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Introduction



Multiframe Super-Resolution: Basic Idea

• Given: multiple low-resolution images
• Idea: Exploit subpixel motion to reconstruct high-resolution image
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Robustness Issues

Super-resolution reconstruction is sensitive to:
• Motion estimation uncertainty

Registration is error-prone

1Köhler et al., “Robust Multiframe Super-Resolution Employing Iteratively Re-Weighted Minimization.,” IEEE TCI, 2016.
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Robustness Issues

Super-resolution reconstruction is sensitive to:
• Motion estimation uncertainty

Registration is error-prone
• Outliers

• Deviation of the real and assumed motion model
! e.g.: non-rigid deformation assuming rigid motion

• Invalid pixels
• Space variant noise
• . . .

2Yu He et al., “A Nonlinear Least Square Technique for Simultaneous Image Registration and Super-Resolution.,” IEEE TIP, 2007.
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Proposed Method



Modeling the Image Formation

• Given: sequence of low-resolution frames
y = (y(1)>, . . . , y(K )>)>, y(k) 2 RM

• y is assembled from the HR image x 2 RN by:

y = W(✓)x + ✏ (1)

• W(✓) = DHM(✓) models subsampling, blur, and subpixel motion
• ✏ is additive noise

• ✓ models a rigid transformation (3 degrees of freedom):
! rotation angle ' and translation t = (tu, tv)
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Energy Function

E(x, ✓) = (y�W(✓)x)>B(y�W(✓)x) + �R(x) (2)

• Weighted deviation between observation and model approximation
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Energy Function

E(x, ✓) = y�W(✓)x)>B(y�W(✓)x) + �R(x)

• Weighted deviation between observation and model approximation
• Edge preserving WBTV3regularization given by:

R(x) = ||ASx||1 =
PX

l=�P

PX

m=�P
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����

1

• S models vertical and horizontal shifts around a local neighborhood P
• A are weights to control influence of the prior

3Köhler et al., “Robust Multiframe Super-Resolution Employing Iteratively Re-Weighted Minimization.,” IEEE TCI, 2016.
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Non-Linear Least-Squares Estimation

• Our energy function is non linear w.r.t ✓
! non-linear least-squares estimation of x and ✓:

E(x, ✓) =
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where L is a majorization of the WBTV term

C. Bercea et. al: “Confidence-aware Levenberg-Marquardt Optimization for Joint Motion Estimation and Super-Resolution”, 2016 IEEE ICIP 10



Numerical Optimization

Super-
Resolution Step

�x,�✓

Update
Weights Maps

Bt ,At

Find Damping
Parameter

µt

xt = xt�1 +�x,
✓t = ✓t�1 +�✓

t  t + 1

• Iterative confidence-aware optimization scheme
• The Taylor series expansion of our energy function in (3) yields small

parameter updates according to:

✓
�✓
�x

◆
=
h
(Pt)>Pt

i�1
(Pt)>ft (4)

• P, f derived based on the Jacobian matrix
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Numerical Optimization

Super-
Resolution Step
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Compute small changes �x and �✓ for the high-resolution image x and
the motion parameters ✓

✓
�✓
�x

◆
=
h
(Pt)>Pt

i�1
(Pt)>ft (5)
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Numerical Optimization

Super-
Resolution Step

�x,�✓

Update
Weights Maps

Bt ,At

Find Damping
Parameter

µt

xt = xt�1 +�x,
✓t = ✓t�1 +�✓

t  t + 1

Compute small changes �x and �✓ for the high-resolution image x and
the motion parameters ✓ using a Levenberg-Marquardt optimization:

✓
�✓
�x

◆
=
h
(Pt)>Pt + µ · diag

�
(Pt)>Pt

� i�1
(Pt)>ft (6)

damping parameter µ: µ = 0! Gauss-Newton
µ� 0! gradient descent
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Numerical Optimization

Super-
Resolution Step
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(a) Original (b) Data Weights B (c) Prior Weights A

Weights are computed proportional to the inverse of the residual erros4

4Köhler et al., “Robust Multiframe Super-Resolution Employing Iteratively Re-Weighted Minimization.,” IEEE TCI, 2016.
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Numerical Optimization

Super-
Resolution Step
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• A good damping parameter µ is crucial for a good performance of the
Levenberg-Marquardt iterations

• Perform an one-dimensional search to minimize the confidence weighted
residual error:

µt = arg min
µ

���
���(Bt)

1
2 [y�W (✓(µ)) x(µ)]

���
���
2

2
, (7)
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Gauss-Newton vs. Levenberg-Marquardt

Gauss-Newton under practical conditions (e.g affected by outliers):
• converges to a worse local minima
• converges slowly
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Left: Iterations without outliers. Right: Iterations in the presence of outliers due to invalid pixels.
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Experiments and Results



Experimental Setup

Experiments:
• Real datasets5

• Simulated data with known ground truth6

Compared methods:
• Joint Motion Estimation And Super-Resolution (JMSR)7

• Iteratively Re-Weighted Minimization Super-Resolution (IRWSR)8

• Proposed confidence-aware L.M. optimization

5https://users.soe.ucsc.edu/ milanfar/software/sr-datasets.html
6http://live.ece.utexas.edu/research/quality/subjective.htm
7Yu He et al., “A Nonlinear Least Square Technique for Simultaneous Image Registration and Super-Resolution.,” IEEE TIP, 2007.
8Köhler et al., “Robust Multiframe Super-Resolution Employing Iteratively Re-Weighted Minimization.,” IEEE TCI, 2016.
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Real Data: Emily Sequence

(a) 2 original frames (b) JMSR (c) IRWSR (d) Proposed

• Head movements generate outliers
• Presence of motion uncertainty
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Real Data: Alpaca Sequence

(a) 2 original frames (b) JMSR (c) IRWSR (d) Proposed

• Alpaca movement generates outliers
• Presence of motion uncertainty

C. Bercea et. al: “Confidence-aware Levenberg-Marquardt Optimization for Joint Motion Estimation and Super-Resolution”, 2016 IEEE ICIP 20



Real Data: Results

(e) Original (f) JMSR (g) IRWSR (h) Proposed

• Car drives away from the camera
! cannot be modeled with a rigid transformation

• Our method is robust against mis-registered frames and refines motion
estimate for the remaining frames
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Simulated Data: Results

Setup:
• LR altered with salt and pepper noise
• Results averaged over n = 10 random test sequences

PSNR evaluation for sequences
without outliers (top row) and
sequences with outliers due to
invalid pixels (bottom row):
! Increased PSNR by ⇡ 3 dB.
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Simulated Data: Results

(a) Original (b) JMSR (c) IRWSR (d) Proposed
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Summary and Conclusion



Summary and Conclusion

• Combine robustness to outliers in the formation process with the
refinement of the motion estimation

• Levenberg-Marquard iteration scheme to boost convergence
• Outperform both two-stage and joint state of the art approaches.

Outlook: Extend the model to more general types of motion:
! e.g.: affine transformations

MATLAB code of this method is available on our webpage as part of our
super-resolution toolbox:

www5.cs.fau.de/research/software/multi-frame-super-resolution-toolbox
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Thank you very much for your attention!
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