to address two comparisons. First, the PD detection task by acoustic measures
from the glottal flow and the nonlinear behavior produced by the glottal and
residual flows are compared. Second, only nonlinear behavior is considered in
order to analyze if the phonation process (glottal flow) or the articulation process
(residual wave) provide more nonlinear information.

The rest of the paper is organized as follows. Section 2 describes the method-
ology, Section 3 provides details of experimental framework, Section 4 contains
the results, and Section 5 comprises the conclusions derived from this work.

2 Methodology

Figure 1 displays the general stages of the proposed methodology. The recordings
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Fig. 1. General Methodology

are considered in time frames using Hamming windows with different lengths, one
for time-frequency (TF) and other for nonlinear dynamics (NLD) measures. The
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length and time shift will be described when each feature set is introduced. The
Parkinson’s vs. Healthy decision is made using a Support Vector Machine (SVM).
More details of the methodology are provided in the following subsections.

2.1 Glottal inverse filtering and residual wave estimation

The Iterative and/or Adaptive Inverse Filtering (IAIF) [12] is used to estimate
the glottal flow. This method estimates the contribution of the glottal excitation
on the speech spectrum with a low-order linear prediction (LP) model that is
computed with a two-stage procedure. The vocal tract is then estimated using
either conventional LP or discrete all-pole modeling (DAP). This method is based
on an iterative refinement of both the vocal tract and the glottal components.
As a result of the IAIF process, the glottal waveform g(n) is obtained from the
speech signal s(n). Additionally, the residual waveform r(n) can be estimated
from s(n) by subtracting the glottal log-spectral components.

2.2 Characterization

Time-frequency (TF) glottal flow parameterization

Glottal flows are preprocessed using windows with 200ms length with an overlap
of 50%, and each parameter is calculated for every glottal closure instant (GCI).
The GCI is located using residual excitation and a mean-based signal algorithm
[13]. Typically, time-domain features are estimated regarding the critical time
instants, such as glottal opening and the glottal closure phases in the glottal
flow pulse. From these critical instants, five time-domain features are obtained:
Open Quotient (OQ), which is the ratio of the duration of the opening phase
and the duration of the glottal cycle. Closing Quotient (CQ), defined as the
ratio of closing phase duration and the glottal cycle duration. Speed Quotient
(SQ), expressed as the ratio of opening and closing phase duration. Amplitude
Quotient (AQ), which is defined as the ratio of the maximum of the glottal
flow and the minimum of its derivative. Finally, normalized AQ with respect
to the glottal period (NAQ). Figure 2 illustrates the described features extracted
from the glottal flow. Besides, considering the spectrum of the glottal flow, some
features are introduced: H1H2, defined as H1 − H2, where H1 and H2 are
the first two harmonics of the glottal flow signal, and the Harmonic Richness
Factor (HRF ) is calculated as the ratio of the sum of the harmonics amplitude
and the amplitude of the fundamental frequency.

Nonlinear Dynamics (NLD) measures

Glottal and residual flows are preprocessed by means of a short-time analysis
using windows of 55ms length with an overlap of 50%, where the glottal inverse
filtering process has been applied previously. Before estimation of the nonlinear
features, an embedding attractor has to be reconstructed from each flow. The
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Fig. 2. Features extracted from the glottal flow. (a) Three periods of the voice signal,
(b) the glottal flow, (c) derivative of the glottal flow signal.

state-space reconstruction is based on the time-delay embedding theorem [10].
A set of eight NLD measures is calculated after the embedding process: Cor-
relation dimension (D2) measures the space dimensionality occupied by the
points in the reconstructed attractor. It is implemented according to the Takens
estimator method [10]. Largest Lyapunov exponent (LLE) is estimated as
the average divergence rate of neighboring trajectories in the attractor, accord-
ing to the Rosenstein method [10]. Lempel-Ziv complexity (LZC) is used for
complexity estimation in time series, its implementation consists of finding the
number of different “patterns” present in a reconstructed binary string sequence.
Hurst exponent (H) estimates the long-term dependencies in a time series,
defined as the relation between the variation rank (R) of the signal and its stan-
dard deviation S, R

S
= cTH , where c is a scaling constant, and T is the duration

of the segment, the estimation following the rank scaling method [10]. Moreover,
entropy measures based on the uncertainty of a random variable are considered.
By taking into account that in practical terms the Kolmogorov-Sinai entropy
can not be computed, different estimation methods are used. One of them is the
approximate entropy (AE), which is designed for measuring the average con-
ditional information generated by diverging points on a trajectory in the state
space [14]. The main drawback of AE is its dependence on the signal length
due to the self-comparison of points in the attractor. In order to overcome this
problem, the sample entropy (ES) is proposed. The only difference lies in the
non-comparison of embedding vectors with themselves. Another modification of
AE is the approximate entropy with Gaussian kernel EAGK. It exploits
the fact that a Gaussian kernel function can be used to give greater weight to
nearby points by replacing the Heaviside function. Finally, the same procedure
of changing the distance measure can be applied to define the sample entropy
with Gaussian kernel ESGK.



Glottal Flow Patterns Analyses for Parkinson’s Disease Detection 5

2.3 Classification

An SVM classifier is trained using a radial basis Gaussian kernel with band-
width σ. To achieve a more robust classifier, the number of support vectors is
also optimized with respect to the accuracy obtained in the training process
avoiding over-fitting, increasing the generalization ability of the classifier and
exhibiting better and more stable results [15]. This classifier is considered here
due to its validated success in similar studies that addressed the problem of the
automatic detection of pathological speech signals [16].

3 Experimental setup

3.1 Corpus of speakers – PC-GITA

This database [17] contains speech recordings of 50 patients with PD and 50
healthy controls (HC) sampled at 44.1 kHz with 16-bit resolution. The speakers
in this database are balanced by gender and age between the two subgroups.
All of the patients were diagnosed by neurologist experts; the mean values of
their evaluation according to the UPDRS-III and Hoehn & Yahr scales are 38.2
and 2.3, respectively. None of people in the HC group has history of symptoms
related to PD or any other kind of movement disorder. The recordings consist
of sustained phonation of the five Spanish vowels: /a/, /e/, /i/, /o/, and /u/.
Every person repeated the five vowels three times, thus in total the database is
composed of 150 recordings per vowel on each class, e.g., PD or HC, respectively.

3.2 Experiment

TF glottal flow parameters and nonlinear behavior from the glottal and residuals
waves are considered. First, each one of the seven TF parameters described above
are calculated for every glottal closure instant for every person. Second, eight
NLD measures, also described above, are obtained from every frame of each one
of the signals. Finally, by considering the fact that every measure has a dynamic
representation, four functionals are estimated on each parameter per recording:
mean value (m), standard deviation (std), kurtosis (k), and skewness (sk).

The classification is performed using a soft margin support vector machine
(SVM) with margin parameter C and a Gaussian kernel with parameter γ. The
parameters of the SVM are optimized using steps of powers of ten through a
gridsearch with 10−1 < C < 104 and 1 < γ < 103, and the accuracy on the test
data as a selection criterion. Note that the optimization criterion could lead to
slightly optimistic accuracy estimates, but as there are only two parameters to
be optimized, the bias effect should be minimal. The SVM is tested following a
10-fold cross-validation strategy. The folds were formed randomly but ensuring
speaker independence and balance in age and gender per fold.
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3.3 Results

The results are presented in terms of accuracy, sensitivity, and specificity. The
area under the ROC curve (AUC) is also presented in order to give compact
information regarding the general performance of the system. Table 1 shows the
results obtained when each Spanish vowel is modeled using the TF parameters
over the glottal flow (Glot. TF), and using nonlinear features extracted from the
glottal and residual flows (Glot. NLD and Res. NLD, respectively). Additionally,
the last 3 rows of the table contain the results when each measure was obtained
considering the union of the five Spanish vowels.

Table 1. Performance considering TF and NLD measures

Vowel Accuracy (%) Sensitivity (%) Specificity (%) AUC

Glot. TF /a/ 76 ± 8 73 ± 19 79 ± 14 0.81
Glot. NLD 73 ± 8 76 ± 10 70 ± 19 0.75
Res. NLD 77 ± 7 74 ± 12 81 ± 12 0.75

Glot. TF /e/ 77 ± 9 85 ± 14 69 ± 14 0.81
Glot. NLD 75 ± 10 78 ± 14 73 ± 21 0.76
Res. NLD 74 ± 8 73 ± 13 75 ± 21 0.72

Glot. TF /i/ 72 ± 11 73 ± 15 71 ± 28 0.76
Glot. NLD 72 ± 10 71 ± 19 73 ± 20 0.71
Res. NLD 72 ± 6 73 ± 16 71 ± 20 0.74

Glot. TF /o/ 75 ± 8 67 ± 13 84 ± 16 0.78
Glot. NLD 73 ± 7 74 ± 10 71 ± 17 0.71
Res. NLD 71 ± 12 67 ± 15 75 ± 20 0.70

Glot. TF /u/ 75 ± 8 69 ± 17 82 ± 8 0.77
Glot. NLD 73 ± 5 75 ± 12 71 ± 16 0.72
Res. NLD 75 ± 7 70 ± 17 81 ± 24 0.76

Glot. TF Union 78 ± 10 78 ± 15 77 ± 19 0.81
Glot. NLD 75 ± 9 79 ± 16 71 ± 22 0.79
Res. NLD 75 ± 9 69 ± 12 81 ± 22 0.77

Glot. TF: Glottal Time-Frequency, Glot. NLD: Glottal Nonlinear Dynamics,
Res. NLD: Residual Nonlinear Dynamics

Note that TF parameters achieve the best performance in most of the cases;
only with the vowel /a/, the best performance is presented by NLD features from
the residual flow with 76%. Although TF parameters present the best accuracy
values, it can be noted that the sensitivity and specificity values are not strongly
similar; thus, the ability to detect a person with PD or a HC is not the same.
But when the vowels are considered jointly, the accuracy value achieves the best
performance, and both sensitivity and specificity are sufficiently similar to detect
pathological speakers or healthy persons.

Furthermore, when the AUC is considered, it can be noted that TF parame-
ters achieved the best performance in all the vowels and with their union. Figure
3 shows the best ROC curves obtained when the vowels are considered jointly.
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Fig. 3. ROC curves obtained when the vowels are merged

4 Conclusions

Problems in PPD related to vocal bowing and incomplete close of vocal folds
are analyzed by means of the automatic separation of source, i.e., glottal flow,
from the speech signal. Besides, when the source was estimated, it could obtain
the residual wave, which gives information related to the articulation process.
It could also be able to give some clues about the nonlinear behavior in the
vocal tract, possibly due to the turbulent flow. One of the aims of the work
was to determine which set of features offers more discriminatory capability to
detect PD, either the TF parameters from the glottal flow, or the NLD measures
estimated from the glottal and residual flows. In this sense, by means of accuracy
and also with AUC measures of performance, the TF parameters are the best
set in this task. It could be due to the ability of representing the glottal phases,
describing in detail the phonatory process which is strongly involved in the
speech impairments in PPD.

The second aim of this work was to analyze whether the nonlinearity in
speech signals comes from the phonation or articulation process. The results
show a similar behavior when NLD measures of glottal and residual flows are
compared, thus it seems like phonation is not the only phenomenon in speech that
is providing nonlinearities; there should be a nonlinear effect in the articulation
process when a turbulent flow passes through the vocal tract. This work is our
first approach to PD detection using nonlinear behavior of the glottal flow. For
future work more nonlinear features will be considered to improve the accuracy
and robustness of the models.
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