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Abstract

Drone-based aerial thermography has become a con-
venient quality assessment tool for the precise localiza-
tion of defective modules and cells in large photovoltaic
power plants. However, manual evaluation of aerial infrared
recordings can be extremely time-consuming. Therefore, we
propose an approach for automatic detection and analysis
of photovoltaic modules in aerial infrared images. Signifi-
cant temperature abnormalities such as hot spots and hot
areas can be identified using our processing pipeline. To
identify such defects, we first detect the individual modules
in infrared images, and then use statistical tests to detect the
defective modules. A quantitative evaluation of the detec-
tion and analysis pipeline on real-world infrared recordings
shows the applicability of our approach.

1. Introduction

Over the last decade, the market for photovoltaic systems
has grown tremendously. In Germany alone, about 1.5 mil-
lion photovoltaic systems with an overall peak power of ap-
proximately 38.5 GW were installed at the end of 2014 [1].
Considering the necessary continuous maintenance of such
a high number of installed photovoltaic modules, there is a
need for efficient quality assessment tools.

Particularly in recent years, operators and investors of
photovoltaic power plants started appreciating the benefits
of infrared thermography. Infrared imaging is time-saving,
non-destructive, and contactless. These features allow an
easy data acquisition under real operating conditions. In
infrared images of photovoltaic modules, temperature ab-
normalities such as hot spots and hot areas indicate irregu-
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Figure 1. Radiometric aerial infrared image data of a photovoltaic
power plant displayed in false color. The left substring of the
marked photovoltaic module is inactive.

larities, which are often caused by defects in photovoltaic
modules [2, 3, 4, 5]. In combination with remote-controlled
unmanned air vehicles (UAVs), infrared thermography is
therefore an especially convenient quality assessment tool
for the precise localization of defective photovoltaic modules
and cells in large photovoltaic power plants [6, 7]. Fig. 1
shows radiometric aerial infrared image data of a solar power
plant acquired using a drone.

Despite the technical progress, aerial infrared imagery
is still analyzed mostly manually, which can be extremely
time-consuming. With regard to future monitoring and early
detection systems for photovoltaic power plants, this work
aims at bringing forward the automatic evaluation of aerial
infrared recordings.



1.1. Contributions

In this work, we propose an image processing pipeline
for the automatic evaluation of aerial infrared low-resolution
images of photovoltaic power plants. The pipeline consists
of two key components.

1. Detection of individual photovoltaic modules within an
infrared image.

2. Analysis and detection of malfunctioning photovoltaic
modules using infrared thermography.

Detected defects include, for example, hot spots and hot ar-
eas within the glass surface area of an identified photovoltaic
module.

1.2. Outline

The remainder of this paper is organized as follows. In
Section 2 we discuss related work. Section 3 provides details
on our experimental setup and data acquisition. Sections 4
to 5 describe our photovoltaic module detection and analysis
pipeline. In Section 6 we present our experimental results.
A conclusion and an outlook on future work is given in
Section 7.

2. Related Work
Infrared thermography is a commonly used technique

for various tasks. Dios et al. [8] for instance, equipped
a UAV with infrared cameras to automatically detect heat
loss in buildings through windows and uninsulated walls.
In their approach, areas with thermal values higher than
those of their surroundings are segmented. They define
a specific temperature threshold, which is, however, highly
dependent on the surrounding air temperature. The measured
temperature distributions are modeled both using a single
Gaussian distribution in case of uniform emissivity, and two
Gaussian distributions in the non-uniform emissivity case.

Tsanakas et al. [9] used Canny edge detection to find
hot spot formations in photovoltaic modules by means of
infrared thermography. The objective of their work was to
show that infrared imaging can be used for detection of mal-
functioning photovoltaic modules. Their approach is able to
identify hot spot formations that were diagnosed to specific
defective cells. However, the detection algorithms lacks a
defect classification ability and its performance highly de-
pends on the environmental conditions, which must be taken
into account during field measurements.

Leotta et al. [10] developed an image processing tool,
which can automatically detect single thin-film photovoltaic
modules in infrared images. Using a hand-held infrared
camera focusing on one photovoltaic module in the field, they
can achieve a detection error of less than 5 %. However, their
software could only identify up to 30 % of the photovoltaic
modules of their aerial infrared imagery which had a spatial

Figure 2. Remote-controlled octocopter with an integrated infrared
and RGB camera, which we use for data acquisition.

resolution of 382× 288 pixels and was taken from a flying
altitude of 20 m. Thus, their image processing tool is not
suitable for the automatic inspection of photovoltaic modules
in aerial infrared images yet.

3. Drone-based Infrared Thermography

The radiometric data was generated using drone-based in-
frared thermography. The basis of our measurement system
is a remote-controlled octocopter with an extensive naviga-
tion system, the DaVinci Copters ScaraBot X8 [11] shown
in Fig. 2. Two lightweight cameras are installed beneath the
octocopter, the infrared camera Optris PI450 and the RGB
camera GoPro Hero3+.

Test objects were two photovoltaic power plants in north-
ern Bavaria, Germany, with an overall peak power of approx-
imately 7 MWp. The test objects are installed on flat terrain
and consist of polycrystalline photovoltaic modules having
60 solar cells and three bypass diodes (each for 20 solar cells
on the left side, the center, and the right side, respectively).
The photovoltaic modules are installed at a tilt angle of 25°.

The flight path of the octocopter with a flying altitude of
approximately 20 m above the test objects had a systematic
meandering pattern and was carried out by means of way
point flight software. With regard to easy-to-handle infrared
recordings for a future fully automatic analysis algorithm,
the observation angle of the cameras was as orthogonal as
possible to the flat ground of the photovoltaic power plant.
However, the observation angle of the infrared camera to-
wards the glass surface of the photovoltaic modules was less
than 30° as recommended in [12].

The measurements were conducted in March and
April 2015 on calm, sunny days around noon and in the af-
ternoon. The irradiation values during this time ranged from
600 W m–2 to 1000 W m–2. The sky was cloudless without
any reflections of the sky on the photovoltaic modules in the
infrared recordings. For evaluation purposes, we extracted
infrared images at the original resolution of 382×288 pixels
from recorded video sequences (see Fig. 1).



4. Detection of Photovoltaic Modules in In-
frared Images

To analyze and assess the quality of photovoltaic modules
with respect to defects or soiling, we first detect individ-
ual modules in infrared images. We follow a statistical,
data-driven approach that consists of the following steps:
1) normalization, 2) thresholding, 3) orientation estimation
of the photovoltaic modules, and a final 4) correction and
refinement.

Typically, infrared images exhibit a low signal-to-noise
ratio (SNR). However, compared to the background, photo-
voltaic modules irradiate considerably higher temperature,
which also has a low local variability. By additionally assum-
ing the temperature to be normally distributed, we can apply
statistical methods to segment photovoltaic modules from
the background. Although the assumption of photovoltaic
modules being normally distributed is simplistic, our results
clearly show that modeling the temperature using the Gaus-
sian distribution allows to segment photovoltaic modules
very accurately.

4.1. Normalization

As a first step, we normalize the temperature of infrared
images to a constant range, since the temperature can heavily
fluctuate. In our data, for instance, the temperature ranges
from 0 ◦C to 57 ◦C. Normalizing the temperature allows us
to define a set of parameters that works well for a variety of
infrared images with varying temperature ranges.

For normalization purposes, we discard temperature val-
ues below a predefined threshold τ by setting the values
to zero. By discarding low temperatures, we remove un-
necessary information while preserving temperature close
to the operating temperature. The actual normalization is
performed using

Tnorm(u, v) =
max (T(u, v) – τ , 0)

max(u′,v′)∈Ω T(u′, v′) – τ
, (1)

where T : Ω → R specifies the temperature in ◦C at the
coordinate (u, v) ∈ Ω ⊂ N2 within the infrared image
T . max(u′,v′)∈Ω T(u′, v′) represents the largest temperature
value in T , also given in ◦C. Tnorm : Ω→ [0, 1] defines the
normalized temperature map. In our experiments, we use
τ := 20 ◦C, which removes shadowed grass areas. Fig. 3(b)
shows a typical example of a normalized temperature map.

4.2. Automatic Thresholding

In the next step, we separate the modules from the back-
ground. We use automatic thresholding based on the idea
by Rother et al. [13]. Their approach uses Gaussian mix-
ture models (GMMs) for segmentation purposes. However,
the approach does not perform segmentation completely au-
tomatically. It requires some user interaction for labeling
foreground and background regions.

Instead of using GMMs, we model the foreground, i.e.
the photovoltaic modules using a Gaussian distribution. We
represent the probability density function (PDF) in terms of
the Gaussian function

g(t | α,µ,σ) = α exp
(

–
(t – µ)2

2σ2

)
, (2)

where t represents the temperature, α the amplitude, µ the
mean, and σ the standard deviation. We denote the PDF of
(2), i.e., the normalized Gaussian function as g̃. The goal
now is to estimate all three unknown parameters from the
normalized infrared image Tnorm.

4.2.1 Parameter Estimation

We approximate µ by the maximum temperature value µ̄
in the upper 80 % of the histogram with the bins (bt)t=0,...,n
computed from the normalized temperature map Tnorm as

bt :=
∑

(u,v)∈Ω

{
1 if bc · Tnorm(u, v)c = t

0 otherwise
. (3)

Here, c is a scale factor that maps normalized temperature
values to histogram bin indices t ∈ {0, . . . , n} ⊂ N.

Now, let µ̄ be the approximation of µ. By extracting
64 bins from the histogram in Eq. (3) around the bin µ̄
(32 bins to the left and right of µ̄, respectively), we estimate
an initial probability mass function Pr(T = t) =: pt of Eq. (2).
Here, T refers to a random variable with the realizations t
and the probability pt. We then use nonlinear optimization
to refine the estimated distribution parameters according to
the objective function

(α,µ,σ) = arg min
α,µ,σ

1
2

∑
t

(
pt – g̃(t | α,µ,σ)

)2 (4)

The initial value of α is set to the value of the bin correspond-
ing to µ̄. The remaining parameters µ and σ are estimated
from the histogram.

4.2.2 Segmentation of Photovoltaic Modules

To finally separate the foreground from the background, we
use

ϑ := µ – 4σ (5)

as the threshold. This threshold works especially well for
distributions with a small standard deviation σ. However,
infrared images with a high negative skewness in the sampled
distribution can cause parts of the rows to be omitted. We
therefore address this issue in the final correction step.



4.3. Removing Background Clutter

Automatic thresholding does not completely exclude
background regions from the foreground due to their high
variance. Hence, to identify remaining background regions
in the foreground mask, we estimate the variance Tvar of
the normalized temperature map Tnorm using a 3× 3 kernel.
This allows to detect regions that have a high variability and
are likely to be part of the background.

Subsequently, we perform histogram normalization on
the variance map Tvar, which spreads its values evenly. By
applying a binary threshold at two thirds of the Teqvar spec-
trum, we detect regions of high variance and eventually
exclude them from the thresholded map Tnorm while leaving
homogeneous regions as part of the foreground maskMrows
consisting only of photovoltaic module rows.

Note that variance map estimation must be used in con-
junction with automatic thresholding, since the variance map
alone would not exclude shadows of photovoltaic modules,
which have a low variance.

4.4. Photovoltaic Modules Row Orientation Estima-
tion

Mrows contains both individual photovoltaic modules
and groups of connected modules. The latter must be sepa-
rated into individual modules. For this purpose, we estimate
the orientation of photovoltaic module rows, and rotate the
temperature map into an upright orientation.

We first create a binarized version ofMrows, and apply
morphological closing using a 3×3 kernel. To disambiguate
between the rows, we use the Watershed transform [14].
Mrows is used as the marker. After labeling, we can operate
on each row individually.

We proceed by extracting the contours of the resulting
individual rows. Then, we determine the photovoltaic mod-
ule row having the largest area, and fit an ellipse to it. The
orientation of the row corresponds to the orientation of the
fitted ellipse. Alternatively, one can use a histogram based
voting scheme to determine the angle of most dominant lines
as in [15].

4.5. Extraction of Individual Photovoltaic Modules

Once the rows inMrows are brought into an upright posi-
tion, we extract the individual modules. Here, we first apply
a morphological opening with a 5 × 5 kernel to eliminate
any remaining noise or outliers not belonging to the modules.
Then, we use a morphological closing with a 1 × 7 kernel
to close the gaps between module rows. Once again, we
apply the Watershed transform to segment the rows, which
are finally approximated by a rectangle fitted to them.

As individual modules are not connected to each other,
regions that separate the modules can be identified by a
significant drop in the temperature in each row. To detect
these separating regions, we estimate the variance using a

1× 3 kernel, which allows to capture the vertical variance
in the temperature map in each row. Afterwards, we apply
an edge-sensitive bilateral filter [16] with a 7× 7 kernel to
smooth out the variance map while preserving the edges of
the separating regions.

Due to perspective and varying distance between the mod-
ules and the infrared camera, module rows are of varying
size, shape, and temperature. Thus, we process each row
separately. We equalize the histogram of the variance map
corresponding to each row and threshold the variance map to
zero at 20 % of the map range. This amplifies the separating
regions, which are processed using a sequence of morpho-
logical dilation, closing, and erosion using large horizontal
7× 1 kernels.

By computing the average row width, we fit a rectangle
to high variance regions that separate the modules, and es-
timate their orientation using ellipse fitting. This approach,
however, may result in inaccurate orientation estimates if
the separating regions are very small. Therefore, if the ori-
entation of the separating region deviates over 50 % from
the orientation of its immediate neighbors, we determine the
orientation by linearly interpolating it between the orienta-
tion of neighboring separating regions. In case the separator
is the first or the last in the module row, we use only the
separating region of its immediate neighbor to correct the
orientation.

4.6. Correction of Module Dimensions

The segmentation results so far provide a robust estima-
tion of individual module regions in the temperature map.
However, in certain cases modules at the start or the end of
the row can only be detected partially. This problem occurs
if the temperature decreases towards the edge of the module
row resulting in portions of the module to be cut off, because
these regions fall under the previously determined segmenta-
tion threshold. As the module height is typically unaffected
by this problem, we correct only the module width.

To correct the module width, we compute the average
module width in each row, and extend the modules at the
beginning and the end of the row to the determined width.

4.7. Preparing Modules for Analysis

Once the dimensions of each segmented photovoltaic
module are corrected, we extract the temperature map re-
gions belonging to individual modules, and unwarp their
perspective using the corner points. This step creates a bird’s
eye view of the modules, which are slightly tilted in our
dataset, finally allowing to assess the modules for defects.

5. Analysis of Photovoltaic Modules Using In-
frared Thermography

Within a photovoltaic module, a wide range of defects
can occur. Many of these defects cause overheating either



(a) Original temperature map T (b) Normalized temperature map Tnorm (c) Thresholded temperature
map Tnorm

(d) Variance Tvar

(e) Equalized variance Teqvar (f) Binarized Teqvar (g) Normalized temperature map Tnorm
without its variance (f)

(h) Processed Mrows

(i) Mrows labeled using the Watershed
transform

(j) Largest identified row (k) Rotated temperature map Tnorm (l) Rotated and binarized temperature
map

(m) Module rows approximated by
rectangles

(n) Module rows (o) Vertical variance within module
rows

(p) Equalized vertical variance

(q) Vertical variance processed using
the bilateral filter

(r) Estimated separating regions (s) Binary mask of individual
photovoltaic modules

(t) Final result with superimposed
contours of individually detected
photovoltaic modules

Figure 3. Intermediate and final results of our photovoltaic module detection approach

of the entire module, single substrings, small solar cells,
or even tiny cell parts. Under infrared thermography, such
defects can produce various patterns. However, not all pat-
terns are a clear sign of module malfunction. For instance,

photovoltaic modules may exhibit regular patterns which are
simply characteristic to the photovoltaic module types being
used.
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Figure 4. Examples of defects in photovoltaic modules which we classify using our approach: overheated modules (left), hot spots (center),
and overheated substrings (right).

In our pipeline, we analyze all detected photovoltaic
modules within an infrared image at once using statistical
tests. We compute four sets of features, which are tested for
outliers indicating a temperature abnormality within each
photovoltaic module. A cascade of two statistical tests,
Grubbs’ [17] and Dixon’s Q test [18], is used to verify the
mutual outcome. The test cascade increases the classification
accuracy, since the tests complement each other.

The four feature sets 1) module medians, 2) grid cell
medians, 3) histogram skewness, and 4) vertical projections,
which correspond to the samples being statistically tested for
outliers, address different types of defects in photovoltaic
modules.

5.1. Detection of Defective Photovoltaic Modules

We examine four feature sets to detect and classify defects
in photovoltaic modules.

Module Medians The feature set containing median values
of each photovoltaic module, which allows to detect
completely overheated modules.

Grid Cell Medians The feature set of median values per
grid cell in a module, which can be used to identify hot
spots.

Histogram Skewness The feature set of skewness factors
of a histogram of median values per grid cell. This fea-
ture set is suitable for detecting overheated substrings.

Vertical Projections capture the irradiance profile while
considering module’s topology. Vertical projections
complement the histogram skewness feature set allow-
ing to identify overheated substrings.

Fig. 4 illustrates the different types of defects.

5.1.1 Overheated Modules

Overheated photovoltaic modules emit a considerably higher
temperature than those operating at a normal one. Deviations
from median temperature of several photovoltaic modules
within an infrared image are an indicator for such abnormal-
ities.

Due to overheating, the median temperature is typically
around 2 ◦C higher than the normal operating temperature.
However, overheating also heavily depends on the weather
conditions, which can result in temperature fluctuations of
1 ◦C to 10 ◦C. Moreover, since photovoltaic modules are con-
nected to each other, overheating in one module may cause
overheating in another one. Using the median temperature
we are able to detect such defects.

To identify the overheated modules, we compute the me-
dian temperature {mk}k=1,...,` for every photovoltaic mod-
ule k. Here, we denote ` ∈ N as the number of modules
within an infrared image. Ideally, the medians should be nor-
mally distributed. An outlier will thus indicate a temperature
abnormality. By defining the medians as a set of observa-
tions or equivalently a set of features F1, we subsequently
apply a cascade of statistical tests to detect the outliers.

5.1.2 Hot Spots

Modern photovoltaic modules often consist of 6× 10 solar
cells connected to three substrings. As a consequence, over-
heating can also affect just certain areas of a photovoltaic
module instead of the entire module surface. In this regard,
imaged temperature values within a photovoltaic module are
not independent from each other, and thus can be classified
in batch. Therefore, we divide the modules in a N × M
grid of cells, and compute the median temperature jmk ∈ R
within the corresponding temperature map regions of the
grid cell j ∈ {1, . . . , NM} associated with the module k.

Dividing the temperature map of a module into a grid
of cells provides two major benefits. First, we effectively
reduce the search space and as a consequence the compu-
tational complexity. Secondly, the grid division allows to
minimize the influence of regular patterns within a photo-
voltaic module which can negatively impact the classification
performance. A division of 9× 10 cells proved to produce
most accurate classification results for our dataset.

Similar to module medians, grid cell medians are tested
for outliers using the statistical test cascade in order to detect
overheated areas.



5.1.3 Overheated Substrings

Modern photovoltaic modules with 6× 10 solar cells consist
of three substrings with 20 solar cells each: left, middle,
and right section. When the series connection of the solar
cells belonging to one bypass diode is short-circuited, the
substring does not contribute to the power generation of the
photovoltaic module. The short circuit can be caused by
either a defective, short-circuited bypass diode, or by an
intact bypass diode overriding defective or shaded solar cells
that act as a resistor in the series connection.

In the case of an inactive substring, the incident irradia-
tion energy is not led away and heats the affected solar cells.
These in turn warm up the overlying front side glass area
of the photovoltaic module due to heat conduction. As a
result, an inactive substring causes overheated vertical pat-
terns along module’s long edge. We identify such patterns
using histogram skewness and vertical projections of grid
cell medians.

Histogram Skewness To identify substring defects, we
first build a reference histogram of grid cell medians jmk̂ of
every photovoltaic module k̂ ∈ {1, . . . , k – 1, k + 1, . . . , `} in
the infrared image excluding module k. Meanwhile, we treat
the grid cell medians jmk of each module k as the bins of a
second histogram and compute its skewness vk with respect
to the reference histogram as

vk :=
1

NM

NM∑
j=1

( jmk – m̄
s

)3

, (6)

where m̄ is the sample mean, and s the sample standard devi-
ation estimated from the reference histogram. The skewness
factors {vk}k=1,...,` correspond to the third feature set F3,
which is tested for outliers using the cascade of statistical
tests.

Vertical Projections Histogram skewness is not always a
reliable feature for detection of overheated substrings. In
infrared images, where the temperature across the detected
photovoltaic modules fluctuates heavily, or the defective
substrings appear very narrow due to strong perspective,
histogram skewness may not produce distinctive features.
Based on the work of Fang et al. [19] we therefore comple-
ment histogram skewness by the vertical projection ρ(i)

k ∈ R
of grid cell medians to detect defective substrings. The verti-
cal projections are the means along each grid column i of the
module k. For a N ×M grid of cells, we compute M vertical
projections per each detected module. To eventually iden-
tify defective substrings, the observations ρ(i)

k are tested for
outliers by the cascade of statistical tests.

5.2. Classification of Defects Using Statistical Tests

To identify defective photovoltaic modules, we apply two
statistical outlier tests to the feature sets {Fi}i=1,...,4, where

Module
medians

Grid cell
medians

Histogram
skewness

Vertical
projections

Grubbs’
test

Dixon’s
Q test

Outlier Outlier
Defective

Not
defective

Not
defective

Inlier Inlier
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Figure 5. The cascade of outlier tests, which we use to detect
various defects within a photovoltaic module using four feature
sets.

Fi := {f1, f2, . . . , fn}. By applying the statistical tests, we
examine the distribution of Fi for values that do not belong
to the normal distribution.

We use a cascade of two outlier tests: 1) Grubbs’ test
for outliers followed by 2) Dixon’s Q test, whereat Dixon’s
Q test is used to verify the outcome of Grubbs’ test (see
Fig. 5). Our null hypothesis states that there are no signifi-
cant outliers in the feature set, or in other words: there are no
temperature abnormalities within each detected photovoltaic
module. In case the null hypothesis is rejected by both tests,
the photovoltaic module is regarded as being defective.

5.2.1 Grubbs’ Test

Grubbs’ test for outliers is an iteratively performed test,
which can detect one outlier at a time. The test is applied to
the feature setFi := {f1, f2, . . . , fn} with its observations f1 ≤
f2 ≤ · · · ≤ fn arranged in ascending order. Detected outliers
are removed from the set until no outliers are detected. The
test statistic is given by

Gmax :=
fn – µ
σ

, (7)

where fn := maxF is the largest value in the set. The critical
value of the Grubbs’ test is given by

Gcrit :=
(n – 1) tα/n,n–2√

n
(

n – 2 + t2α/n,n–2

) , (8)

where tα/n,n–2 is the critical value of Student’s t-distribution
at the significance level α and ν := n – 2 degrees of freedom.
The null hypothesis is rejected, if Gmax > Gcrit, i.e., the
maximum value does not belong to the normal distribution
and thus points to a defective photovoltaic module.

We perform a total of m := n–2 tests, where the maximum
number of iterations is limited by the minimum number of
degrees of freedom ν of the t-distribution, which is 1.

To increase the classification accuracy, we introduced
two additional criteria that support Grubbs’ test decision.
First, the difference between the outlier (corresponding to



the maximum value in Fi) and sample mean must be larger
than 1 ◦C. Secondly, the absolute difference between the two
largest values in the feature set must be at least 1.5 ◦C. Both
criteria were determined empirically and in accordance with
the typical temperature fluctuations of photovoltaic modules
used in our experimental setup.

5.2.2 Dixon’s Q Test

Similar to Grubbs’ test, Dixon’s Q test is applied to ob-
servations f1 ≤ f2 ≤ · · · ≤ fn of the feature set Fi :=
{f1, f2, . . . , fn}. The test statistic is given by

Q :=
fn–1 – fn
f1 – fn

, (9)

where fn := maxF is the largest and fn–1 the second largest
value in F , respectively. f1 := minF is the smallest value
in the set. We reject the null hypothesis, if Q > Qcrit, where
Qcrit is the reference value corresponding to the cardinality
of Fi and the significance level α.

A major disadvantage of Dixon’s Q test is its limitation
to observation sets not larger than n ≤ 30, whereas Grubbs’
test for outliers can be applied to arbitrary number of ob-
servations. To deal with this deficiency, we apply Dixon’s
Q test only to a subset F ′i ⊂ Fi of most significant obser-
vations, i.e., the largest values in Fi. We limit the number
of observations in F ′i to |F ′i | = 25, which is sufficient to
classify defective modules accurately.

6. Experimental Results
The performance of the photovoltaic module detection

was evaluated on 24 infrared images. The test images were
hand labeled. The evaluation was performed by comparing
the final segmentation mask produced by the algorithm with
the hand-labeled reference mask.

The sensitivity of the detection algorithm on the test im-
ages reached 97.66 % and the specificity 95.54 %, which
indicates an above average performance of the algorithm at
identifying true positives and true negatives. The F1 score is
a measure of accuracy incorporating both the precision and
recall and can be used as a single performance test for posi-
tive classifications. F1 score is defined as a weighted average
between precision and recall which reached 92.76 % for our
dataset. We additionally computed the Matthews correlation
coefficient (MCC), which yields balanced results even if the
true and negative classes are of different sizes. This was
of interest for infrared images which contained few photo-
voltaic modules and thus only few true positives. An MCC
of 89.55 % indicated a high correlation between ground truth
and algorithm’s predictions. Table 1(a) summarizes these
results.

The classification of defects in photovoltaic modules was
evaluated on 37 infrared images containing 1544 modules

Measure p

Sensitivity 97.66 %
Specificity 95.54 %
Precision 88.34 %
Recall 97.66 %
Accuracy 96.19 %
MCC 89.55 %

F1 score 92.76 %

(a) Detection of photovoltaic
modules

Measure p

Sensitivity 97.83 %
Specificity 99.67 %
Precision 90.20 %
Recall 97.83 %
Type I error 0.27 %
Type II error 2.17 %

F1 score 93.88 %

(b) Classification of defects in
photovoltaic modules

Table 1. The performance of our photovoltaic module detection and
analysis pipeline

which were labeled by hand. For Grubbs’ test we used a sig-
nificance level of αG := 0.01 to classify overheated modules.
For remaining features, a significance level of αG := 0.1
provided the best performance. Concerning Dixon’s Q test, a
significance level of αQ := 0.01 was used for all the features.
This parametrization resulted in an F1 score of 93.88 % in-
dicating an above average classification performance. The
results of the classification component are summarized in
Table 1(b).

7. Conclusions
The proposed image processing pipeline for the automatic

evaluation of aerial infrared imagery of photovoltaic power
plants provides a solid basis for future automatic monitoring
and early detection systems. The two components for detec-
tion of photovoltaic modules and classification of defects in
modules are fundamental to any future analysis software.

As shown in Fig. 3(t), our image processing pipeline
detects individual photovoltaic modules within an aerial in-
frared image reliably. Also, major temperature abnormalities
which are often caused by module defects are detected and
classified accurately into three main groups: overheated
modules, hot spots, and overheated substrings.

In combination with further data on the installed pho-
tovoltaic modules and information about the spatial and
electrical layout of the photovoltaic power plant, the detec-
tion of photovoltaic modules as well as the interpretation of
identified defects can be optimized.
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