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Abstract

Purpose: Hemodynamic simulations are of increasing interest for the assessment
of aneurysmal rupture risk and treatment planning. Achievement of accurate simu-
lation results requires the usage of several patient-individual boundary conditions,
such as a geometric model of the vasculature but also individualized inflow condi-
tions.
Methods: We propose the automatic estimation of various parameters for bound-
ary conditions for computational fluid dynamics (CFD) based on a single 3D ro-
tational angiography scan, also showing contrast agent inflow. First the data is
reconstructed and a patient-specific vessel model can be generated in the usual
way. For this work, we optimize the inflow waveform based on two parameters, the
mean velocity and pulsatility.We use statistical analysis of the measurable velocity
distribution in the vessel segment to estimate the mean velocity. An iterative op-
timization scheme based on CFD and virtual angiography is utilized to estimate
the inflow pulsatility. Furthermore, we present methods to automatically deter-
mine the heart rate and synchronize the inflow waveform to the patient’s heart
beat, based on time-intensity curves extracted from the rotational angiogram. This
will result in a patient-individualized inflow velocity curve.
Results: The proposed methods were evaluated on two clinical datasets. Based
on the vascular geometries, synthetic rotational angiography data was generated
to allow a quantitative validation of our approach against ground truth data. We
observed an average error of approximately 5.7% for the mean velocity, 7.1% for
the pulsatility. The heart rate was estimated very precisely with an average er-
ror of about 0.8%, which corresponds to about 6ms error for the duration of one
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cardiac cycle. Furthermore, a qualitative comparison of measured time-intensity
curves from the real data and patient-specific simulated ones shows an excellent
match.
Conclusion: The presented methods have the potential to accurately estimate
patient-specific boundary conditions from a single dedicated rotational scan.

Keywords angiography · computational fluid dynamics · hemodynamics ·
cone-beam CT · flow quantification

1 Introduction

In recent years, increasing interest has been drawn to simulating a patient’s hemo-
dynamics using CFD for classifying the risk of rupture as well as treatment plan-
ning of intracranial aneurysms. Despite a general agreement that physical quan-
tities such as wall shear stress, pressure, blood flow velocities, etc. play a major
role and CFD is becoming increasingly attractive for assessing patient-specific
aneurysm hemodynamics, a reliable validation of the CFD results is required prior
to applications in clinical environment.

Ford et al. first suggested the generation of synthetic, virtual angiograms based
on CFD simulation results and a succeeding comparison with the corresponding
angiogram representing the real patient’s hemodynamics [9]. In addition, further
studies focusing on simulating patient’s blood flow [3,14] as well as in vitro blood
flow of cerebral aneurysm phantoms have been published [5,13], where parameters,
e. g. blood flow velocities in proximal vessel segments, are known.

Flow quantification is not only of diagnostic importance. It has been demon-
strated recently that interventional flow quantification can leverage peritherapeu-
tic decision making [11], as flow information may guide the determination of treat-
ment endpoints.

In this paper, we extend methods first proposed by Endres et al. [7]. They in-
troduced a workflow for creating multiple view virtual angiography (VA) based on
discrete particle methods using the extraction of contrast agent injection informa-
tion from 2D digital-subtracted angiograms (DSA) to define boundary conditions
for virtual angiography. An additional synchronization of the heart state at the
beginning of virtual and acquired angiographic sequences was proposed in [6].

Previous work on patient-individualized hemodynamics typically requires mul-
tiple image acquisitions, (i) a 3D rotational angiography for the geometric informa-
tion and (ii) an angiographic sequence with high temporal resolution (30 fps) [6].
However, in many cases angiographic sequences are acquired only at much lower
temporal resolution in order to reduce X-ray dose. One of the contributions of this
extended work is an automatic parameter extraction from a single dedicated ro-
tational scan used to compute a time-resolved 3D vascular dataset (4D DSA) [4].
Relying only on a single scan reduces the X-ray dose, as well as the amount of
injected contrast medium. However, working with rotational angiography data in-
troduces new challenges for the extraction of flow information, including vessel
overlap in some view angles and the extraction of time-intensity curves from 2D
projection images.

Wächter et al. proposed a similar approach for flow quantification [15]. How-
ever, their method is based on a simplified 1D lamina-based flow simulation, which
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is fast to compute but difficult to apply to clinical data. They use a simplified geo-
metric model, assuming circular vessel cross-sections and segments of constant ra-
dius. Their method was extensively evaluated on phantom data, however it proves
difficult to use on clinical data due to the limitations of the vasculature model.

In this work, 3D CFD simulation is used, which can be more readily applied to
clinical data, however computation is much slower. Therefore, we require different
approaches to properly optimize the boundary conditions. While Wächter et al.
are able to use gradient descent to optimize all parameters of their model, due to
the fast evaluation of their flow model, we use different approaches to estimate
the boundary conditions, to minimize the number of required CFD simulations.
By analyzing the distribution of blood flow velocities in projection data from
rotational angiographic image acquisition sequences covering an extended angular
range of 260◦, the mean velocity of the patient’s blood flow is estimated and
then used to define boundary conditions for CFD simulation. In addition to the
automatic extraction of heart rate, heart state and injection bolus, we further
introduce an iterative optimization method to estimate the pulsatile pattern of
the inflow velocity using CFD and VA.

2 Patient-Individualized Boundary Conditions for CFD Simulations

This section starts by providing a short overview of the data acquisition protocol
for the time-resolved 3D angiography data used in this work as well as a descrip-
tion of the CFD technology used to simulate the blood flow. We then shortly
discuss the algorithms that were used to process the angiographic image data to
extract the important flow information. Afterwards, we introduce step-by-step the
patient-specific parameters and present the algorithms we used for their estima-
tion. First, the patient-specific heart rate and the heart state corresponding to the
angiography acquisition are determined. Afterwards, a statistical analysis is pro-
posed to estimate the mean inflow velocity for the simulation. Then – using CFD
and VA (Siemens Healthcare GmbH, Germany, prototype not for diagnostic use)
– we present an iterative optimization approach to obtain patient-specific inflow
pulsatility.

2.1 Time-Resolved 3D Angiography

While previous work required separate image acquisitions and contrast agent in-
jections for the geometric and temporal information, in this work a single image
acquisition protocol is used that yields both from one acquisition and a single
injection of contrast medium [4,8].

In order to acquire a sufficiently consistent set of projection images for the 3D
reconstruction and to capture important temporal information, such as the inflow
and the washout of contrast agent, a long image acquisition time is required. Our
acquisition protocol acquires a set of 304 projection images over a timespan of
approximately 12 seconds, corresponding to a frame rate of 30 frames per second.

During image acquisition 21ml of undiluted contrast agent is injected into the
internal carotid artery at a rate of 3ml/s for a duration of 7 seconds. The injection
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Fig. 1 Inflow velocity waveform, adapted from Karmonik et al. [12].

protocol is based on an X-ray delay of 0 seconds such that the inflow of contrast
medium can be retrieved from the first subset of projection images.

2.2 Computational Fluid Dynamics

To perform pulsatile CFD simulations, a surface mesh of the vasculature with
user-defined inlet and outlet boundaries is required. Thus, a 3D reconstruction of
the data needs to be segmented by the user. The CFD framework then embeds
this surface mesh in a Cartesian grid using a level set algorithm. In accordance
with [6], blood is modeled as a Newtonian fluid with density ρ = 1000kg/m3 and
viscosity µ = 0.004Pa · s.

At the inlet, a time-varying inflow velocity profile is applied, which is modeled
spatially flat. At the outlets, zero-pressure boundary conditions are assumed. In
order to exclude transient effects, two cardiac cycles are simulated, while only the
second cycle is stored and evaluated. The velocity waveform (see Figure 1) used
in this work is adapted from the inflow velocity profile presented by Karmonik et
al., which is based on 2D phase-contrast MRI measurements [12].

2.3 Virtual Angiography

VA refers to the simulation and visualization of contrast agent transport [6]. For
this purpose, the propagation of mass- and dimensionless particles is simulated
using the CFD-based time-varying velocity field. These particles can move freely
through the vasculature. Two physical motion processes are considered. First, the
particles are transported according to the velocity field. This process is called
advection. In an intermediate step, the spatial distribution of the particles is em-
ployed to estimate a concentration gradient field for the simulation of diffusive
flow. This diffusion process models the mixing of contrast agent and blood.

2.4 Patient-Individual Parameter Estimation

In order to estimate patient-specific inflow boundary conditions for CFD, the re-
spective flow information first needs to be extracted from the time-resolved 3D an-
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(a) Rotational angiography projection images. (b) Segmentation of the recon-
structed 3D vessel segment.

(c) Centerline and ROIs. (d) Flow map (including reliability).

Fig. 2 The four main processing steps. 2(a) shows the sequence of rotational angiography
images that were acquired. These images are tomographically reconstructed and a vessel section
is segmented (2(b)). Based on the 3D image, the centerline is extracted and forward projected
to each projection (2(c)). Green outlines show examples for the placed ROIs to measure time-
intensity curves, which are used to extract the flow map (2(d)). Black regions in the flow map
indicate unreliable sections.

Fig. 3 Flow map of a clinical case. Each row represents a time-intensity curve measured at a
centerline point.
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giography projection data. Figure 2 depicts the four main steps which are needed
to extract this information and are described in the following section.

We start by tomographically reconstructing the projection data as the 3D
constraint volume [4]. We use a threshold-based method to obtain a first vessel
segmentation [1]. As CFD simulations are computationally very demanding, we
further crop the 3D volume to a smaller region containing a sufficiently long ar-
terial segment for our estimation approach, see Figure 2(b). Then, the 3D vessel
centerline is determined for this segment [10]. The centerline extraction is fully
automatic and requires no further user interaction. We sample the centerline in
an equidistant manner to get a set of centerline points. Subsequently, this set of
centerline points is forward projected w.r.t. each projection angle of the rotational
scan, resulting in multiple sets of 2D centerline points. Additionally, we deter-
mine the corresponding vessel radii for each of these points at every time step
using a ray-tracing approach along the projection ray through our segmented 3D
constraint volume.

It is possible to directly use the 2D centerline points to extract time-intensity
curves from the acquired projection images. However, single point measurements
will generally result in very noisy time-intensity curves. Instead, we propose to
integrate the image intensities in relatively small region of interests (ROIs). This
is done by automatically placing rectangular ROIs centered around each centerline
point in the 2D projection. Each rectangle is oriented tangential to the centerline,
its height is determined by the distance to the neighboring points. The rectangle
width is given by the vessel radius, see Figure 2(c). Finally, we have a measurement
for each centerline point for each time step (i.e., projection angle) which is normal-
ized by the corresponding vessel radius, resulting in a time-intensity curve mea-
sured at each 3D centerline point. For visualization purposes, these time-intensity
curves are arranged in a so-called flow map, as depicted in Figure 3, see also [15].

Furthermore, we need to extract the reliability R(i, t) for each centerline point
i at every time step t. For flow measurements we need to be aware of two problems
that are especially prevalent when using rotational projection data: Overlapping
vessels and foreshortening lead to unreliable measurements. Therefore, we compute
the reliability map to mask the unreliable segments

R(i, t) =

{
0 if overlap or foreshortening occurs

1, otherwise
. (1)

To detect the overlap, we use a ray-tracing approach to count the number of
vessels the projection ray corresponding to this point intersects. Foreshortened
points are detected by counting the number of 3D centerline points that are pro-
jected close to this point.

Given the flow map and the reliability map of our vessel model (see Fig-
ure 2(d)), we can now estimate the patient-specific boundary conditions for a
CFD simulation of this vessel segment.

Heart Rate Heart rate as a boundary condition for CFD is highly patient-specific,
and as such it should be avoided to use a generalized parameters from literature.
Many factors such as age or physical constitution of the patient affect the heart
rate. In order to extract the patient’s heart rate from the angiography data we
use the time-intensity curve corresponding to the inlet of the CFD model. First,
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(a) Time-intensity curve
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(b) Fourier-transform of contrast agent plateau

Fig. 4 Time-intensity curve at the inlet of the CFD model. The contrast agent plateau is
delineated in red. On the right hand side the corresponding Fourier-transform of the contrast
agent plateau is shown.

we extract the contrast agent plateau from the curve by detecting the times of
leading and trailing half-peak intensity. On this contrast agent plateau we detect
the alternating maxima and minima and for further steps we consider only the
part of the signal between the first and last detected maximum, as indicated by
the red lines in Figure 4(a). This reduced signal is then zero-padded to increase
frequency resolution and the Fast Fourier Transform is applied. Finally, we need
to detect the dominant frequency which should correspond to the patient’s heart
rate. We do not consider low frequencies of less than 0.5Hz in our search for the
maximum frequency, as such low frequencies correspond to unnaturally low heart
rates of less than 30 bpm. This overlying low frequency drift in the signal is likely
caused by brain parenchyma enhancement.

Figure 4(a) shows an example of a time-intensity curve where the superimposed
low frequency component of the signal is clearly visible. The part of the signal
that was used for the Fourier Transform is delineated in red. In Figure 4(b), the
corresponding frequency domain is shown, where the peak at approximately 1.2Hz
indicates the heart frequency.

Given the heart frequency, we can compute the duration of one cardiac cycle
and resample the default inflow velocity profile (as depicted in Figure 1) to this
time period.

Heart State Not only is the heart rate an important element in performing a
patient-individual CFD simulation, we also need to determine the correct state of
the heart corresponding to the start of the image acquisition. To achieve this, we
use the time-intensity curve at the inflow position of our model and the velocity
profile with the optimized cardiac cycle length. The velocity profile is periodically
expanded to fit the duration of the rotational angiogram.

As we aim to match a velocity signal to an intensity signal, we first need to
discuss the relationship between blood flow velocity and the observed intensity.
High velocity means that relatively large amounts of blood are moved per time.
Assuming a constant contrast agent injection rate, this leads to a relatively low
contrast agent concentration and therefore low intensities are observed [2]. Our
aim is to find the correct time shift ∆t that ideally matches high velocity peaks of
our periodic inflow velocity profile to intensity minima in the time-intensity curve.
We propose the following objective function:
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Fig. 5 Time-intensity curve at the inlet (blue). The heart rate and heart state adjusted inflow
velocity profile is overlaid in red.

argmin∆t

N∑

i=1

(pmax(i)−vmin(i)−∆t)2·wmax(i)+
M∑

j=1

(pmin(j)−vmax(j)−∆t)2·wmin(j),

(2)
where pmax and pmin, respectively denote the time points of the N maxima and
M minima in the time-intensity curve. Correspondingly, vmax and vmin represent
the time positions of the velocity extrema in the periodic inflow velocity profile,
respectively. Additionally, we introduced Gaussian weights wmax and wmin to give
more importance to earlier time instances. Figure 5 shows the result of the heart
state optimization for one example case. The measured time-intensity curve is
shown in blue, while the periodic inflow velocity profile is overlaid in red.

Contrast Agent Injection Bolus We cannot directly compare the CFD results to
the angiography data, as the former is given as a 4D volume of velocity vectors and
the latter is a sequence of 2D projection images. Using virtual angiography, we can
visualize the simulation results as projection images similar to the real data. To
perform such a VA, we first need to specify the contrast agent injection bolus. We
cannot simply use the time-intensity curve measured at the inlet as the injection
bolus, we first need to remove the underlying pulsatile pattern. As the CFD already
simulates pulsatile blood flow, using the measured time-intensity curve as injection
bolus, the pulsatility would be considered twice. To solve this problem, we extract
the injection bolus from the measured data by fitting a capacitor function [14,15,
6,13] using the Levenberg-Marquardt algorithm.

Mean Inflow Velocity A simple way to compute the mean blood flow velocity is to
apply v = ∆s

∆t
, where ∆s is the distance between two points on the 3D centerline,

and ∆t denotes the corresponding difference in bolus arrival time observed in
the time-intensity curves. However, estimating the mean blood flow from a single
measurement may not be very robust. For a reasonably accurate estimation of the
mean velocity we ideally need to observe a full heart cycle. Thus, the result depends
on the distance between the two selected points and the observed time interval.
I.e., if the distance is too short we might only estimate the average velocity during
systole or diastole, which would be an inaccurate estimate of the mean blood flow
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Fig. 6 Time-intensity curve at the inlet (blue). The fitted capacitor curve that is used as the
injection bolus is plotted in red.
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Fig. 7 Velocity measurements over different distances along the centerline. Missing measure-
ment points correspond to unreliable centerline points.

velocity. Additionally, overlaying brain parenchyma or noise can also lead to noisy
arrival times. Figure 7 depicts the problem as an example plot for a clinical case.
A vessel of about 180mm centerline length was considered. We calculated the
velocity always starting from the first centerline point at the inlet and measured
over increasing distances. Missing measurement points correspond to unreliable
centerline points.

Instead of doing one single velocity measurement, we propose to do a more
robust statistical analysis of the data. We calculate Nv velocity estimates by se-
lecting random pairs of centerline points. If the distance between the two points is
too short or one of the points is not reliable, the point pair is not considered and
a new pair is drawn. Finally, we compute the mean velocity as the mean value of
all Nv measurements.

Inflow Pulsatility Pulsatility describes the amplitude between the minimal and
maximal velocity throughout the cardiac cycle. As previously explained, the ob-
served contrast agent intensity is related to the blood flow velocity. Thus, due to
the mixing of blood and contrast agent, we can observe the changing velocity as
a pulse pattern in the extracted flow maps.

In order to determine the patient-specific pulsatility, we first need to compute a
CFD simulation using the estimated parameters as described in this work. Then, a
virtual angiography based on this simulation is computed using the patient-specific
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contrast agent injection bolus as previously described. The virtual angiography
data is forward projected using the calibration data from the original time-resolved
angiography scan. Finally, we extract the virtual flow map F̃ using the same
method we used to extract the real flow map F from the angiography data.

Although it is theoretically possible to optimize the pulsatility directly, using
a gradient-descent approach [15] to minimize the squared difference of F̃ and F ,
such an approach requires multiple evaluations of the cost function per iteration
and therefore many time-consuming CFD and VA computations.

Instead, we propose an alternative cost function that requires few iterations
and can be optimized without gradient information. As a first step, the detection
of all minima pmin and maxima pmax for each time-intensity curve is required.
Then, for each time-intensity curve the extrema are averaged as

fmin(i) =
1

Ni

Ni∑

j=1

F (i, pmin(j)), (3)

where F (i, pmin(j)) denotes the intensity at the position of the j-th minimum in
the i-th time-intensity curve and fmin(i) the average observed intensity at the
local minima in the i-th time-intensity curve. The number of minima in the i-th
time-intensity curve is given by Ni, this number may differ between curves.

The average maximum values fmax(i), and the respective virtual measurements

f̃min(i) and f̃max(i) are computed correspondingly. We can compute the overall
intensity difference between minimum and maximum values for the measured data

creal =
P∑

i=1

((fmax(i)− fmin(i)) · r(i), (4)

with P being the total number of time-intensity curves and r(i) the average reli-
ability of the i-th time-intensity curve. Equivalently, we can compute the overall
difference between minimum and maximum intensity values for the simulated data

cvirtual =
P∑

i=1

((f̃max(i)− f̃min(i)) · r(i). (5)

Finally, we can define our cost function for the pulsatility optimization as

cpulse = cvirtual − creal. (6)

We use this cost function in the following optimization problem:

|cpulse| → min. (7)

We perform this optimization iteratively. Negative values for cpulse indicate that
the range in the simulated inflow velocity profile is too small to fit the measured
data and should thus be increased. Positive values imply the opposite. For the first
few iterations, the pulsatility is doubled/halved depending on the cost value cpulse.
After at least one positive and negative cost function value has been observed, we
apply linear interpolation to estimate pulsatility at the zero cost value. Iteration
is stopped when cvirtual is within 5% difference to the real amplitude creal. The
method yields stable numerical results and convergence is typically reached after
three iterations.
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(a) Mean: 0.4m/s, pulsatility: 0.1m/s
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(b) Mean: 0.2m/s, pulsatility: 0.2m/s

Fig. 8 Comparison of time-intensity curves taken from synthetic data. The plots show the
time-intensity curves that were measured in the input data and compare them to the final
optimization result.

3 Evaluation and Results

Two different clinical cases were used to evaluate our approach. Both cases were
acquired using the imaging protocol described in Section 2.1.

Synthetic Data For validation purposes, we generated several CFD simulations as
ground truth data. The vasculature model was segmented from the 3D volumes of
the 2 clinical data sets. Ground truth CFD simulations were then computed using
these models and inflow profiles with a duration of 812ms and varying settings
for mean velocity (0.2m/s – 0.4m/s) and pulsatility (0.1m/s – 0.2m/s). We then
used the described methods to estimate the specified ground truth parameters.

Figure 8 shows an example comparison of the observed synthetic time-intensity
curves and the corresponding time-intensity curves resulting from the simulation
with optimized boundary parameters. We observed an average error of approx-
imately 5.7% ± 4.6% (mean ± standard deviation) for the mean velocity and
7.1%± 11.4% for the pulsatility. The heart rate was estimated very precisely with
an average error of about 0.8%± 0.8%, which corresponds to about 6ms error for
the duration of one heart cycle. Lastly, we observed an error of about 11.7%±5.0%
when synchronizing the heart state. While this error may seem relatively high, it
corresponds to 71.7± 31.7ms total offset, which represents a deviation of at most
three projection frames.

Clinical Data Finally, we evaluated how well we can optimize the patient-specific
boundary conditions using the real 3D time-resolved angiography data. For this
evaluation, we rely on a comparison of the generated time-intensity curves, as no
ground truth knowledge about the flow parameters was available.

This comparison of simulation results taken from real data is more difficult. The
synthetic data we used for the previous evaluation only contained the simulated
vessel segment. In real data, noise, brain parenchyma or small vessel branches
which we did not consider in our reliability computation can lead an underlying
low frequency in the measured time-intensity curves, which is not modeled in the
simulation results. Figure 10 shows results of an optimization based on clinical
data. On the right hand side we equalized the low frequency components of both
signals, to make them more easily comparable.
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(a) Time-intensity curves at first centerline
point.
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Fig. 9 Time-intensity curves taken from synthetic data with a mean velocity of 0.25m/s and
a pulsatility of 0.2m/s. The plots show the time-intensity curves that were measured in the
input data and compare them to the final optimization result. Curves measured at the first
and last centerline point are shown.
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(a) Time-intensity curves from clinical data.
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Fig. 10 Comparison of optimized time-intensity curves based on clinical data. The left plot
show the time-intensity curves that were measured in the input data and compares them to
the final optimization result. In 10(b) we set the low frequency components (also plotted) to
the same values, in order to make the curves comparable.

4 Discussion and Conclusion

We presented an automatic workflow to generate patient-individualizedCFD simu-
lations (and virtual angiograms) based on time-resolved 3D rotational angiography
data. The presented first evaluation based on two clinical cases shows that we are
able to accurately estimate a patient’s mean inflow velocity using a statistical ap-
proach. Using an iterative optimization that utilizes 3D CFD simulation as well
as virtual angiography, we are further able to estimate the inflow velocities pul-
satility with very high accuracy in about two to four iterations. We use a clinically
available image acquisition protocol called 4D DSA, which requires only a single
contrast agent injection to reconstruct the vessel geometry and provides temporal
flow information at 30 frames per second. This has many benefits, as no registra-
tion of multiple datasets is required, and the patient is exposed to less contrast
agent and less X-ray dose from independent acquisitions, as no additional 2D DSA
images with high frame rates are required.

Disclaimer: The concepts and information presented in this paper are based on
research and are not commercially available.



Patient-Individualized CFD Simulations 13

Conflict of interest: S. Gehrisch, T. Redel and M. Kowarschik are employees of
Siemens Healthcare GmbH.
Ethical approval: This study has been performed retrospectively. Formal consent
is not required.
Informed consent: For this type of study, formal consent is not required.

References
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