# Confidence-aware Levenberg-Marquardt Optimization for Joint Motion Estimation and Super-Resolution

2016 IEEE International Conference on Image Processing (ICIP'16)

Cosmin Bercea, Andreas Maier, Thomas Köhler September 28, 2016 Pattern Recognition Lab (CS 5)







### Introduction



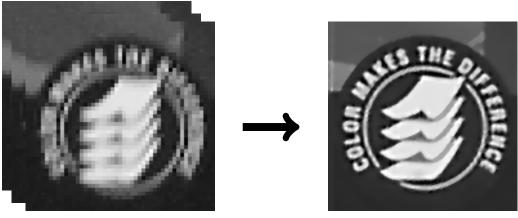


**TECHNISCHE FAKULTÄT** 



### **Multiframe Super-Resolution: Basic Idea**

- Given: multiple low-resolution images
- Idea: Exploit subpixel motion to reconstruct high-resolution image



26 low-resolution frames

3 x High-resolution image



### **Robustness Issues**

Super-resolution reconstruction is sensitive to:

 Motion estimation uncertainty Registration is error-prone







Superresolved image<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Köhler et al., "Robust Multiframe Super-Resolution Employing Iteratively Re-Weighted Minimization.," IEEE TCI, 2016.



### **Robustness Issues**

Super-resolution reconstruction is sensitive to:

- Motion estimation uncertainty Registration is error-prone
- Outliers
  - Deviation of the real and assumed motion model  $\rightarrow$  e.g.: non-rigid deformation assuming rigid motion
  - Invalid pixels
  - Space variant noise
  - . . .







Superresolved image<sup>2</sup>

<sup>&</sup>lt;sup>2</sup>Yu He et al., "A Nonlinear Least Square Technique for Simultaneous Image Registration and Super-Resolution.," IEEE TIP, 2007.



### **Proposed Method**





**TECHNISCHE FAKULTÄT** 



### **Modeling the Image Formation**

- Given: sequence of low-resolution frames  $\mathbf{y} = (\mathbf{y}^{(1)\top}, \dots, \mathbf{y}^{(K)\top})^{\top}, \mathbf{y}^{(k)} \in \mathbb{R}^{M}$
- **y** is assembled from the HR image  $\mathbf{x} \in \mathbb{R}^N$  by:

$$\mathbf{y} = \mathbf{W}(\theta)\mathbf{x} + \epsilon \tag{1}$$

- $W(\theta) = DHM(\theta)$  models subsampling, blur, and subpixel motion
- $\epsilon$  is additive noise
- $\theta$  models a rigid transformation (3 degrees of freedom):
  - $\rightarrow$  rotation angle  $\varphi$  and translation  $t = (t_u, t_v)$



### **Energy Function**

$$E(\mathbf{x},\theta) = (\mathbf{y} - \mathbf{W}(\theta)\mathbf{x})^{\top} \mathbf{B}(\mathbf{y} - \mathbf{W}(\theta)\mathbf{x}) + \lambda R(\mathbf{x})$$
(2)

• Weighted deviation between observation and model approximation



### **Energy Function**

$$E(\mathbf{x}, \theta) = \mathbf{y} - \mathbf{W}(\theta)\mathbf{x})^{\top} \mathbf{B}(\mathbf{y} - \mathbf{W}(\theta)\mathbf{x}) + \lambda \mathbf{R}(\mathbf{x})$$

Weighted deviation between observation and model approximation
Edge preserving WBTV<sup>3</sup>regularization given by:

$$R(\mathbf{x}) = \left|\left|\mathbf{ASx}\right|\right|_1 = \sum_{l=-P}^{P} \sum_{m=-P}^{P} \left|\left|\mathbf{A}^{l,m}\mathbf{S}^{l,m}\mathbf{x}\right|\right|_1$$

- S models vertical and horizontal shifts around a local neighborhood P
- A are weights to control influence of the prior

<sup>&</sup>lt;sup>3</sup>Köhler et al., "Robust Multiframe Super-Resolution Employing Iteratively Re-Weighted Minimization.," IEEE TCI, 2016.



### **Non-Linear Least-Squares Estimation**

• Our energy function is non linear w.r.t  $\theta$ 

 $\rightarrow$  non-linear least-squares estimation of **x** and  $\theta$ :

$$E(\mathbf{x},\theta) = \left\| \begin{pmatrix} \mathbf{B}^{\frac{1}{2}}(\mathbf{y} - \mathbf{W}(\theta)\mathbf{x}) \\ \sqrt{\lambda}\mathbf{A}^{\frac{1}{2}}L^{\frac{1}{2}}\mathbf{x} \end{pmatrix} \right\|_{2}^{2}$$

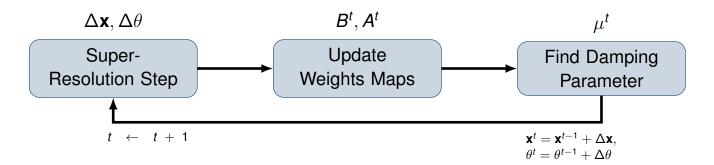
(3)

where L is a majorization of the WBTV term



11

### **Numerical Optimization**



- Iterative confidence-aware optimization scheme
- The Taylor series expansion of our energy function in (3) yields small parameter updates according to:

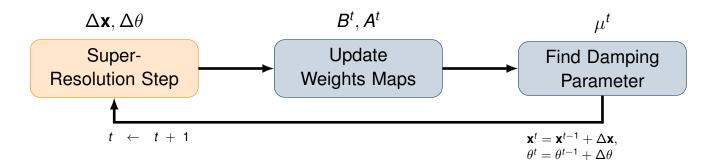
$$\begin{pmatrix} \Delta \theta \\ \Delta \mathbf{x} \end{pmatrix} = \left[ (\mathbf{P}^t)^\top \mathbf{P}^t \right]^{-1} (\mathbf{P}^t)^\top \mathbf{f}^t$$
 (4)

• **P**, **f** derived based on the Jacobian matrix



12

### **Numerical Optimization**

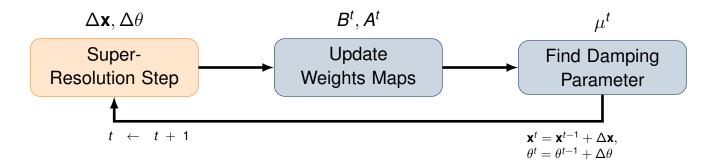


Compute small changes  $\Delta \mathbf{x}$  and  $\Delta \theta$  for the high-resolution image  $\mathbf{x}$  and the motion parameters  $\theta$ 

$$\begin{pmatrix} \Delta \theta \\ \Delta \mathbf{x} \end{pmatrix} = \left[ (\mathbf{P}^t)^\top \mathbf{P}^t \right]^{-1} (\mathbf{P}^t)^\top \mathbf{f}^t$$
(5)



### **Numerical Optimization**

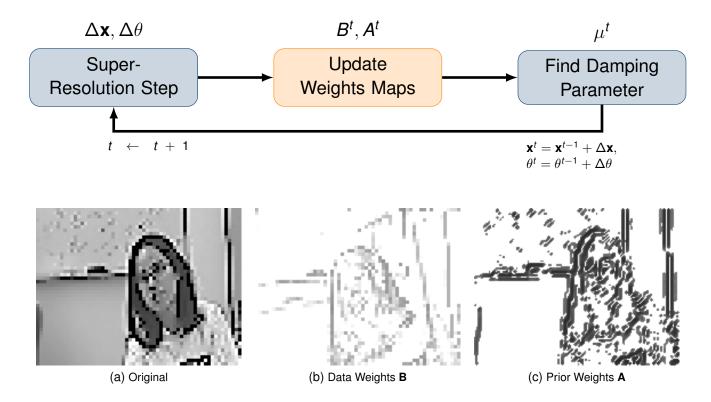


Compute small changes  $\Delta \mathbf{x}$  and  $\Delta \theta$  for the high-resolution image  $\mathbf{x}$  and the motion parameters  $\theta$  using a Levenberg-Marquardt optimization:

$$\begin{pmatrix} \Delta \theta \\ \Delta \mathbf{x} \end{pmatrix} = \left[ (\mathbf{P}^t)^\top \mathbf{P}^t + \mu \cdot \text{diag} \left( (\mathbf{P}^t)^\top \mathbf{P}^t \right) \right]^{-1} (\mathbf{P}^t)^\top \mathbf{f}^t$$
(6)  
damping parameter  $\mu$ :  $\mu = \mathbf{0} \rightarrow \text{Gauss-Newton}$   
 $\mu \gg \mathbf{0} \rightarrow \text{gradient descent}$ 



### **Numerical Optimization**



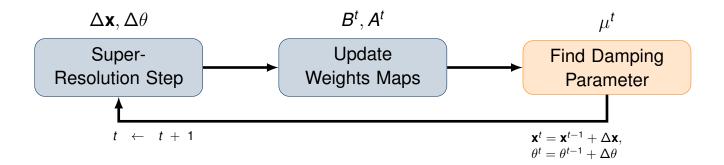
#### Weights are computed proportional to the inverse of the residual erros<sup>4</sup>

<sup>4</sup>Köhler et al., "Robust Multiframe Super-Resolution Employing Iteratively Re-Weighted Minimization.," IEEE TCI, 2016.



15

### **Numerical Optimization**



- A good damping parameter  $\mu$  is crucial for a good performance of the Levenberg-Marquardt iterations
- Perform an one-dimensional search to minimize the confidence weighted residual error:

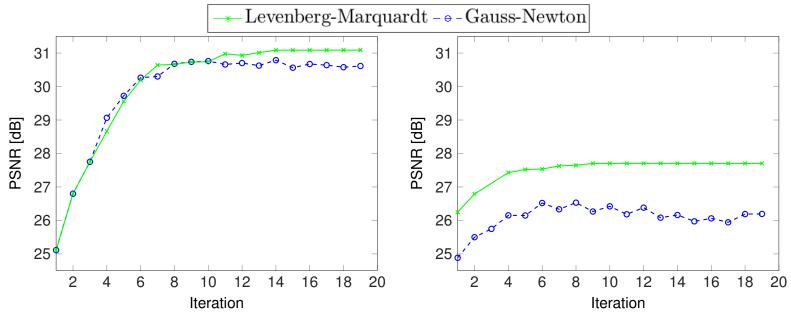
$$\mu^{t} = \arg\min_{\mu} \left| \left| (\mathbf{B}^{t})^{\frac{1}{2}} \left[ \mathbf{y} - \mathbf{W} \left( \theta(\mu) \right) \mathbf{x}(\mu) \right] \right| \right|_{2}^{2}, \tag{7}$$



### **Gauss-Newton vs. Levenberg-Marquardt**

Gauss-Newton under practical conditions (e.g affected by outliers):

- converges to a worse local minima
- converges slowly



Left: Iterations without outliers. Right: Iterations in the presence of outliers due to invalid pixels.



### **Experiments and Results**





**TECHNISCHE FAKULTÄT** 



### **Experimental Setup**

#### Experiments:

- Real datasets<sup>5</sup>
- Simulated data with known ground truth<sup>6</sup>

### **Compared methods:**

- Joint Motion Estimation And Super-Resolution (JMSR)<sup>7</sup>
- Iteratively Re-Weighted Minimization Super-Resolution (IRWSR)<sup>8</sup>
- Proposed confidence-aware L.M. optimization

<sup>&</sup>lt;sup>5</sup>https://users.soe.ucsc.edu/ milanfar/software/sr-datasets.html

<sup>&</sup>lt;sup>6</sup>http://live.ece.utexas.edu/research/quality/subjective.htm

<sup>&</sup>lt;sup>7</sup>Yu He et al., "A Nonlinear Least Square Technique for Simultaneous Image Registration and Super-Resolution.," IEEE TIP, 2007.

<sup>&</sup>lt;sup>8</sup>Köhler et al., *"Robust Multiframe Super-Resolution Employing Iteratively Re-Weighted Minimization.,"* IEEE TCI, 2016.



### **Real Data: Emily Sequence**



(a) 2 original frames

(b) JMSR

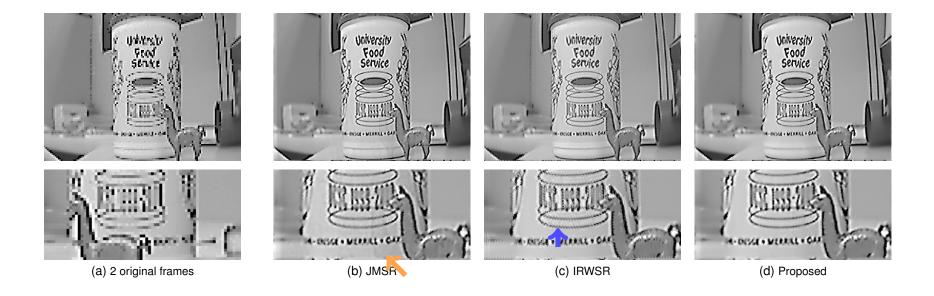
(c) IRWSR

(d) Proposed

## Head movements generate outliers Presence of motion uncertainty



### **Real Data: Alpaca Sequence**



- Alpaca movement generates outliers
- Presence of motion uncertainty



### **Real Data: Results**



(e) Original







(g) IRWSR

(h) Proposed

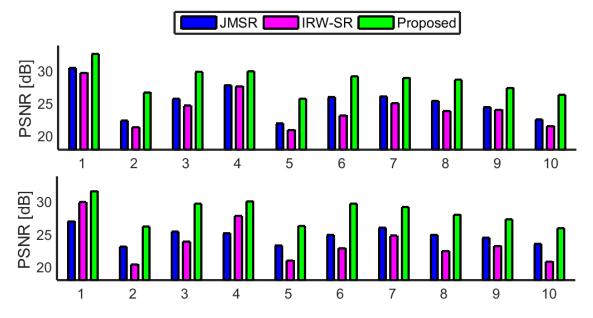
- Car drives away from the camera
  - $\rightarrow$  cannot be modeled with a rigid transformation
- Our method is robust against mis-registered frames and refines motion estimate for the remaining frames



### **Simulated Data: Results**

#### Setup:

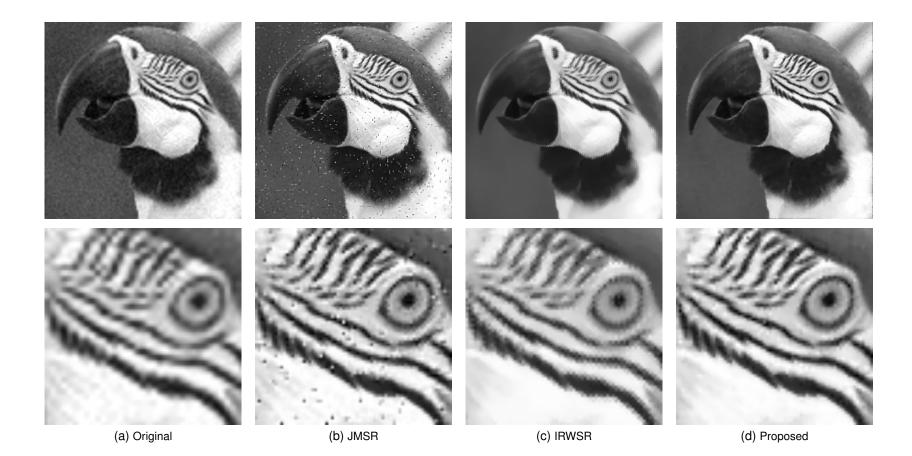
- LR altered with salt and pepper noise
- Results averaged over n = 10 random test sequences



PSNR evaluation for sequences without outliers (top row) and sequences with outliers due to invalid pixels (bottom row):  $\rightarrow$  Increased PSNR by  $\approx$  3 dB.



### **Simulated Data: Results**



C. Bercea et. al: "Confidence-aware Levenberg-Marquardt Optimization for Joint Motion Estimation and Super-Resolution", 2016 IEEE ICIP



### **Summary and Conclusion**





**TECHNISCHE FAKULTÄT** 



25

### **Summary and Conclusion**

- Combine robustness to outliers in the formation process with the refinement of the motion estimation
- Levenberg-Marquard iteration scheme to boost convergence
- Outperform both two-stage and joint state of the art approaches.
- **Outlook:** Extend the model to more general types of motion:
  - $\rightarrow$  e.g.: affine transformations

MATLAB code of this method is available on our webpage as part of our super-resolution toolbox:

www5.cs.fau.de/research/software/multi-frame-super-resolution-toolbox



### Thank you very much for your attention!





**TECHNISCHE FAKULTÄT**