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Abstract

Purpose: To allow for a purely image-based motion estimation and compensation in weight-

bearing cone-beam computed tomography of the knee joint.

Methods: Weight-bearing imaging of the knee joint in a standing position poses additional require-

ments for the image reconstruction algorithm. In contrast to supine scans, patient motion needs to

be estimated and compensated. We propose a method that is based on 2D/3D registration of left

and right femur and tibia segmented from a prior, motion-free reconstruction acquired in supine

position. Each segmented bone is first roughly aligned to the motion-corrupted reconstruction of

a scan in standing or squatting position. Subsequently, a rigid 2D/3D registration is performed

for each bone to each of K projection images, estimating 6× 4×K motion parameters. The mo-

tion of individual bones is combined into global motion fields using thin-plate-spline extrapolation.

These can be incorporated into a motion-compensated reconstruction in the backprojection step.

We performed visual and quantitative comparisons between a state-of-the-art marker-based (MB)

method and two variants of the proposed method using gradient correlation (GC) and normalized

gradient information (NGI) as similarity measure for the 2D/3D registration.

Results: We evaluated our method on four acquisitions under different squatting positions of

the same patient. All methods showed substantial improvement in image quality compared to

the uncorrected reconstructions. Compared to NGI and MB, the GC method showed increased

streaking artifacts due to misregistrations in lateral projection images. NGI and MB showed

comparable image quality at the bone regions. Because the markers are attached to the skin,

the MB method performed better at the surface of the legs where we observed slight streaking

of the NGI and GC methods. For a quantitative evaluation we computed the universal quality

index (UQI) for all bone regions with respect to the motion-free reconstruction. Our quantitative

evaluation over regions around the bones yielded a mean UQI of 18.4 for no correction, 53.3 and 56.1

for the proposed method using GC and NGI, respectively, and 53.7 for the MB reference approach.

In contrast to our registration-based corrections, the MB reference method caused slight non-rigid

deformations at bone outlines when compared to a motion-free reference scan.

Conclusion: We showed that our method based on the NGI similarity measure yields reconstruc-

tion quality close to the MB reference method. In contrast to the MB method, the proposed method

does not require any preparation prior to the examination which will improve the clinical workflow

and patient comfort. Further, we found that the MB method causes small, non-rigid deformations
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at the bone outline which indicates that markers may not accurately reflect the internal motion

close to the knee joint. Therefore, we believe that the proposed method is a promising alternative

to MB motion management.

∗ Also with the Graduate School 1773 “Heterogeneous Image Systems”, Erlangen, Germany.
† Also with the Erlangen Graduate School in Advanced Optical Technologies (SAOT), Erlangen, Germany
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I. INTRODUCTION11

Recently we proposed a method that allows for weight-bearing imaging of the knee-joint12

using a C-arm cone-beam CT (CBCT) that is usually operated in the interventional suite [1,13

2]. The CBCT is mounted on a robotic arm and acquires volumetric images with high-spatial14

resolution and a relatively large field-of-view (FOV), using a horizontal trajectory around a15

standing patient [3]. Such weight-bearing scans pose a challenging reconstruction problem,16

as the patients’ unsupported standing or squatting position induces involuntary motion of the17

knee joint. Initially, we used externally attached metallic markers that can be tracked in the18

projection images to estimate the motion [1, 4]. The markers yielded accurate reconstruction19

results and were able to remove most of the motion artifacts. However, in clinical routine20

the attachment of the markers will be bothersome as they need to be placed carefully to21

avoid overlaps in the projection images. Also, the internal motion of the joint might not22

be accurately reflected as the markers are attached to the skin. Finally, the markers cause23

metallic artifacts in the reconstruction which degrade image quality [5]. Therefore, a motion24

correction method which performs similarly well as the marker-based (MB) method but25

works directly on the acquired projection images is desirable. This could substantially26

reduce the preparation time for weight-bearing CT and increase patient comfort.27

One method to estimate motion from projection images is 2D/2D registration. Here, the28

acquired projections are usually registered in 2D to digitally rendered radiographs (DRR).29

The DRR can be computed from an initial gated reconstruction [6, 7] or alternatively from30

previously acquired images. The estimated 2D deformations can be directly incorporated31

into a motion-compensated reconstruction.32

Alternatively, the motion can be estimated directly in the volume domain using 2D/3D33

registration with a similarity measure that is defined over the projection images. Prior work34

for the knee-joint was done by Tsai et al. where they introduced a new similarity measure35

called weighted edge matching score (WEMS) [8]. WEMS matches edges extracted by a36

Canny edge detector incorporating increased weights for long edges. WEMS has also been37

used by Lin et al. to register a prior 3D MRI to a real-time 2DMRI slice during exercise using38

a custom weight-bearing apparatus [9]. A slightly different method for 2D/3D registration39

of bones in the knee- and shoulder-joint was presented by Zhu et al. [10, 11]. They first40

computed the outline of the forward projected vertices of a 3D mesh originating from a41
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prior segmentation. The outline is then registered to the 2D outline of the bone which was42

segmented in the 2D projection image.43

In skeletal 2D/3D registration, Wang et al. proposed a differential approach for regis-44

tration of a prior thorax CT to fluoroscopic images [12]. Their method is also based on45

2D contour segmentation, where they report increased accuracy in estimating longitudinal46

off-plane motion. Bifulco et al. used the normalized cross-correlation (NCC) to register47

prior 3D CT volumes of vertebrae to 2D fluoroscopic images [13, 14]. Otake et al. used48

normalized gradient information (NGI) for registration of vertebra to a single projection49

image [15]. NGI compares the 2D gradient directions and weighs them with the minimum50

gradient magnitude. Yet, in more recent work [16] they decided to use the well known gra-51

dient correlation (GC) measure as described by Penney et al. [17]. Only very little work has52

been done in 2D/3D registration using a full set (> 100) of projection images from a CBCT53

scan. Recently, Ouadah et al. [18] presented a method for image-based geometric calibration54

of mobile C-arm systems using the NGI similarity measure and a statistical optimization.55

Overall, 9 parameters were estimated for each of the 360 projection images yielding a total56

of 3240 parameters.57

In weight-bearing knee-joint imaging we neither have access to surrogate signals such as58

ECG in cardiac imaging nor can we rely on motion periodicity. Thus, many 2D/2D and59

2D/3D registration methods known in literature are not applicable. Furthermore, methods60

based on implicit segmentations in the projection domain, such as WEMS or the work by61

Zhu et al. [10, 11], work only on single- or pairs of projection images which can usually be62

positioned such that there is only little overlap with background structures. We scan both63

knees using a horizontal trajectory, i.e., overlap of tibia, femur, fibula, patella and the skin64

boundary is inevitable which make these methods hardly applicable.65

In a first attempt of image-based motion estimation we used a simple 2D/2D registration66

for marker-free weight-bearing CBCT projection images of the knee-joint [19]. The DRR67

was calculated by maximum intensity projections (MIP) of an initial, motion-corrupted68

reconstruction. In the context of this work, we estimated 2D translations for each pair69

of projection images using a similarity measure based on mutual information (MI) and a70

gradient-descent optimizer. The approach did not require any additional or prior data and71

improved the image quality compared to a reconstruction without correction. However, we72

still observed large discrepancies from the image quality achieved with the MB approach.73
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To further improve our marker-free motion compensation we now make use of an already74

existent, motion-free CBCT reconstruction of the knee-joints acquired in supine position.75

This enables rigid 2D/3D registration of the segmented left and right tibia and femur from76

the motion-free scan. All four segmentations are rigidly registered to each of the K motion-77

corrupted projection images, for example for K = 248 yielding a total of 4× 6× 248 = 595278

parameters. The estimated motion between the acquired projection images and the static79

3D reference is then incorporated into a motion-compensated FDK-type reconstruction to80

obtain a corrected 3D volume. A first version of the proposed method has already shown81

promising results when evaluated on a numerically simulated dataset as shown in Berger et82

al. [20].83

II. METHODS AND MATERIALS84

A. Reference Method Using Metallic Fiducial Markers85

To thoroughly evaluate the proposed method we compare it with the motion-compensated86

reconstruction that is based on externally attached fiducial markers. In the following, we87

briefly summarize the MB motion estimation method. For details, we refer to the work88

of Müller et al. [4], which combines the MB motion estimation presented by Choi et al.89

[1] with the automatic marker detection and removal presented by Berger et al. [5]. The90

optimization problem for K projection images and M markers is given by91

argmin
α

f(α) = argmin
α

1

2

K∑
k=1

M∑
i=1

∥h (n)− uik∥22 (1)

n =
(
n1 n2 n3

)T

= P k · T k(α) ·
(
xi 1

)T

,

where α ∈ R6K is a vector containing three rotation and translation parameters per pro-92

jection, P k ∈ R3×4 is the k-th projection matrix as given by the system’s calibration,93

T k(α) ∈ R4×4 applies the rigid motion for projection k given the parameters in α, xi ∈ R3
94

is the 3D reference position of the i-th marker and uik the i-th marker’s measured 2D position95

in projection k. Further, n is the homogeneous representation of the motion-compensated96

and projected 3D reference position xi. The function h : R3 → R2 describes the mapping of97

n to 2D pixel coordinates. It is defined by h(n) =
(

n1

n3

n2

n3

)T

. Thus, by adjusting the motion98

parameters we minimize the distance between forward projected 3D reference positions and99
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measured 2D marker positions over all detected markers and all projections. Marker de-100

tection in the projection-domain is done by applying the Fast-Radial-Symmetry-Transform101

(FRST) [21] with subsequent thresholding and center-point detection. The 3D reference102

positions for each marker are obtained automatically. First, we apply a Gaussian filter to103

the 2D FRST result yielding blob-like structures at marker locations. These images are then104

backprojected to 3D, resulting in high-intensity 3D blobs where the backprojected 2D blobs105

overlap. These blobs are then segmented using a maximum entropy thresholding. Finally,106

the 3D reference positions are extracted from the blobs’ centroids using a 3D connected-107

components analysis. The assignment of 2D detections to 3D reference positions is given108

by the smallest Euclidean distance of forward projected 3D reference and 2D detection.109

For more details on 2D marker detection and 3D reference point extraction we refer to our110

previous work [5].111

As a new feature, we introduce an analytic gradient computation of the cost-function112

which reduced the algorithm’s run-time drastically compared to a forward-differences type113

gradient estimation used in Müller et al. [4] and Choi et al. [1]. Using the chain rule114

for multivariate functions the partial derivatives of Eq. 2 with respect to the individual115

parameters is given by116

∂f(α)

∂αj

=
∑
k

∑
i

(h (n)− uik)
T · Jh(n) · P k

∂T k

∂αj

xi

1

 , (2)

where Jh(n) denotes the Jacobian of function h117

Jh(n) =

 1
n3

0 − n1

n3
2

0 1
n3

− n2

n3
2

 . (3)

For outlier detection and removal we applied an iterative removal of worst contributions.118

After optimization we find those uik that belong to the 0.5% highest 2D distances with119

respect to their forward-projected reference point. They were then removed from the mea-120

surements using the following rules: 1) only remove one detection per projection and 2)121

only remove if at least Mmin detections are left for this projection. This process is repeated122

iteratively for J times.123
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Figure 1. Overview of the proposed motion compensation approach. The inputs are the femur and

tibia volumes and the 2D projection images, both marked by a dashed frame.

B. Motion Compensation Using 2D/3D Registration124

Our method is based on 2D/3D registration of segmentations from a prior, motion-free125

reconstruction acquired in supine position. To limit complexity of the optimization prob-126

lem, we focus on four bones that represent both knee-joints, i.e., left and right femur and127

tibia. An overview of the proposed method is given in Figure 1. As input we have a stack of128

projection images acquired under weight-bearing conditions along with the segmented femur129

and tibia volumes, both emphasized by a dashed box. First we perform a motion-corrupted130

reconstruction of the acquired projections. Then, a 3D/3D registration of each segmented131

bone volume to the motion-corrupted reconstruction to align the standing and supine co-132

ordinate system, and to account for different positions of the bones among one another.133

Note, that this global 3D/3D alignment does not include any estimation for intra-scan pa-134

tient motion. Subsequently, the initial 3D/3D registration results are used as initialization135

for the 2D/3D registration. 2D/3D registration is performed between each bone and every136

acquired projection image using a rigid motion model. The result of the 2D/3D registration137

is the individual bone motion over the acquisition time. To perform a motion-compensated138

backprojection we also need to extrapolate the motion that occurs in between bones, e.g., at139

muscle or skin tissue. We use a thin-plate-spline (TPS) extrapolation method as explained140

in Müller et al. [22].141142

The accuracy of the 2D/3D registration is the important step for a successful motion143
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compensation. A crucial component is the similarity measure used to compare DRR images144

with the acquired projections. In this work, we assess the influence of two different similarity145

measures on the reconstructed image quality. First, we apply the GC that computes the146

NCC between vertical and horizontal gradient images. Further, we use the NGI measure147

that is also gradient-based but has been reported to be more stable against outlier intensities148

and thus more performant in presence of overlapping structures [15]. To avoid convolution-149

based gradient computation for every DRR we create gradient DRRs directly by ray-tracing150

through the precomputed 3D volume gradients [23, 24].151

1. Gradient Correlation (GC)152

GC is a state-of-the-art similarity measure and has been widely used to register bones153

to their projection images. For the initial formulation of GC we refer to Penney et al. [17].154

Let ∇pk(u;γ) : R2 → R2 be the DRR’s gradient and u ∈ R2 a 2D pixel location. Further,155

∇bk(u) : R2 → R2 is the gradient of the k-th acquired projection image computed using the156

Sobel operator. In contrast to the MB approach, the parameter vector is now γ ∈ R6KL,157

containing 6 rigid parameters for each of the K projections and each of the L segmented158

bone volumes. The GC can be formulated as159

GC(p, b;γ) =
1

2

K∑
k=1

∑
u∈Ωk

(
∇pk(u;γ)

T W−1 ∇bk(u)
)

. (4)

In our formulation the normalization, i.e. a division by the standard deviations, is incor-160

porated into the weighting matrix W ∈ R2×2 given in Eq. 5.161

W =


√∑

u

(
∂pk(u;γ)

∂u1

)2
√∑

u

(
∂bk(u)
∂u1

)2

0

0

√∑
u

(
∂pk(u;γ)

∂u2

)2
√∑

u

(
∂bk(u)
∂u2

)2

 (5)

The set Ωk defines the image region used for the computation of the GC measure, which162

may vary for each projection image as indicated by the subscript k. The normalization W163

is used to adjust intensity differences and depends on the region Ωk. During our experi-164

ments we set Ωk such that it contains every non-zero gradient value of the DRR image, i.e.,165

Ωk = {u | ∥∇pk(u;γ)∥2 > 0}.166
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2. Normalized Gradient Information (NGI)167

The idea behind NGI is to compare the similarity of gradient directions at each pixel168

position. This is done by computing the cosine of the angle between the gradient directions,169

followed by a weighting with the pixel’s gradient magnitude. To improve robustness against170

outliers, at each pixel the minimum gradient magnitude of DRR and acquired image is used171

as a weighting factor for that pixel location. This scheme was described to be more robust172

against intensity outliers and thus overlapping structures [15]. In contrast to GC the NGI173

does not perform an intensity normalization and therefore intensities of the DRR image need174

to be adjusted heuristically. For more information we refer to Otake et al. [15]. The NGI175

can be formulated as176

NGI(p, b;γ) =
GI(p, b;γ)

GI(b, b)
, (6)

with the variable measure177

GI(p, b;γ) =
K∑
k=1

∑
u∈Ωk

(
1

2

∇pk(u;γ)
T ∇bk(u)

∥∇pk(u;γ)∥2 ∥∇bk(u)∥2
+

1

2

)
(7)

×min (∥∇pk(u;γ)∥2 , ∥∇bk(u)∥2)

and the constant normalization178

GI(b, b) =
K∑
k=1

∑
u∈Ωk

∥∇bk(u)∥2 . (8)

Because the gradient magnitude of the DRR equals zero outside the projected bone179

volume, we can set the region Ωk such that it covers the full image domain for all k.180

3. Regularization, Cost-Function and Optimization181

We assume that the variation of all six motion parameters is physically limited given182

the knee-joint anatomy. Therefore, we add a temporal smoothness regularizer to our cost-183

function. We minimize the energy of the difference of the estimated parameters and their184

Gaussian filtered parameters. This can be understood as a minimization of energies present185
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in high temporal frequencies.186

γ =
(
ζT
11, · · · , ζT

1K , ζ
T
21, · · · , ζT

LK

)T

(9)

ζlk =
(
ϕx, ϕy, ϕz, tx, ty, tz

)T

lk

r(γ) =
L∑
l=1

K∑
k=1

∥ζlk − (ζ ∗ gσ)lk∥
2
2 (10)

In Eq. 9, we outline the structure of the parameter vector γ, where ζlk ∈ R6 holds the Euler187

angles ϕx, ϕy, ϕz and the translations tx, ty, tz for the l-th bone and the k-th projection. Eq. 10188

shows the smoothness regularizer, where gσ are Gaussian filter coefficients for standard189

deviation σ and (ζ ∗ gσ) denotes the convolution filtering over the temporal direction k.190

The overall optimization problem is then given by191

argmin
γ

−c(p, b;γ) + λ r(γ) , (11)

where c(p, b;γ) can be either GC(p, b;γ) or NGI(p, b;γ).192

Both GC and NGI need to be maximized. This is achieved by minimization of the neg-193

ative cost-function value. We use a non-constrained gradient-based minimization method194

for optimization. The gradient is estimated by forward-differences and the Hessian is ap-195

proximated using BFGS. The step-direction is then computed by attempting a Newton step196

using the approximated Hessian. The step-size is calculated by a line-search method. We197

optimize the rotational parameters in degrees instead of radians to ensure that rotation198

and translation parameters are in a similar range. For more information we refer to the199

optimizers documentation [25].200

4. Noise Reduction in DRRs201

We observed a high amount of noise in the forward projected gradient images which led202

to unsatisfactory registration results. As the noise originates from the segmented volume203

we applied a 3D edge-preserving bilateral filter as described by Lorch et al. [26] before204

calculation of the 3D gradient volumes. Additionally, we observed that the trabecular bone205

and the bone marrow show rather homogeneous intensities and hence, contain only little206

structural information that is useful for 2D/3D registration. Therefore, the segmentation207

masks were adjusted such that they focus on cortical bone, i.e. the outline of the bone. This208
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(a) Original masks (b) Adjusted masks for DRR generation

Figure 2. Adjustment of 3D segmentation masks to reduce the noise level in DRRs.

was done by first applying a 3D erosion to the segmentation masks and in another step a209

3D dilation. Subtracting the eroded from the dilated mask results in a mask which contains210

the bone outline only. This process is illustrated in Figure 2.211212

5. Unified Coordinate System, TPS Estimation and Reconstruction213

After 2D/3D registration, we know the individual bone motion over time. As a next step,214

we extrapolate a global non-rigid motion field d(x, k) : R4 → R3 based on the rigid bone215

motion using a TPS model [22]. We use the vertices of the segmented surface meshes as216

known TPS control points. The deformation field is estimated for each projection image217

separately. I l ∈ R4×4 contains the rigid motion that was estimated by initial manual 3D/3D218

registration between supine and motion-corrupted scan. Further, T̂ lk ∈ R4×4 are the final219

rigid motion matrices obtained from the 2D/3D registration. After selection of a reference220

time point k̂ we can express the rigid alignment to a common coordinate system byRl = T̂ lk̂.221

We choose k̂ to correspond to an anterior-posterior viewing direction, where no overlapping222

bones are present. First, we adjust all rigid transformations such that they operate in the223

reference coordinate system, i.e.224

T lk = T̂ lk R
−1
l . (12)

Subsequently, all supine mesh vertices are propagated to the standing reference coordinate225

system. Let v̂n
l = v̂l ∈ R3 be the n-th vertex of the l-th bone in the supine coordinate226

system. In the following we omit the superscript n assigned to each vertex to improve227

clarity. Then, its static reference position vl ∈ R3 for the reference time point k̂ can be228
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calculated as is given by229

vl = (Rl I l) v̂l , (13)

where v ∈ R4 represents a 3D point in homogeneous coordinates. Finally, we apply the230

updated matrices T lk to the standing reference positions231

vlk = T lk vl . (14)

According to Davis et al. [27], the TPS deformation at a point x ∈ R3 can be formulated232

by233

d(x, k) =
N∑

n=1

L∑
l=1

G(x− vlk)clk +Ak x+ bk , (15)

where clk ∈ R3 are the unknown spline coefficients and the matrix Ak ∈ R3×3 and vector234

bk ∈ R3 are additional rigid motion parameters. The kernel matrix G(x̃) : R3 → R3×3 for a235

3D deformation is given by:236

G(x̃) = ∥x̃∥2 · I , (16)

where I ∈ R3×3 denotes the identity matrix. To train the TPS model we need to determine237

the unknown coefficients clk, Ak and bk. As they have a linear relationship within Eq. 15,238

they can be estimated in a straightforward manner. Inserting the known 2D/3D motion239

vectors of the vertices, i.e. ulk = vlk −vl, for x in Eq. 15 yields a system of linear equations240

which can be solved by singular value decomposition. To constrain the spline deformation241

at the periphery of the reconstruction we also added the 8 bounding box corners as control242

points for each volume. As displacement vector we assigned the motion generated by the243

geometrically closest bone, e.g., for the upper-left corners we applied the estimated left femur244

motion. For more details on solving the TPS equations we refer to Davis et al. [27].245

The reconstruction pipeline includes the following steps: 1) a simplified beam-scatter-246

kernel scatter estimation [28] assuming that the object consists only of water and that the247

water-equivalent-thickness is uniform, 2) cosine weighting, 3) Parker redundancy weighting248

[29], 4) a simple truncation correction [30], ramp filtering with a smooth Shepp-Logan kernel249

[31] and a motion-compensated GPU backprojector [32]. The deformation field d(x, k) was250

incorporated into the GPU-based backprojection step as described by Schäfer et al. [33].251

That means, we evaluate the TPS model in Eq. 15 for each voxel coordinate and use the252

updated instead of the original coordinate to compute the 2D detector location. It should253
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be noted, that this type of reconstruction algorithm is approximate as it cannot guarantee254

a correct filtering and weighting of the projection images [33].255

C. Evaluation Procedure256

In this work, we compare the state-of-the-art MB approach and two versions of the257

proposed motion correction based on 2D/3D registration. We chose to focus on the recon-258

struction image quality, as this includes all possible steps and parameters of the individual259

approaches and also validates clinical applicability. To improve early diagnosis of osteoarthri-260

tis, we want to investigate the change in joint space under weight-bearing conditions. The261

joint space in the knee is defined between the femoral and tibial bone surfaces [34]. As262

the bones will be directly involved in the measurement process, we are especially interested263

in correcting motion at the distal femur and the proximal tibia. We tailor our evaluation264

pipeline accordingly and focus on the improvement of bone structure when applying our265

motion correction methods.266

1. Data Acquisition and Parameter Selection267

We evaluated our method on four acquisitions of the same patient, where large motion268

was present in two standing scans. The study included: 1) one motion-free scan in supine269

position with high angular resolution, 2) a standing scan with an upright stand, 3) a standing270

scan with 35◦ knee flexion and 4) a standing scan with 60◦ knee flexion. The motion271

severity increased with the flexion angle. Supine scanning took 20s acquiring 496 projection272

images over 200◦, whereas the standing scans took 10s with 248 projection images over the273

same angular range. The detector size was 1240×960 pixels with an isotropic pixel size of274

0.308mm. For the supine and initial motion-corrupted data we reconstructed a 512×512×256275

volume with isotropic resolution of 0.5mm, using the same preprocessing steps as described276

for the motion-compensated reconstruction. A total of 12 metallic beads were attached to277

the skin at both knees. We set the minimum number of beads to be detected per projection278

to Mmin = 6 and repeated the optimization for J = 4 times. The 2D/3D registration was279

applied using a two-fold multi-resolution, where only the resolution of the projection images280

was adjusted. For the first optimization, we used a projection image size of 310 × 240. In281
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the second step we initialized the parameters with the results from the first optimization282

and used a size of 620 × 480. The weighting factor λ = 5 · 103, as well as the standard283

deviation of the Gaussian smoothing σ = 2 have been determined heuristically and were284

kept constant for all experiments. Further, we ensured that the initial cost-function values285

for GC and NGI are within the same range by incorporating a normalization factor.286

The 2D/3D registration and the marker-based approach have been implemented using287

CONRAD, a dedicated and open-source software platform for CBCT reconstruction [35].288

Function evaluations for the 2D/3D registration are entirely done on the GPU using OpenCL.289

The segmentation was done using ITK-Snap [36], and initial 3D/3D registration was done290

manually using 3D Slicer [37]. To reduce artifacts due to detector saturation the patient’s291

legs were wrapped in a layer of plasticine which can be seen clearly in the reconstructed292

volumes (see Choi et al. [1] for more information).293

2. Quantitative Evaluation294

We conducted an image-based quantitative comparison between the supine, motion-free295

and the standing, motion-corrected reconstructions by computing the universal image qual-296

ity index (UQI) [38]. A key problem for quantitative evaluation is that there is no unified297

coordinate system for the motion-corrected reconstruction. Depending on which reference298

projection index k̂ is chosen in Eq. 12, the final reconstruction will represent a different299

motion state. Assuming that the motion parameters for 2D/3D registration are estimated300

perfectly, the alignment between corrected and supine reconstruction should still work accu-301

rately. However, small errors in the 2D/3D registration for the reference projection k̂ lead to302

a piecewise rigid motion that is based on only 6×4 = 24 parameters of the 6×4×248 = 5952303

estimated parameters. This misalignment would dominate the image-based measures. Our304

main interest, however, is the improvement in the actual image quality. To become indepen-305

dent of this offset, we applied an automated 3D/3D rigid registration for each bone to the306

reference reconstruction using 3D Slicer [37] and evaluated the image quality for each bone307

region separately. For the rigid 3D/3D registration we used an MI-based similarity measure308

that ensured proper alignment even in presence of motion artifacts. For registration and309

UQI computation we used bone-wise region-of-interests (ROIs) as depicted in Figure 3. We310

made sure that the ROIs include a soft tissue margin around the bone. This was done by311
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dilating the segmentation masks in x and y direction with a circular structuring element of312

radius 2.5mm. We excluded the z-direction from the dilation as this would have caused an313

overlap of different bones in the ROIs. Details are given in overview 1.314

Overview 1 Quantitative Evaluation Pipeline

1: Corrected reconstruction with respect to reference projection k̂

2: Extraction of bone-wise ROI using dilated segmentation masks

3: for each ROI do

4: 3D/3D registration of ROI to supine volume

5: New reconstruction including the registration result to avoid additional interpolation

6: Computation of the UQI for each bone ROI

7: end for

8: Construction of mean and standard deviation of bone-wise measures

3. Target Registration Error315

To evaluate how accurate the TPS extrapolation can model the motion in a certain dis-316

tance to the bone we calculated the Target Registration Error (TRE) using the attached317

metallic beads. To do so, we first detect the 3D bead locations in the corrected recon-318

structions using the same automatic detection approach as for the MB method, except that319

the backprojection now involves the estimated TPS motion fields. Then we apply the TPS320

motion field to the detected 3D point locations and project the resulting point to the indi-321

vidual projection images. The TRE can now be computed by the mean distance between322

the detected bead locations in 2D and the reprojections of the 3D bead locations. To avoid323

wrong assignments of 2D and 3D points we used the correspondences as determined after324

the outlier detection of the MB method.325

4. Relative Bone Motion326

To assess the amount of non-rigidity we measured the relative bone motion during a327

scan, i.e. how much the rigid motions of the bones deviate from each other. All estimated328

rigid motion matrices T lk of the 2D/3D registration are relative to their individual manual329

initialization I l, thus, a direct comparison of motion parameters will be difficult. As a first330
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(a) Supine - Axial (b) Supine - Coronal

Figure 3. Axial and coronal slices of the motion-free supine data. The green line corresponds to the

regions used for the numerical evaluation in section III B. The images show a clear reconstruction

of the bones without any apparent motion artifacts.

step we remove the mean rigid transform T l over all time steps k, from all T lk, yielding331

the temporal, mean-free rigid transforms Ψlk = T lk T l
−1
. In case that all bones move with332

the same rigid transform their deviation to the mean rigid transform over the bones, i.e.333

Ψk, is the identity matrix. To visualize the relative motion between the bones we decided334

to compute the differences to their mean rigid transform ∆Ψlk = Ψlk Ψk
−1
. Finally, we335

extract all angles
(
∆ϕx ∆ϕy ∆ϕz

)
lk
and translations

(
∆tx ∆ty ∆tz

)
lk
from ∆Ψlk.336

III. RESULTS337

A. Visual Comparison338

For the 0◦ flexion angle, we observed only little motion artifacts. Slight streaking is339

present at the outline of femur and patella (Figure 4a) but also at tibia and fibula (Figure 5a).340

All three methods were able to restore the bone outlines, yielding similar visual results,341

shown in Figure 4(b)-(d) and Figure 5(b)-(d). Yet, the MB approach shows a slightly sharper342

correction of the fibula’s interior compared to GC and NGI as indicated by the arrow in343

Figure 5d. Note the zoomed version of the reconstructed marker shown in the embedded box344

in the lower, right corner of the images. As expected the marker was accurately reconstructed345

using the MB method but also the NGI method did not substantially distort the marker’s346

appearance, indicating a good estimation of the motion at the skin boundary. A little more347
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(a) NoCorr-0◦ (b) GC-0◦ (c) NGI-0◦ (d) MB-0◦

(e) NoCorr-35◦ (f) GC-35◦ (g) NGI-35◦ (h) MB-35◦

(i) NoCorr-60◦ (j) GC-60◦ (k) NGI-60◦ (l) MB-60◦

Figure 4. Axial slices through the femur. From left to right: Reconstructions without motion

correction (NoCorr), the proposed method using GC, the proposed method using NGI and the MB

reference method. The rows correspond to the three different weight-bearing scans from 0◦ flexion

angle at the top to 60◦ flexion angle at the bottom (W: 2025 HU, C: 145 HU).

distortion (i.e., star-like appearance) can be seen at the marker for the GC case.348

All methods could substantially reduce the large amount of motion artifacts for the 35◦349

case. Not many differences are seen at bone outlines between the results for the femur slices350

in Figure 4(f)-(h). As expected, the MB method shows a better result at the skin boundary351
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(a) NoCorr-0◦ (b) GC-0◦ (c) NGI-0◦ (d) MB-0◦

(e) NoCorr-35◦ (f) GC-35◦ (g) NGI-35◦ (h) MB-35◦

(i) NoCorr-60◦ (j) GC-60◦ (k) NGI-60◦ (l) MB-60◦

Figure 5. Axial slices through the tibia and fibula. From left to right: Reconstructions without

motion correction (NoCorr), the proposed method using GC, the proposed method using NGI and

the MB reference method. The rows correspond to the three different weight-bearing scans from

0◦ flexion angle at the top to 60◦ flexion angle at the bottom (W: 2025 HU, C: 145 HU).

and was able to restore the shape of the plasticine wrap. The slight streaking at the anterior352

skin boundary in NGI and GC originates from the plasticine wrap and is not related to the353

image quality of the bones. A clearer difference can be seen at the tibia. Again, all methods354

clearly improved image quality, yet, the GC could not fully correct the bones’ outlines,355
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(a) GC-60◦ - Ref. projection (b) NGI-60◦ - Ref. projection

(c) GC-60◦ - First projection (d) NGI-60◦ - First projection

Figure 6. Difference of gradient magnitudes between DRR and acquired projections after regis-

tration. Top row: Projections used for extracting the reference coordinate system. Bottom row:

Projections with large occlusions led to incorrect registration of the left tibia using the GC method.

especially in case of the left tibia (see Figure 5f). The MB and NGI images are of similar356

image quality with slightly more residual streaking in the NGI case (see Figure 5(g)-(h)).357

The reduced image quality of the GC case is due to misregistrations of the 2D/3D alignment358

as illustrated in Figure 6.359

The highest amount of motion was observed in the scan with a 60◦ flexion angle, as can360

be seen in the uncorrected reconstructions in Figure 4i and Figure 5i. Both GC and NGI361

successfully estimated the patient’s femoral motion, yielding comparable reconstructions of362

the femur with substantially improved image quality compared to an uncorrected recon-363

struction. More streaking is present in the left tibia for GC, whereas NGI shows a good364

tibial reconstruction. Similar to the scan at 35◦ flexion angle, the skin boundaries are better365

corrected when using the MB approach with slight streaking in the 2D/3D registration-based366

approaches. Apart from that, the visual results are comparable.367
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UQI (×102)

dataset NoCorr GC NGI MB

0◦ 34.9±2.3 62.6±3.6 63.5±4.3 57.2±6.4

35◦ 11.2±3.5 47.2±6.7 53.1±3.7 50.0±7.1

60◦ 9.0±4.1 49.9±5.7 51.7±5.0 52.9±7.4

Table I. Mean and standard deviation of the UQI over four bone regions. All correction methods

lead to an increased UQI compared to an uncompensated reconstruction. The bold font emphasizes

the method with the highest UQI for each dataset.

B. Image Quality Measures368

The qualitative measures yielded an UQI value for each combination of bone, flexion369

angle and correction method. Table I shows the mean values over all four bone regions370

together with the standard deviation. Note that the UQI has been scaled by a factor of 100371

throughout the paper for better visualization. Each weight-bearing scan showed moderate372

intensity variations due to different detector saturation and truncation artifacts. The UQI373

is known to be robust against intensity variations [38], which allows for a fair differentiation374

between the methods as well as the individual weight-bearing scans.375

1. Inter-Scan Comparison376

A reduction of the UQI value in case of non-corrected reconstructions from 34.9 to less377

than 9.0 is in line with the amount of motion observed visually. This is supported by the378

maximum achieved UQI values when applying correction methods. All methods showed the379

highest values for the 0◦ flexion with an average UQI of 61.1. The best achieved UQI values380

for flexion angles 35◦ and 60◦ have been substantially lower with a maximum UQI of 53.1.381

UQI values between 35◦ and 60◦ flexion did not show a substantial difference.382
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2. Method Comparison383

We notice a large improvement of the UQI values from no correction to any of the cor-384

rection methods. The relative improvement for each dataset is well supported by the visual385

impression in Figure 4 and Figure 5. The GC showed the lowest improvement for all flexion386

angles and also high inter-bone variations which may originate from the misregistration-387

based streaking artifacts seen in Figure 5j and Figure 5f. Even though the MB method388

yields better reconstructions with less streaking, the NGI method shows higher UQI values389

for the 0◦ and 35◦ dataset. This discrepancy is analyzed in more detail in the following390

section.391

C. Deformation of bone outline for MB method392

In contrast to the visual results, the highest UQI values were achieved by the NGI method393

with a mean distance to the MB correction of 6.3 in the 0◦ dataset, 3.1 in the 35◦ dataset and394

comparable results for the 60◦ dataset. This could be explained by a small deformation of the395

reconstructed bones in case of the MB approach. To analyze this deformation we extracted396

line profiles equidistantly and orthogonal to the femur’s outline. The semi-automatic seg-397

mentation generally yielded an outline that slightly extended outside the visually determined398

bone outline. Therefore, we manually refined the segmentation results for a selected axial399

and coronal slice of the supine acquisition, such that the bone’s outline is covered exactly.400

The refinement was performed using the manual segmentation functionality of ITK-Snap401

[36]. Then, 2D spline models of the refined segmentation mesh were obtained for the se-402

lected axial and coronal slice. We also extracted the corresponding image slices for NGI,403

MB and the supine data. Finally, we sampled line profiles perpendicular to the fitted spline,404

equidistantly along the whole spline curve.405

Figure 7a shows the axial and coronal slice of the motion free reconstruction with an406

overlay of the extracted spline curves and a subset of the line profiles. In Figure 7b the407

extracted profiles are shown. We incorporated a dashed reference line at 0.5mm distance to408

the spline, which corresponds roughly to the center of the femur’s cortical bone edge in the409

supine scan.410

The resulting profiles show that for the MB approach the edge intensities shift upwards411

22



(a) Line profile measurement in an axial and coronal slice.
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(b) Edge profiles along the right femur’s outline in an axial (top) and coronal (bottom) slice.

Figure 7. Edge profiles along the outline of the right femur for NGI-0◦, MB-0◦ and the supine,

motion-free reference (SUP). The depth axis points from the bone outwards. The starting point

and direction of the x-axis is indicated by arrows in 7a. Compared to the NGI method the edge

shifts upwards for the MB method indicating a scaling effect.

at multiple locations with respect to the reference line. This is not the case for the NGI412

approach. Shifting upwards corresponds to a deformation perpendicular to the bone’s sur-413

face. It can be interpreted as scaling or distortion if it occurs uniformly along the spline. In414
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TRE [mm]

dataset GC NGI MB

0◦ 0.45±0.29 0.37±0.24 0.15±0.08

35◦ 1.45±1.32 0.92±0.86 0.35±0.17

60◦ 1.55±2.46 0.75±1.07 0.29±0.16

Table II. Mean and standard deviations for the 2D TRE of reprojected marker locations. 3D

marker detection was done in the motion corrected reconstructions for GC and GI. For MB the

existing 3D estimates have been used.

addition to the distortion, we can observe that the edge of the NGI approach is more similar415

to the motion-free scan, than the edge of the MB method.416

D. Target Registration Error417

As expected, for all datasets the MB method yielded the smallest TRE values and also the418

smallest deviations. The maximum TRE of the GC method amounts to 1.55mm, whereas419

all TRE values were no larger than 0.92mm for the NGI method. Compared to the MB420

approach the standard deviations for NGI and GC increased substantially. Yet, for the NGI421

method the highest standard deviation (1.07mm) is still considerably smaller than for the422

GC case (2.46mm).423424

E. Relative Bone Motion425

In Figure 8 we show boxplots based on all relative motion parameters over all bones and426

all projections. We limited the analysis to the NGI method using the 60◦ case, as this cor-427

responded to the highest amount of motion estimated with the best performing registration428

approach. The boxes depict the 25th and the 75th percentiles and the whiskers cover ≈ 99%429

of the samples in case of a normal distribution. The red line shows the median of the sam-430

ples. Almost all rotation angles lie within a range of 1◦, which corresponds to the maximum431

rotational deviation between the bones. The translations in vertical direction, i.e. ∆tz show432

only little difference with a maximum range below 1mm. In contrast, translations in x- and433
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Figure 8. Relative bone motion during the 60◦ scan estimated by the NGI approach. The motion

parameters show the deviation to the average rigid transform over all four bones.

y-axis are in the range of [−1.44mm, 1.84mm] and [−2.89mm, 2.32mm], respectively.434

IV. DISCUSSION435

CBCT scanning of knees under weight-bearing conditions poses a difficult motion esti-436

mation and compensation problem. In previous work on image-based motion correction, we437

tried to correct for involuntary patient motion without markers using 2D/2D registration438

of projection images and maximum intensity DRRs of a motion-corrupted reconstruction439

[19]. However, the improvement in image quality was limited due to the amount of motion440

artifacts present in the initial reconstruction. All of our weight-bearing studies include a441

non-weight bearing scan in supine position, which serves as a reference for the investigation442

of functional parameters, such as joint space analysis.443

A non-weight-bearing scan in a supine patient position is part in all our weight-bearing444

studies to obtain a reference for further investigation, e.g., a joint space analysis. There-445

fore, we propose a marker-free motion correction method based on piecewise-rigid 2D/3D446

registration of a motion-free reference volume to all projection images acquired in a weight-447

bearing scan. The proposed method builds on previous work by Berger et al. [20], where448

a proof-of-concept for the GC approach is presented and evaluated on a noise-free numer-449

ical phantom. We developed the method further to allow its application to real patient450

acquisitions. Our main contributions are an improved similarity measure (NGI), a noise451

reduction approach for the forward projected gradient images and a more sophisticated es-452

timation of a global motion field using non-rigid TPS extrapolation. Further, we extended453
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the MB motion estimation as shown in Müller et al. [4] by an analytic gradient computation454

and an improved outlier detection scheme. Moreover, this work gives a complete overview455

of existing motion-compensation methods for weight-bearing CBCT of the knee-joint and456

shows a thorough evaluation and comparison between the state-of-the-art MB and the novel,457

image-based approach using 2D/3D registration.458

Our results show a substantial improvement of image quality for GC and NGI as well459

as for the MB approach compared to reconstructions without motion correction. The NGI460

method yielded higher UQI values and showed less streaking at the bone boundaries than461

the GC method. We believe that the NGI is indeed more robust to overlapping structures as462

indicated by Otake et al. [15]. This is of special importance in lateral views where we see in-463

creased overlap of left and right leg accompanied by an increased number of misregistrations464

in case of the GC method (see Figure 6).465

The goal of the proposed method was to achieve an image quality similar to that of the466

MB approach. As expected the MB method was able to accurately restore the skin outline467

whereas the registration-based methods showed inaccuracies at the skin boundary that also468

led to slight streaking artifacts. In contrast, we see the smallest amount of streaking for the469

MB approach. The NGI method performed comparable to the MB method in reconstructing470

the bones’ outline. This is of special interest as a potential application is a 3D analysis of471

the joint space between the femur and tibia as outlined in section IIC.472

Although the MB approach produces better visual results, we have noticed a lower UQI473

compared to the NGI method, especially for smaller flexion angles. Line profiles along a474

femur’s boundary revealed a deformation of the reconstructed bone outline with respect to475

the reference scan which can be seen as an intensity shift in Figure 7. Note that the edge476

of the MB approach is generally higher than that of the reference which shows that the477

intensity shift is not due to a misalignment but due to a real distortion effect. A possible478

cause can be the assumption of a global, rigid transform per projection image which does479

not allow for non-rigid motion. If we incorrectly assume a rigid movement per projection,480

this can lead to a distortion in the reconstruction. In a future study we plan to perform a481

statistical analysis of the directions and lengths of the residual distances in 2D. This may482

provide insight on the amount of non-rigidity present in the marker motion.483

We deem MB methods unsuitable for the problem of reconstructing the knee under484

weight-bearing conditions for a number of reasons. First and foremost, markers are cumber-485

26



some and too time-intensive to attach by a physician in clinical routine. If not done carefully,486

markers may overlap in projections from some angles, leading to potential mismatching and487

lower estimation accuracy. Second, MB methods are restricted to a single rigid motion488

model. Rigid transformations of individual bones or even deformable models would require489

a considerably larger number of markers, exacerbating the problem of overlapping markers.490

On top of that, markers can only be attached to the skin, while the accurate relationship491

of bone and skin motion is unclear. Finally, markers degrade image quality due to metal492

artifacts. This work remedies the above mentioned problems by entirely image-based meth-493

ods, thus possibly allowing a fully automatic system in the future. We currently rely on494

a semi-automatic segmentation and initialization of the supine bones. Methods that allow495

for a fully automatic segmentation of the bones and an automatic initial alignment could496

eliminate manual interaction and will be part of future work.497

We have used the UQI for a qualitative evaluation of the reconstruction results. Note that498

the pipeline described in section IIC 2 requires a truly motion-free supine scan preferably of499

high quality. Based on the patient’s supine position and the good reconstruction quality of500

the supine scans (cf. Figure 3), we could not identify patient motion in the supine scan. The501

image quality was superior to the standing scans, as the supine acquisition protocol used502

twice as many projection images. Another limitation of the evaluation method is that it also503

includes potential registration errors of the 3D/3D registration. To eliminate this subsequent504

registration we would require a ground truth motion of the bones, which is hardly possible505

during an in vivo study. Finally, the reported UQI values describe the mean values over the506

bone ROIs in Figure 3. The ROIs include the bones and adjacent soft tissue, yet we do not507

claim that the UQI is an accurate measure for soft tissue deformation.508

To evaluate the TPS extrapolation we computed the reprojection error of the markers509

(TRE) for the GC, NGI and MB methods. As expected the MB method performed best510

with a maximum TRE of 0.35mm for the 35◦ case. The NGI method yielded a maximum511

TRE of 0.92mm for the same dataset, which is still acceptable. Note, that the markers512

represent the boundary of the anatomically meaningful area and therefore have the largest513

distances to the bone surfaces on which the extrapolation is based. As is generally the case514

in extrapolation methods, the confidence of the TPS extrapolation decreases with increasing515

distance to the control points. Additionally, the MB cost-function aims to minimize exactly516

this error, whereas GC and NGI do not consider the markers in their optimization.517
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Even though the proposed NGI method creates an accurate reconstruction of the bone518

outline, we still need to consider the effect of 2D/3D registration errors. As all our bone519

positions are estimated independently, errors in 2D/3D registrations may lead to deviations520

in relative bone position, e.g., between tibia and femur. Our analysis of relative bone motions521

in section III E shows rather small rotational differences between the bones and only little522

variation in z-axis translations. Note that the estimated relative motion will always consist523

of a combination of the real ground truth motion and the residual error of the registration.524

Hence, for an exact measurement of relative bone motions we would need access to the525

ground truth motion directly, which was not possible during our in vivo, weight-bearing526

acquisitions. Thus, it remains unclear if the increased deviations of translations in x- and527

y-axis correspond to registration errors or real variability of motion. A study using cadaver528

legs, where tibia and femur are fixed to a device that applies a predefined motion pattern529

would allow an exact measurement of registration errors and is planned as future work.530

As explained in section II B 4, we reduced the bone segmentations to the bone outlines531

to limit the noise level in the DRRs. This makes the method similar to a mesh-to-image532

2D/3D registration where the meshes are directly registered to the acquired projection im-533

ages without the need of an expensive DRR generation step. An extensive overview of these534

methods is given in [39], where it is referred to as “feature-based” 2D/3D registration. A535

comparison of the two methods would be interesting for future work, yet, we expect that the536

current method is more robust to variations in the segmentation quality as it does not only537

consider segmented 3D positions but also the measured intensities. Moreover, most mesh-538

based registration methods require feature point detection in the projection images which539

will be difficult considering the high degree of overlapping structures in our acquisitions.540

We will also investigate if we can perform the motion correction using a cost-function541

based on data consistency conditions (DCC) instead of 2D/3D registration. Methods based542

on image moments [40], filtering in the Fourier domain [41] or by using the Epipolar geometry543

[42, 43] will be investigated. The motion is then estimated directly in the projection domain544

without the need for a motion-free scan and bone segmentations.545
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V. CONCLUSION546

We presented a novel motion correction scheme to allow for weight-bearing CBCT imaging547

of the knee joint. The involuntary patient motion is estimated with respect to a motion-free548

reference scan in supine patient position. Left and right femur and tibia are segmented and549

registered to the acquired weight-bearing projections. Thus, six rigid motion parameters550

were estimated for each bone and each projection resulting in a total of 5952 parameters.551

To improve registration results we also incorporated a regularizer that ensured smoothness552

of the motion-parameters over time. The motion was then used to estimate a TPS-based553

non-rigid deformation field for each projection which was directly incorporated into the554

backprojection step, yielding a motion-compensated reconstruction.555

Our study included a thorough comparison between two versions of our proposed method556

and a state-of-the-art MB motion estimation method [4]. All correction methods substan-557

tially improved image quality compared to reconstructions without motion correction. The558

GC similarity measure proved to be less robust to overlapping bone structures than the NGI559

similarity metric. Our quantitative evaluation over ROIs around the bones showed a mean560

UQI of 18.4 for no correction, 53.3 and 56.1 for the proposed method using GC and NGI,561

respectively, and 53.7 for the MB reference approach. Increased streaking was observed for562

GC, whereas the visual image quality for NGI was close to that of the MB approach. In con-563

trast to the MB method, the proposed method does not require the attachment of markers564

which will improve the clinical workflow and patient comfort. Further, we found that the565

MB method causes small, non-rigid deformations at the bone outline which indicates that566

markers may not accurately reflect the internal motion at tibia and femur. Therefore, we567

believe that the proposed method is a promising alternative to MB motion management.568

For future work we plan further improvements of the 2D/3D registration algorithms,569

e.g. by incorporating an analytic gradient computation. Furthermore, we plan a thorough570

evaluation of the impact of residual registration errors on the relative positioning of bones.571
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