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ABSTRACT 

 

In this study, we proposed a fully automatic framework to 

construct and produce immobilization masks for radiation 

therapy of head/neck. This method uses 3-D printing 

technology along with image analysis approaches based on 

3-D CT image data, which consists of two important 

aspects: facial model construction and facial features 

recognition. The facial model construction dedicates to 

extract the skin surface of head/neck/shoulder. After that the 

facial features are recognized automatically based on 

deformable shape models. The results were evaluated 

quantitatively using real CT data and ground truth, which 

indicates the robustness and the practical applicability of the 

framework.  

Index Terms – 3-D printing, immobilization mask, atlas 

registration 

 

1. INTRODUCTION 

 

In radiotherapy treatment it is necessary to ensure the 

precision of the irradiation for minimizing the radiation 

dose, in which patient’s set-up during the whole therapy and 

patient’s movement during the treatment are two precision 

relevant factors [1]. Currently, immobilization masks are 

widely used in head/neck cancer therapy for restricting the 

patient’s movements during the therapy. Two methods are 

mostly used for producing the immobilization masks:  

thermoplastic mesh and wet plaster bandages. For both 

methods, the immobilization masks are produced 

individually and manually by mould technician or 

radiographer. Patients have to visit the moulding room of 

the radiotherapy department for the production of the 

immobilization masks, which is time consuming due to 

multiple hospital visits. According to the study of Cancer 

Research UK[12], each moulding process takes around half 

an hour, which would bring inconvenience to patients and 

take more costs for hospitals. Furthermore, the moulding 

process that covering the face with the mask material to the 

end, is uncomfortable and distressing [2], especially for the 

patients with claustrophobia or skin cancer on face. Apart 

from the inconvenience caused by the moulding procedure, 

most of the reference marks are placed on the mask 

manually after the mask production, which might lead to 

unexpected inaccuracy. In addition, the possible movements 

of unfixed patients during the moulding procedure could 

also make the mask inaccurate. In conclusion, the current 

technology for mask production is time-consuming, 

uncomfortable, and inaccurate.   

Since CT scans are required in the radiation therapy 

treatment routine, one possible improvement is to construct 

the radiotherapy immobilization masks using CT image data 

for image analysis, then produce the masks automatically 

with 3-D printing technology using the analyzed results.  

Several researches [2][3] verified that the 3-D printed 

immobilization masks using image data derived from 

medical diagnosis devices are feasible and valuable. 

However these methods are neither fully automatic nor 

accurate enough.  To solve these problems, we proposed a 

fully automatic framework to construct and produce 

immobilization masks for radiation therapy of head/neck, 

which uses automatic segmentation approaches along with 

atlas registration. We performed several experiments to 

investigate the feasibility of our method. To the best of our 

knowledge, this is the first framework of immobilization 

mask production with automatic recognition and automatic 

removal of facial features. 

 

2. METHODS 

 

In order to construct and produce immobilization masks 

using CT image data and 3-D printing technology, it is 

necessary to extract the 3-D surface of interested anatomy 

regions. The valuable anatomy regions, such as forehead 

that are necessary for the immobilization, should be 

segmented exactly. Conversely, some useless anatomic 
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regions such as eyes, mouth, ears, and nostrils should be cut 

off from the face mask to comfort the patients. Thus, it is 

necessary to recognize facial features automatically and 

allow the optional function of removal for the end-user. In 

this study, we used atlas registration [4] for this purpose.   

 
Fig. 1. The general procedure flow chart. SSM: Statistical 

Shape Model. AM: Appearance Model 

 

The general procedure of the method is shown in Fig. 1. 

First of all, a statistic facial model with anatomical 

landmarks is constructed using the CT image data from the 

training data set. For a new image, the 3-D surface is 

obtained from the surface extraction. Subsequently we 

achieve the positions of the anatomical landmarks for this 

new image by aligning the statistic facial model on the 

extracted surface using atlas registration. After mapping the 

registration results on the segmented surface, the anatomical 

regions for optional removal are labeled automatically. 

Finally, a surface mesh is generated and saved as .stl 

(standard tessellation language) file, which can be used for 

editing and 3-D printing.  

 

2.1. Facial Model Construction 

 

The facial model in this study consists of a statistical shape 

model and an appearance model. The construction 

procedure contains the following steps: 

1. Original volume images are converted into meshes.  

2. 25 landmarks are designed and marked manually on 

the 3-D surfaces of training images.  

3. Procrustes Analysis [5] is used for the point cloud 

alignment.  

4. The method introduced by Cootes et al. in [6] is 

applied to generate our facial statistical shape model. 

5. A non-linear intensity profile model described in [7] 

is generated as facial appearance model.  

 

2.2. Surface Extraction 

 

As mentioned before, the 3-D surface of the anatomy 

regions of interest of a new image must be extracted for the 

mask production using 3-D printing technology. The 

analysis of original CT images shows, that the challenges in 

our surface segmentation are: similar HU values between 

the human head soft tissues, external structure, complex 

outer contour and artifacts. After comparing different 

segmentation methods, a segmentation workflow is outlined 

as follows: 

1. The grayscale image is converted into a binary image 

using Otsu’s thresholding [8]. 

2. The head object is separated from the head support 

object using morphologic opening filter. 

3. The OKE contour extraction method [9, 10] is applied 

for each slice to extract and fill the object contours.  

This method is a variant of the chain code method. It 

encodes binary image into direction code map by 

applying 8 direction masks. Then object contour can 

be extracted by tracing contour pixels on the direction 

code map.  

4. The objects are classified to elliptic and non-elliptic 

objects with a shape descriptor [11] combining object 

circumference and area. As result of the segmentation, 

head support tools or instruments which do not have 

an elliptic shape are removed.     

 
2.3. Facial Features Recognition 

 

Facial features can be mapped onto the segmented facial 

surface automatically by using atlas registration, which can 

be divided into two steps:  

1. Initialization/Coarse Alignment -- The facial model is 

placed to an initial pose, such as the volume center.  

2. Search/Alignment -- The active shape model 

introduced by Cootes et al. in [6] is applied to refine 

the alignment to achieve the optimum. Because the 

head could sway in different directions with varied 

angles, multiple start poses are applied to enhance the 

accuracy of the registration. 

 

3. RESULTS AND EVALUATION 

 

In this work, we employed 10 volume images from 

anonymized patients to evaluate the segmentation accuracy 

and the accuracy of facial feature recognition. 

The ground truth is generated by manually annotating the 

edge points in slice images to evaluate the accuracy of the 

segmentation method. The segmentation error is derived by 

calculating the closest distance among annotation points and 

automatically extracted contours. As shown in Table 2 the 
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average segmentation error is 0.4mm with a maximum error 

of 0.64mm. 

 

 

 

 

 

 

 

 

 

 

Table 2. Evaluation of segmentation accuracy with 10 

patient volume images, each image contains more than 340 

slices.   

 

The volume images are employed as training data to 

generate the statistical shape model as well. 25 landmarks 

are annotated manually using the method described in 

Section 2.1. Based on the landmarks, a statistical shape 

model is generated (see Fig. 2). Table 3 shows the most 

significant eigenvalues. The shape variations are 

demonstrated in Fig. 3. Assumed that a reference mark  is 

defined in radiotherapy plan between the eyebrows, Fig. 4 

illustrates an automatic generated final surface mesh after 

the surface extraction, the facial features removal, and the 

integration of the reference mark from the DICOM data of 

the radiotherapy plan. 

 
Fig. 2. The mean shape projected onto XZ plane in patient 

coordinate system 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Eigenvalues of the covariance matrix derived from 

the training samples. 𝜆𝑇 is the sum of all eigenvalues. 

 
Fig. 3. Shape change due to individual variation of the two 

largest principal components of the shape model. The vector 

b defines the weight for each eigenvector. First row: the 

weight b1 between -3√𝜆1 and 3√𝜆1. Second row: the weight 

b2 between -3√𝜆2 and 3√𝜆2. 

 
Fig. 4. Left: final surface mesh; Right: printed mask; Arrow: 

the reference mark. 

 

In order to evaluate the accuracy of the atlas registration, 

a cross validation test has been made (see Table 4). For each 

test, the test data is aligned with the statistical shape model. 

The Euclidian distance between aligned landmarks and their 

corresponding manual annotations is defined as registration 

error.  As shown in Fig. 5, the mean errors of cross 

validation trails are between 6mm and 14mm.  

 

4. DISCUSSION AND CONCLUSION 
 

In this work, we proposed a fully automatic framework 

to construct and produce immobilization masks for radiation 

therapy of head/neck, which consists of a segmentation 

module and a facial feature recognition module. The 

segmentation module can precisely extract the 3-D face. In 

the facial feature recognition module, an atlas-based 

registration is applied to recognize facial landmarks, which 

can enable user editing and cutting facial anatomy region on 

the segmented surface.  

The accuracy of the proposed segmentation method has 

been evaluated. The evaluation results show that the 

segmentation method has a very low segmentation mean 

errors of 0.4mm, which enables a very high accurate mask 

production. 

The accuracy of the feature recognition has been 

evaluated with cross validation scenarios as well. The 

results show a mean registration error of 11.78mm, which 

Image no. Mean error (mm) Std. dev. 

1 0.42 0.27 

2 0.43 0.15 

3 0.64 0.09 

4 0.28 0.05 

5 0.37 0.15 

6 0.41 0.10 

7 0.36 0.15 

8 0.38 0.05 

9 0.37 0.07 

10 0.38 0.08 

Eigenvalue 𝝀𝒊
𝝀𝑻
∙ 𝟏𝟎𝟎% 

𝝀𝟏 23.83% 

𝝀𝟐 18.49% 

𝝀𝟑 17.53% 

𝝀𝟒 15.03% 

𝝀𝟓 8.21% 

𝝀𝟔 5.89% 

𝝀𝟕 4.72% 

𝝀𝟖 3.42% 

𝝀𝟗 2.88% 
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has been proven to be adequate errors for providing an 

initial position of landmarks for editing purpose (as shown 

in Fig. 4).  
Test no. Training data 

index 

Test 

data 

index 

Mean error 

(mm) 

Std. dev. 

1 Image 2-10 1 13.57 8.87 

2 Image 1, 3-10 2 11.45 8.16 

3 Image 1-2, 4-10 3 13.70 7.57 

4 Image 1-3, 5-10 4 10.82 6.18 

5 Image 1-4, 6-10 5 12.99 8.58 

6 Image 1-5, 7-10 6 14.05 7.18 

7 Image 1-6, 8-10 7 14.48 7.41 

8 Image 1-7, 9-10 8 11.41 7.29 

9 Image 1-8, 10 9 9.24 5.33 

10 Image 1-9 10 6.05 3.14 

Table 4. Cross validation test scenarios 

   

 
Fig. 5. Evaluation results of the cross validation 

 
Fig. 6. Test result of image with invisible ears. Left: original 

image. Right: registration result. 

 

In addition, the feasibility of the atlas registration has 

been verified with the image that lacks parts of anatomic 

regions. As shown in the left column of Fig. 6, the patient’s 

ears are hidden in the head support.  The right column of  

Fig. 6 shows that the results of the atlas registration are also 

acceptable under this circumstance. 

In conclusion, the results indicate the feasibility and the 

robustness of our automatic construction and production 

framework, which has the potential features of time-saving, 

comfortable for patient and friendly for hospital staff. 
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