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Abstract Locally adaptive differential frames (gauge

frames) are a well-known effective tool in image analy-

sis, used in differential invariants and PDE-flows. How-

ever, at complex structures such as crossings or junc-

tions, these frames are not well-defined. Therefore, we

generalize the notion of gauge frames on images to gauge

frames on data representations U : Rd o Sd−1 → C
defined on the extended space of positions and orien-

tations, embedded as a Lie group quotient in the roto-

translation group SE(d), d = 2, 3. This allows for mul-

tiple well-defined frames per position, one for each ori-

entation. We compute these frames via local exponen-

tial curve fits in the extended data representations in

SE(d). These curve fits minimize first or second order

variational problems which are solved by spectral de-

composition of, respectively, a structure tensor or Hes-

sian defined on SE(d). We include these gauge frames

in crossing preserving PDE-flows and differential invari-

ants acting on extended data representation U , and we
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show many improvements over their counterparts act-

ing on the image domain. Furthermore, we show ad-

vantages of including gauge frames over the standard

frame of left-invariant vector fields on SE(d). Applica-

tions include crossing-preserving vesselness filtering and

improved segmentations of the vascular tree in retinal

images, and new 3D extensions of coherence-enhancing

diffusion via invertible orientation scores.

Keywords Roto-Translation Group · Gauge Frames ·
Exponential Curves · Nonlinear Diffusion · Left-

invariant Image Processing · Orientation Scores

1 Introduction

Many existing image analysis techniques rely on differ-
ential frames that are locally adapted to image data.

This includes methods based on differential invariants

[54,39,32,47], partial differential equations [54,63,38],

and non-linear and morphological scale spaces [13,12,

64], used in various image processing tasks such as track-

ing and line detection [6], corner detection and edge

focussing [39,8], segmentation [58], active contours [15,

16], feature based clustering etc. These local coordinate

frames provide differential frames directly adapted to

the local image structure via a Hessian or a structure

tensor. Their primary benefit is that they allow to in-

clude anisotropy and curvature in a Euclidean invariant

way. They induce complete sets of differential invari-

ants, [32], which are typically applied in greyscale imag-

ing for segmentation [58,50], low-level object recogni-

tion, etc. See Fig.1, where we have depicted local adap-

tive frames (also known as ‘gauge frames’ according to

the terminology used in [32, Section 3.3.3] and [10,39])

based on eigenvector decomposition of the Gaussian

Hessian of the MR-image in the background. It is some-
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Fig. 1: Left: Locally adaptive frames (gauge frames) in

the image domain based on Gaussian Hessians. Given

a grey-scale image f we compute Gaussian Hessian

Hsf(x) = (Gs ∗ Hf)(x) and its eigensystem provides

us a basis {∂a|x , ∂b|x} for Tx(R2) at each location

x ∈ R2 “gauged” with image f . Right: Such gauge

frames can be used for adaptive anistropic diffusion

and geometric reasoning. The problem however is that

at isotropic, more complex structures such as blob-

structures/crossings the gauge frames are ill-defined

causing weird fluctuations.

times problematic that such locally adapted differential

frames are directly placed in the image domain Rd, as

at the vicinity of complex anisotropic structures, e.g.

crossings, textures, bifurcations, one typically requires

multiple local spatial coordinate frames, cf. Fig. 2. To

this end there exist many image analysis and cortical

modeling techniques that extend the domain of an im-

age to the joint space of positions and orientations

Rd o Sd−1 := SE(d)/({0} × SO(d− 1)), (1)

embedded as the partition of all left-cosets in the roto-

translation group SE(d) on Rd. Such techniques rely

on various kinds of lifting, such as coherent state trans-

forms (orientation scores), continuous wavelet trans-

forms [22,26,55,6], orientation lifts [65,11], or orienta-

tion channel representations [31]. The two key advan-

tages of this image domain extension is that processing

in the space Rd o Sd−1 of positions and orientations

allows

1. to disentangle oriented structures involved in cross-

ings, and to include curvature, cf.Fig.2, Fig.4, Fig.5.

2. to include stochastic PDE models for the alignment

of all local orientations in the image, see e.g. [49,65,

4,25,19,26,11,5,53,55,62,17,56,46].

In this article we will not discuss in detail on how such

a new image representation or lift

U : Rd o Sd−1 → C

is to be constructed from grey-scale image f : Rd → R,

and we assume it to be a sufficiently smooth given

Fig. 2: We aim for adaptive anisotropic diffusion of

images (here d = 2) which takes into account curva-

ture. At areas with low orientation confidence (in blue)

isotropic diffusion is required, whereas at areas with

high orientation confidence (in red) anisotropic diffu-

sion with curvature adaptation is required. Application

of locally adaptive frames directly in the image do-

main suffers from interference (3rd column), whereas

application of locally adaptive frames in the domain

RdoSd−1 of distributions U (e.g. invertible orientation

scores, U =Wψf , cf.Fig. 3) allows for adaptation along

all separate elongate structures (4th column).

Fig. 3: The real part of an invertible orientation

score Wψf : SE(2) → C [22,33] (via a Coherent

State-transform [2]) of an example image f , given by

Wψf(x, θ) =
∫
R2 ψ(R−1θ (x− y))f(y) dy using some

cake-wavelet ψ, cf. [6].

input. Here |U(x,n)| is to be considered a probabil-

ity density of finding a local orientation (i.e. an elon-

gated structure) at position x ∈ Rd with orientation

n ∈ Sd−1. In case U is obtained via a coherent state

transform of a grey-scale image (also known as invert-

ible orientation score), cf. [2,26,6,33], which we will

take as default, one typically takes the real part or

the modulus [33, ch.5.3] for locally optimal frames, see

Fig. 3.
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In case one has to deal with more complex diffusion

weighted MRI-data, the function U can be obtained

after a modeling procedure (e.g. via the common ap-

proaches [59,60,1,57]).

1.1 Goals

In this article, our quest is to find locally optimal dif-

ferential frames associated to the smooth function

U : Rd o Sd−1 → R, relying on similar Hessian- and/or

structure-tensor type of techniques for gauge frames on

images, recall Fig.1. The overall pipeline of including lo-

cally adaptive frames in suitable operators Φ (e.g. diffu-

sion operators Φ = Φt with diffusion time t > 0) in ori-

entation lifts U : RdoSd−1 → R of images f : Rd → R,

and the resulting effective image processing Υ , is de-

picted, for d = 2, in Fig. 4. For d > 2 the same pipeline

applies. With this overall pipeline in mind, the main

goals of this article are:

1. To overcome the problem of single locally adaptive

image frames per position on Rd, and to general-

ize well-known approaches via structure tensor or

Hessian to Rd o Sd−1, d ∈ {2, 3}.
2. To set up adaptive local frames for each pair (x0,n0)

in the joint space of positions and orientations, based

on specific curves t 7→ (x(t),n(t)) that locally fit the

data (x,n) 7→ U(x,n) best.

3. To formalize best local exponential curve fits and to

include them in data-driven diffusions via efficient

algorithms.

4. To extend adaptation for curvature and deviation

from horizontality in 2D, cf. [33], to 3D, and to in-

vestigate the usage of structure tensor or Hessian.

5. To employ our locally optimal frames in medical

imaging in improved crossing-preserving diffusions

U 7→ Φt(U) and improved differential invariants.

In order to achieve these goals, one must rely on the

semi-direct product group structure on the domain Rdo
Sd−1, Eq.(1). Therefore, in the next subsection we pro-

vide some preliminaries on this group structure. Sub-

sequently, in Subsection 1.3, we illustrate the notion of

best exponential curve fits (see the blue line and blue

formula in Fig. 4), where for the sake of illustration we

consider the basic case d = 2 first.

1.2 Preliminaries on Domain Rd o Sd−1

Now let us assume input U is given and let us first con-

centrate on its domain. This domain equals the joint

space RdoSd−1 of positions and orientations of dimen-

sion 2d − 1, and is embedded as a Lie group quotient

(1) in the group of rotations and translations SE(d) =

Rd o SO(d) of dimension nd = d(d + 1)/2. The group

SE(d) is endowed with semi-direct group product

gg′ = (x,R)(x′,R′) = (Rx′ + x,RR′), (2)

for all g = (x,R) and g′ = (x′,R′) ∈ SE(d). For ef-

fective alignment-modeling it is crucial not to consider

the space of positions and orientations as a flat Carte-

sian product without group structure, see e.g. [24, fig.7]

and [28]. Instead the non-commutative relation in (2)

between rotations and translation is to be included in

alignment modeling and visual perception. Therefore

we model the joint space of positions and orientations

as the Lie group quotient (1), where we identify

SO(d− 1) ≡ Stab(a) = {R ∈ SO(d) | Ra = a}

with some a priori set reference axis a ∈ Sd−1, with

Sd−1 = {a ∈ Rd | ‖a‖ = 1} to itself. Throughout this

article we set this a priori reference axis as follows:

d = 2⇒ a = (1, 0)T , d = 3⇒ a = (0, 0, 1)T . (3)

Within the Lie group quotient structure (1), two rigid

body motions g = (x,R), g′ = (x′,R′) ∈ SE(d) are by

definition equivalent if

g′ ∼ g ⇔ h := (g′)−1g ∈ {0} × SO(d− 1)⇔

x− x′ = 0 and ∃Rh∈SO(d−1) : (R′)−1R = Rh.

Furthermore, one has the action � of g = (x,R) ∈
SE(d) onto (y,n) ∈ Rd × Sd−1, which is defined by

g � (y,n) = (x,R)� (y,n) := (x + Ry,Rn).

As a result it is readily verified that

g′ ∼ g ⇔ g′ � (0,a) = g � (0,a).

Thereby, a single element in Rd o Sd−1 can be con-

sidered as the equivalence class of all rigid body mo-

tions that map reference position and orientation (0,a)

onto (x,n). Similar to the common identification of

S2 ≡ SO(3)/SO(2), we denote elements of the Lie

group quotient R3 oS2 by (x,n). In the basic 2D case,

d = 2, we have R2 o S1 ≡ SE(2), and we do not have

to worry about the quotient structure. In the 3D case

d = 3 things become much more subtle: relevant sub-

routines will be expressed in the extended space SE(3),

and this leaves the obligation to check if the overall rou-

tine in R3 o S2 is legal [28], i.e. independent on choice

of representant in each left coset.
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Fig. 4: The overall pipeline of image processing f 7→ Υf via left-invariant operators Φ, where we compute per

element g = (x, y, θ) a best exponential curve fit γc
∗

g (t) (in blue, with spatial projection in red) with tangent

γ̇c
∗

g (0) = c∗(g) = (c1, c2, c3)T , with c∗(g) the optimal tangent at g. Based on this fit we construct for each g a

local frame {B1|g , B2|g , B3|g}. This provides a field of local frames g 7→ {B1|g , B2|g , B3|g} used in our operators

Φ on the lift (here Φ is a non-linear adaptive diffusion operator with fixed diffusion time).

1.3 Preliminaries on Exponential Curve Fits

In case d = 2 we have the left-invariant vector fields

A1|(x,y,θ) := cos θ ∂
∂x + sin θ ∂

∂y ,

A2|(x,y,θ) := − sin θ ∂
∂x + cos θ ∂

∂y ,

A3|(x,y,θ) := ∂
∂θ .

(4)

As explained in previous works [26,22] they form a first

natural frame of reference in the domain of U , that

we aim to adapt later. The corresponding dual frame

{ωi}3i=1 ∈ T ∗(SE(2)) is given by 〈ωi,Aj〉 = δij and thus

ω1 = cos θdx+ sin θdy,

ω2 = − sin θdx+ cos θdy,

ω3 = dθ.

(5)

Remark 1 Throughout this article we take the algebraic

viewpoint on tangent vectors γ̇(t) on SE(d), i.e. we con-

sider them as differential operators on locally defined

functions (as is commonly done in differential geome-

try, see e.g. [3]):

(γ̇(t))(φ) := d
dtφ(γ(t)) = 〈dφ(γ(t)), γ̇(t)〉

=
nd∑
i=1

γ̇i(t) Ai|γ(t) φ ∈ R (6)

for γ̇(t) =
nd∑
i=1

γ̇i(t) Ai|γ(t) in tangent space Tγ(t)(SE(d)),

and φ smooth and locally defined on an open set around

γ(t), with derivative dφ =
nd∑
i=1

Aiφ ωi ∈ T ∗γ(t)(SE(d)),

and with nd := dim(SE(d)) = d(d + 1)/2. Note that

n2 = 3 and n3 = 6.

Let us first consider the notion of exponential curves in

SE(2), which we will employ in our frame-adaptation.

Let (c1, c2, c3)T ∈ R3 be a given column vector.

Then the unique exponential curve passing trough g =

(x, y, θ) with initial velocity c(g) =
3∑
i=1

ci Ai|g equals

γcg (t) = g e
t

3∑
i=1

ciAi
, (7)
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with Ai = Ai|e denoting the tangent vector at unity

element e = (0, 0, 0) in respectively x, y, θ-direction:

A1 = ∂x|e, A2 = ∂y|e, A3 = ∂θ|e. In fact such ex-

ponential curves satisfy

γ̇(t) =

3∑
i=1

ci Ai|γ(t) , (8)

and thereby have constant velocity in the moving frame

of reference, i.e. γ̇i = ci in Eq. (6). Via Eq. (8) and

Eq. (4), and the method of characteristics, the expo-

nential curves can be expressed as:

t 7→ g0 e
t(c1A1+c

2A2+c
3A3) = (x(t), y(t), θ(t)) =(

x0 + c2

c1 (sin(c1t+θ0)− sin(θ0))

+ c3

c1 (cos(c1t+θ0)− cos(θ0)) ,

y0 − c2

c1 (cos(c1t+θ0)− cos(θ0))

+ c3

c1 (sin(c1t+θ0)− sin(θ0)) , θ0 + tc1
)
,

(9)

for the case c1 6= 0, and all t ≥ 0, and

g0e
t(c2A2+c

3A3) = (x0 + t(c2 cos θ0 − c3 sin θ0),

y0 + t(c2 sin θ0 + c3 cos θ0), θ0),

for the case c1 = 0, where g0 = (x0, y0, θ0) ∈ SE(2). In

both cases we must impose

‖c‖2µ := ‖Mµc‖2 = µ2|c1|2 + µ2|c2|2 + |c3|2 = 1,

with Mµ = diag(µ, µ, 1) ∈ R3×3.
(10)

in order to ensure that t equals the arc length parameter

in the Riemannian manifold (SE(2),Gµ) with

Gµ|γ(t) (γ̇(t), γ̇(t)) = µ2
2∑
i=1

|γ̇i(t)|2 + |γ̇3(t)|2,

where γ̇(t) =
3∑
i=1

γ̇i(t) Ai|γ(t) ,
(11)

with µ > 0 a stiffness parameter balancing between

costs of spatial motion relative to cost of angular mo-

tion, and where γ denotes any smooth curve in SE(2).

Remark 2 Exponential curves are auto-parallel w.r.t.

the Cartan connection [24, Thm 12]. They do not coin-

cide with geodesics (which have parallel momentum [24,

Thm 12]) in the Riemannian manifold (SE(2),Gµ). So

they are “straight curves” in a curved Cartan geometry,

but in general not the shortest curves in (SE(2),Gµ).

In this article exponential curves (being 1-parameter

subgroups) have our primary interest (rather than the

geodesics) as left-invariant PDE-evolutions locally take

place along these curves, even in the non-linear setting.

Therefore, in this article, we consider fitting exponential

Fig. 5: Local exponential curve fits in the real part of an

invertible orientation score (as depicted in Fig. 3). Iso-

surfaces (in red) with relatively large iso-values in the

orientation score concentrate around horizontal curves

(i.e. lifted curves with θ(s) = arg{ẋ(s) + iẏ(s)}) lifted

from the plane. Left: In case of crossing straight lines,

the tangent c = c(x, y, θ) of local exponential curve fit

at a centerline-point (x, y, θ) (where dH = 0) at each

line, is aligned with A1|(x,y,θ). Right: At centerlines

of curved structures, the tangent c of the exponen-

tial curve fit is tilted in the horizontal tangent plane

span{A1,A3} and includes curvature adaptation.

curves rather than geodesics. The precise details on how

to compute such best exponential curve fits in SE(d)

will follow in Section 3 (for d = 2) and in Section 4 (for

d = 3).

In Fig. 5 you see a schematic example where the

tangent vector c =
3∑
i=1

ciAi of a best exponential curve

does not coincide with A1. Anisotropic flow along such

an exponential curve allows us to include curvature κ

and deviation from horizontality dH , [33,26]. In Fig. 5,

we only have curvature adaptation and no deviation

from horizontality, i.e. dH = 0. In case d = 2 we have

κ = c3 sign(c1)√
|c1|2+|c2|2

, and dH = arccos | c1√
|c1|2+|c2|2

|. (12)

Their practical advantage in 2D imaging has been shown

in previous work [33, ch:6.5],[26], and is quickly shown

in Fig. 6. In this article we generalize to d ≥ 2 and we

propose several optimization problems and formal vari-

ational methods solving them to find such best expo-

nential curve fits. We distinguish between two methods:

1. First order variation of the data along the exponen-

tial curve should be minimal, solved by the eigenvec-

tor of a generalized structure tensor of the extended

data representations on SE(d).

2. Second order variation of the data along the ex-

ponential curve should be minimal, solved by the

eigenvector of a generalized regularized Hessian of

the extended data representations on SE(d).
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Fig. 6: Top: The advantage of including deviation from

horizontality dH in crossing-preserving flows via in-

vertible orientation scores U : SE(2) → C, Fig. 3, is

that orientation bias towards sampled orientations is

reduced if only 4 orientations are used. Bottom: The

advantage of including curvature κ in the crossing-

preserving flows. From left to right: input image f , pro-

cessing without (middle) and with (right) inclusion of

(dH , κ) via locally adaptive frame (14) based on 2nd

order local best exponential curve fit γcg (·) to data |U |.

1.4 From Best Exponential Curve Fit to Locally

Adaptive Frame

For now let us assume that for each g ∈ SE(d) we have

computed the tangent vector c(g) of the best exponen-

tial curve fit to extended data representation U . Next

we illustrate how we use c(g) to construct a normalized

full differential frame

{B1|g , B2|g , . . . , Bnd |g}, (13)

with nd = dim(SE(d)) = d(d+1)/2. We stress that de-

spite the inclusion of local data adaptation, the formal

left-invariance of our algorithms is maintained.

To get a first grasp on how to construct a locally

adaptive frame from a single best exponential curve fit,

we start with considering the basic case d = 2, where

inclusion of second order best exponential curve fits

have been studied in previous works [34,26], and where

Fig. 7 illustrates the geometrical idea. Note that these

techniques are recently improved/refined to the mul-

tiple scale setting in [55], which we will also consider

later in the application section. However, here we will

present the SE(2)-case in such a way that generaliza-

tions to d ≥ 2 are in reach. These generalizations are

studied and employed later in this article (for a quick

preview on the case d = 3 see e.g. Fig. 9, 21 and 24)

Consider d = 2 and Fig. 7, where both the frame

{A1,A2,A3} and the locally adaptive frame {B1,B2,B3}
in the tangent bundle T (SE(2)) are depicted. The ex-

plicit relation between the normalized Gauge frame

{B1,B2,B3} in T (SE(2)) and the left-invariant vector

field frame {A1,A2,A3} is given by

B := (Rc)TM−1
µ A, (14)

with A := (A1,A2,A3)T , B := (B1,B2,B3)T , and with

rotation matrix Rc = R2R1 ∈ SO(3) given by

R1 =

 cos dH − sin dH 0

sin dH cos dH 0

0 0 1

,R2 =

 cos ν 0 sin ν

0 1 0

− sin ν 0 cos ν

 ,

(15)

with deviation from horizontality dH given by Eq. (12)

and with spherical angle ν = arg(µ+ iκ) ∈ [−π/2, π/2].

The multiplication M−1
µ A ensures that each of the vec-

tor fields in the locally adaptive frame B = (B1,B2,B3)T

is normalized w.r.t. the Gµ-metric, recall (10).

Remark 3 When imposing isotropy (w.r.t. metric Gµ)

in the plane orthogonal B1 (e.g. done in the crossing-

preserving diffusions in [26,33]), the precise choice of

Rc ∈ SO(3) mapping (1, 0, 0)T onto (µc1, µc2, c3)T is

not relevant. However, in practice one may not insist

Fig. 7: Locally adaptive frame {B1|g , B2|g , B3|g} (in

blue) in Tg(SE(2)) (with g placed at the origin) is

obtained from frame {A1|g , A2|g , A3|g} (in red) and

c(g), via normalization and two subsequent rotations

Rc = R1R2, see Eq.(14), revealing deviation from hor-

izontality dH in R1, spherical angle ν, and curvature κ

in Eq. (15). Vector field A1 takes a spatial derivative

in direction n, whereas B1 takes a derivative along the

tangent c of the local best exponential curve.
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on such isotropy, and then there exists only one natu-

ral and efficient choice: Rc = R1R2 which is the 3D-

rotation which maps (1, 0, 0)T onto (c1, c2, c3)T in such

a way that (0, 1, 0)T ↔ A2 is mapped onto B2 which

is again within the spatial tangent plane. Note that

dH = 0⇔ B2 = µ−1A2.

The generalization to the d-dimensional case of the con-

struction of locally adaptive frame {Bi}ndi=1 from {Ai}ndi=1

and the tangent vector c (which we represent by a col-

umn vector) of a given best exponential curve fit γ̃c(·)
to data Ũ(x,R) := U(x,Ra) is surprisingly simple as

briefly explained in Appendix A. For explicit formulae

of the left-invariant vector fields in the d-dimensional

case see [30], and for d = 3 see [29]. For a quick illustra-

tion of locally adaptive frames in d = 3 see Figure 24

in Appendix A.

1.5 Structure of the Article

In the introduction (and Appendix A) we have explained

how to derive a locally adaptive frame {B1, . . .Bnd} in

SE(d) from a single best exponential curve fit γcg (·) to

data Ũ : SE(d)→ R. Therefore, the body of this article

is devoted to theory and algorithms to construct these

best exponential curve fits at each g ∈ SE(d).

As the construction of local best exponential curve

fits to data on SE(d) is technical (in particular for

d = 3), we first reformulate the well-known approach

to Gauge frames in smooth images f : Rd → R via

the structure tensor from a group theoretical viewpoint

in Section 2. This gives a roadmap towards SE(2)-

extensions explained in Section 3, where we deal with

new exponential curve fits of the 1st order in Subsec-

tion 3.1 computed via a structure tensor, and exponen-

tial curves of 2nd order in Section 3.2. The 2nd order

exponential curves are computed via a symmetric sum

or a symmetric product of a non-symmetric Hessian.

The new technical extension to SE(3) is done in

Section 4. In Section 4.2 we provide a detailed dif-

ferential geometrical approach to first order best ex-

ponential curves in SE(3), including formal parallel

transport, well-posed construction of optimal curves on

the quotient R3 o S2 = SE(3)/({0} × SO(2)), and

global optimality w.r.t. the corresponding energy func-

tional. We also prove that in order to obtain exponen-

tial curves which are both torsionfree and which allow

for well-posed projection on R3 o S2, one must resign

to a two-step optimization algorithm presented in Sub-

section 4.2.3. This provides excellent local exponential

curve fits, even if the data includes elongated structures

with torsion. In Section 4.3 we present second order

best exponential curves in SE(3) minimizing an energy

functional and computed via the symmetric sum of the

Hessian. Again we must rely on a two-step optimization

procedure for torsion-free exponential curve fits, similar

to the algorithm presented in Subsection 4.2.3. We also

indicate serious problems of extending the symmetric

product approach [34,26] from SE(2) to SE(3).

Subsequently, in Section 5 we consider new experi-

ments regarding medical imaging applications and fea-

sibility studies that show the advantage of including lo-

cally adaptive frames over non-adaptive left-invariant

frames in invertible, (multiple-scale) orientation scores.

In this section we distinguish between the SE(2) case,

with clear advantages in crossing-preserving multi-scale

vesselness filters and subsequent vessel detection in reti-

nal imaging as we will show in Subsection 6.1, and

the SE(3)-case where we include first feasibility studies

that show proof of concept of the advantage of crossing-

preserving coherence enhancing diffusion steered by lo-

cally adaptive frames via invertible 3D orientation scores

on artificial dataset defined on R3.

Finally, we provide conclusions and envisioned 3D

medical imaging applications in future work.

2 Optimal Exponential Curves in Rd

In this section we reformulate the classical construc-

tion of a locally adaptive frame to image f at location

x ∈ Rd, in a group-theoretical way. This reformulation

seems technical at first sight, but helps in understand-

ing the formulation of best projected exponential curves

in the higher dimensional Lie group SE(d). We will

take the structure tensor approach [9,45], which will be

shown to yield first order best exponential curve fits.
The Gaussian gradient

∇sf = ∇Gs ∗ f, (16)

with Gaussian kernel Gs(x) = (4πs)−d/2e−
‖x‖2
4s , is used

in the definition of structure matrix:

Ss,ρ = Gρ ∗ ∇sf (∇sf)T ,

with s = 1
2σ

2
s , and ρ = 1

2σ
2
ρ the scale of regularization

typically yielding a non-degenerate and positive definite

matrix. For all x ∈ Rd we have optimal tangent vector

c∗(x) = arg min
c ∈ Rd
‖c‖ = 1.

∫
Rd
Gρ(x−x′)|∇sf(x′) · c|2dx′

= arg min
c∈Rd,‖c‖=1

cTSs,ρ(x)c.

(17)

The solution to optimization problem (17) is obtained

by the Euler-Lagrange equation

Ss,ρ(x) c∗(x) = λ1c
∗(x),



8 Duits, Janssen, Hannink, Sanguinetti

and the minimizer is found as the eigenvector c∗(x)

with the smallest eigenvalue.

Now let us put Eq. (17) in group-theoretical form.

This is helpful in our subsequent generalizations to SE(d).

On Rd exponential curves are straight lines:

γcx(t) = x + expRd(tc) = x + tc, (18)

and on T (Rd) we impose standard flat metric tensor

G(c,d) =
∑d
i=1 c

idi. Now (17) can be rewritten as

c∗(x) = arg min
c∈Rd,‖c‖=1∫

Rd
Gρ(x− x′)

∣∣∣ d
dt (Gs ∗ f)(γcx′,x(t))

∣∣
t=0

∣∣∣ dx′,
(19)

where the curve

t 7→ γcx′,x(t) = γcx(t)− x + x′ = γcx′(t) (20)

is a parallel transported curve associated to t 7→ γcx(t).

Definition 1 Let c∗(x) ∈ Tx(Rd) be the minizer in

(19). We say γx(t) = x + etc
∗(x) is the best exponential

curve fit to image-data f : Rd → R at location x.

3 Optimal Exponential Curves in SE(2)

As mentioned in the introduction we distinguish be-

tween two approaches: a first order optimization ap-

proach based on a structure tensor on SE(2), and a

second order optimization approach based on a Hes-

sian on SE(2). A comparison of the two approaches

(with the same amount of Gaussian blurring) on basic

test images has been presented in previous work [33,

ch:5.5.1, fig.5.5–5.7]. These experiments show that for

large curvatures the 2nd order approach is preferable,

whereas for small curvatures the 1st order approach is

preferable in terms of accuracy and stability.

A formal theoretical exponential curve optimization

formulation of the first order approach (as done for the

second order approach in [26] based on a Hessian) via

the structure tensor is missing both in [33] and in [37],

and is presented here in the next subsection. It also

serves as an introduction to its more technical SE(3)-

extension in Section 4.2.

3.1 Exponential Curve Fits in SE(2) of the 1st Order

According to1 in [33, 5.3.2] the 3×3 structure matrix at

g = (x,Rθ) ∈ SE(2) is, in the fixed coordinate system

1 Correcting for a minor typo θ 7→ −θ in [33, Eq.5.21], and
adapting for scaling see Remark 4.

given by

Ssp,so,ρp,ρo(g) =

(
Rθ 0

0 1

)T ∫
S1

∫
R2

Gρp,ρo(x− x′, θ − θ′)µ−2∂xV

µ−2∂yV

∂θV

 (µ−2∂xV, µ
−2∂yV, ∂θV )

∣∣∣∣∣∣
h=(x′,θ′)

dx′dθ′
(

Rθ 0

0 1

)
, with V = Gsp,so ∗ U,

(21)

with sp, ρp > 0 isotropic scales on R2 and so, ρo > 0

scales on S1 of separable Gaussian kernelsGρp,ρo(x, θ) =

Gρp(x)Gρo(θ), and separable Gsp,so on R2 × S1. We

assume that U , ρ0, ρp, and g, are chosen such that

Ssp,so,ρp,ρo(g) is a non-degenerate matrix.

Remark 4 The scalings are naturally included in the

gradient, since by definition the gradient ∇U is the

Riesz representation vector of derivative dU and indeed

∇U := G−1µ dU

= µ−2A1U A1 + µ−2A2U A2 +A3U A3,
(22)

where we recall Eq. (11). By Eq. (4), (79) we have

A|g=(x,R) = (R⊕ 1)T (∂x, ∂y, ∂θ)
T
∣∣
g=(x,R)

.

Thus the structure tensor field on SE(2) equals2

Ssp,so,ρp,ρo(g) =
∫

SE(2)

Gρp,ρo(h
−1g)

(RTR′ ⊕ 1)∇V (h)⊗ (RTR′ ⊕ 1)∇V (h) dµ(h),
(23)

with dµ(h) = dx′dθ′, h = (x′,R′) with R′ = Rθ′ .

Now finding the normalized eigenvector c∗(g) with small-

est eigenvalue of this structure matrix Ssp,so,ρp,ρo(g)

solves an optimization problem. Akin to (20) we shall

rely on parallel transported exponential curve

t 7→ γch,g(t) := γ
((R′)TR⊕1)c
h (t), (24)

with c = (c1, c2, c3)T ∈ R3, and for all g = (x,R) and

all h = (x′,R′), which starts at neighboring location

h ∈ SE(2) (at t = 0) and which carries the same an-

gular velocity and spatial velocity as the exponential

curve t 7→ γgh(t) departing from g.

2 For the sake of simplicity, in Eq. (23) we have omitted
the obvious flat parallel-transport, e.g. applied in (21), which
brings tensors on Th(SE(2)) to tensors on Tg(SE(2)).
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Theorem 1 The normalized eigenvector Mµc
∗(g) with

smallest eigenvalue of the rescaled structure matrix

MµS
sp,so,ρp,ρo(g)Mµ provides the solution c∗(g) of the

following optimization problem:

c∗(g) = arg min
c∈R3,‖c‖µ=1∫

SE(2)

Gρp,ρo(h
−1g) ·

∣∣∣ ddtV (γch,g(t))
∣∣∣
t=0

∣∣∣2 dµ(h),

with V = Gsp,so ∗ U and dµ(x′,Rθ′) = dx′dθ′.

Proof By the construction of (24) and the fundamen-

tal property (8) of exponential curves we have that∣∣∣ ddtV (γch,g(t))
∣∣∣
t=0

∣∣∣2 =
∣∣Gµ(∇V (h), ((R′)TR⊕ 1)c)

∣∣2 =

cTMµ2((R)TR′⊕1)∇V (h) (((R)TR′⊕1)∇V )TMµ2c,

with γch,g(0) = h, and where because of normalization

‖c‖µ = 1, t denotes the Riemannian arclength in Rie-

mannian manifold (SE(2),Gµ). As a result the convex

optimization functional can be written as

E(c) := cTMµ2Ssp,so,ρp,ρoMµ2c,

whereas the boundary condition can be written as

ϕ(c) := cTMµ2c− 1 = 0.

Euler-Lagrange gives ∇E(c∗) = λ1∇ϕ(c∗), with λ1 the

smallest eigenvalue of MµSsp,so,ρp,ρo(g)Mµ and we have

Mµ2Ssp,so,ρp,ρo(g)Mµ2c∗(g) = λ1 Mµ2c∗(g)⇔
MµSsp,so,ρp,ρo(g)Mµ(Mµc∗(g)) = λ1(Mµc∗(g)),

(25)

from which the result follows. �

3.2 Exponential Curve Fits in SE(2) of the 2nd Order

We now discuss the second order optimization approach

based on a Hessian matrix. At each g ∈ SE(2) we define

a 3× 3 non-symmetric Hessian matrix

Hρp,ρo,sp,so(g) = Mµ−2

(
Gρp,ρo ∗ [AjAi(V )]

)
(g) Mµ−2 ,

with V = Gsp,s0 ∗U , and where i denotes the row index

and where j denotes the column index, and where both

Gsp,so and Gρp,ρo are Gaussian kernels with isotropic

spatial part so one can use ‘flat’ R2 × S1-convolutions

or ‘shift-twist’ SE(2)-convolutions.

Remark 5 In contrast to the structure tensor in the 1st

order exponential curve fit, the mapping U 7→ Hsp,so,ρp,ρo

in the 2nd order approach is linear, and thereby

Hρp,ρo,sp,so = H ρp+sp , ρo+so ,0,0,

and thus we may exclude the (ρp, ρo) and write

Hsp,so := H0,0,sp,so .

Later, in a non-linear extension of the 2nd order ap-

proach the parameters will appear again.

Remark 6 As the Hessian matrix is non-symmetric, we

will consider two optimizations next. The first one, in

Theorem 2 is linear in U , and involves the symmetric

sum. The second one, in Theorem 3, is non-linear in U

and involves the symmetric product.

Theorem 2 Let g ∈ SE(2) be such that the eigenval-

ues of the symmetrized Hessian

1

2
Mµ(Hsp,so(g) + (Hsp,so(g))T )Mµ

have the same sign. Then the normalized eigenvector

Mµc
∗(g) with smallest eigenvalue of the symmetrized

Hessian matrix provides the solution c∗(g) of the fol-

lowing optimization problem:

c∗(g) = arg min
c∈R3,‖c‖µ=1

∣∣∣ d2

dt2V (γcg(t))
∣∣∣
t=0

∣∣∣ ,
with V = Gsp,so ∗ U .

Proof Similar to the proof of Theorem 1 we have:

∣∣∣ d2

dt2V (γcg (t))
∣∣∣
t=0

∣∣∣ =

∣∣∣∣ d
dt

3∑
i=1

ciAiV (γcg (t))

∣∣∣∣
t=0

∣∣∣∣
=

∣∣∣∣∣ 3∑
i,j=1

cicjAj(AiV )(g)

∣∣∣∣∣ =
∣∣cTMµ2Hsp,so(g)Mµ2c

∣∣
= 1

2

∣∣cTMµ2(Hsp,so(g) + (Hsp,so(g))T )Mµ2c
∣∣ ,

for V = Gsp,so∗U , and again boundary condition ‖c‖µ =

cTMµ2c = 1, and the result follows via Euler-Lagrange,

(via left-multiplication with M−1
µ , Eq. (25). �

In previous work of the first author and Franken [34]

best exponential curve fits were based on Hessians of

the modulus of an orientation score in order to have

phase invariance across lines. In retrospect, this choice

may not have been optimal as this imposes little varia-

tions across lines and if sp > 0 is chosen too small the

eigenvector with minimal eigenvalue of the Hessians can

point in the wrong direction. On top of this, extensive

experiments with the Hessian based on the modulus

U = |Wψf | of orientation score Wψf : SE(2)→ C, did

show us that the second order approach in Theorem 2

worked less effective than the following approach (based

on the symmetric product).
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Theorem 3 Let ρp, ρo, sp, so > 0. The normalized eigen-

vector Mµc
∗(g) with smallest eigenvalue of matrix

Mµ

(
Gρp,ρo ∗ (Hsp,so(·))TMµ2Hsp,so(·)

)
(g)Mµ

provides the solution c∗(g) of optimization problem:

c∗(g) = arg min
c∈R3,‖c‖µ=1

∫
SE(2)

Gρp,ρo(h
−1g)·

Gµ

(
d
dt∇V (γcg(t))

∣∣
t=0

, d
dt∇V (γcg(t))

∣∣
t=0

)
dµ(h),

with again V = Gsp,so ∗ U , and dµ(h) = dx′dθ′.

Proof see [27, ch:3.2]. �

Remark 7 In the next section we will generalize results

to the case d = 3, i.e. R3 o S2 ↪→ SE(3). It turns out

that Theorem 1 and Theorem 2 have straightforward

generalizations to d = 3, whereas we did not manage to

generalize the approach in Theorem 3 to d = 3 in such

a way that the group quotient structure is respected.

4 Optimal Exponential Curves in SE(3)

In this section we will generalize the best exponential

curve fit theory from the preceding chapter on SE(2)

to SE(3). Things become more technical both from

the computational point of view and from the concep-

tual point of view (we have to deal with R3 o S2 :=

SE(3)/({0} × SO(2)) instead of R2 o S1 = SE(2)).

Therefore, we will start in Subsection 4.1 with some no-

tations on the basic tools of exponential curves, devia-

tion from horizontality, (sub-)Riemmanian metrics and

(sub-)Riemannian parametrization. These tools and pre-

liminaries are used both in our best exponential curve

fit theory of the first order on SE(3) (outlined in Sub-

section 4.2), and in our best exponential curve fit theory

of the second order (outlined in Subsection 4.3).

In Subsection 4.2 we set up the structure tensor on

SE(3) in Subsection 4.2.1. This structure tensor is a key

ingredient in Subsection 4.2.2 where we solve the vari-

ational formulation of best exponential curve fits of the

first order to data Ũ : SE(3) → R and compute their

minimizers by spectral decomposition of this structure

tensor. In Subsection 4.2.3 we present a two-step ap-

proach for achieving torsion-free exponential curve fits

respecting the quotient structure (1).

In Subsection 4.3 we first introduce a Hessian on

SE(3) in Subsection 4.3.1. In contrast to the SE(2)

case we only consider the variational formulation of best

exponential curve fits of the second order to data Ũ :

SE(3) → R that are solved by spectral decomposition

of the symmetric sum of the Hessian. Again torsion-free

exponential curve fits are accomplished via a two-step

approach in Subsection 4.2.3.

4.1 Preliminaries and Notations for Best Exponential

Curve Fits in SE(3).

In case d = 3 we have R3 oS2 = SE(3)/({0}oSO(2))

where SO(2) is identified with all rotations about refer-

ence axis a = ez = (0, 0, 1)T . Two rigid body motions

g = (x,R), g′ = (x′,R′) are equivalent if

g ∼ g′ ⇔ g−1g′ ∈ (SO(2)⊕ 1)

⇔ ∃α∈[0,2π) : x = x′ and R = R′Rez,α,

where Ra,φ ∈ SO(3) denotes a counterclockwise rota-

tion about axis a with angle φ. Legal operators Φ̃ :

L2(SE(3)) → L2(SE(3)) are operators (as shown in

[28, Thm.1]) that satisfy

Φ̃ = Φ̃ ◦ R(0,Rez,α)
for all α ∈ [0, 2π).

Φ̃ ◦ Lg = Lg ◦ Φ̃ for all g ∈ SE(3),

with right regular, and left regular representations:

(RhŨ)(g) = Ũ(gh), (LhŨ)(g) = Ũ(h−1g), (26)

for all h, g ∈ SE(3). They relate one-to-one to operators

Φ : L2(R3 o S2)→ L2(R3 o S2) via

U 7→ Φ(U) ↔ Ũ 7→ Φ̃(Ũ) = Φ̃(U).

Tildes indicate we are operating in the extended space

SE(3) of rigid body motions:

Ũ(x,R) := U(x,Rez) and U(x,n) = Ũ(x,Rn), (27)

where Rn is any rotation that maps ez onto n ∈ S2.

The group SE(3) acts on R3 oS2 from the left via

(x,R)� (x′,n′) = (Rx′ + x,Rn′), (28)

and thereby we associate to each curve γ̃(t) = (x(t),R(t))

in SE(3) a curve γ(t) in R3 o S2 via

γ(t) = (x(t),n(t)) = (γ̃(t))� (0, ez) = (x,R(t)ez).

Exponential curves in SE(3) are denoted by:

γ̃cg (t) := g e
t

6∑
i=1

ciAi
, (29)

where {Ai} form a basis for the Lie algebra Te(SE(3))

of SE(3). In matrix form we have g =

(
R x
0 1

)
and

Ai =

(
0 ei
0 1

)
, for i = 1, 2, 3,

Ai =

(
σi 0

0 1

)
, for i = 4, 5, 6,
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with σi the 3 × 3 matrix such that σix = ei−3 × x.

These exponential curves are auto-parallel w.r.t. (left)

Cartan connection3 [29, Thm 12, App.C], i.e.

˙̃γ =
nd∑
i=1

ci Ai|γ̃ , with ci ∈ R constant.

Intuitively speaking, they are the “straight curves” in

a curved geometry on SE(3), and they are parameter-

ized by c =

(
c(1)

c(2)

)
= ((c1, c2, c2); (c4, c5, c6))T ∈ R6,

as their tangents have constant components w.r.t. the

frame of left-invariant vector fields (obtained by push-

forward (Lg)∗ of left-multiplication Lgh = gh):

Ai|g = (Lg)∗ Ai|e = (Lg)∗Ai, with e = (0, I). (30)

It can be shown that [18,29]

Ai|g Ũ = lim
h→0

Ũ(g ehAi)− Ũ(g)

h
, (31)

and explicit formula’s in several coordinate charts are

given in [29, Eq. 24,25], [17].

In order to normalize the speed of which we move

along our exponential curves we use the following (left-

invariant) metric tensor

Gµ|γ̃ ( ˙̃γ, ˙̃γ) = µ2
3∑
i=1

| ˙̃γi|2 +

6∑
i=4

| ˙̃γi|2, (32)

where ˙̃γ =
∑6
i=1

˙̃γi Ai|γ̃ , and with stiffness parameter

µ. Now, for exponential curves, one has ˙̃γi = ci is con-

stant, so we again impose the normalization constraint

‖c‖µ := µ2
3∑
i=1

|ci|2 +
6∑
i=4

|ci|2

= µ2‖c(1)‖2 + ‖c(2)‖2 = 1,
(33)

in order to ensure that our exponential curves are al-

ways parameterized by Riemannian arclength t. The

precise formulae for exponential curves in SE(3) are

well-known, see e.g. [29, Eq.54]. Their spatial part are

circular spirals with constant curvature and torsion

|κ| = ‖c
(1) × c(2)‖
‖c(1)‖

and |τ | = |c(1) · c(2)| · |κ|, (34)

3 Here we rely on a (left) Cartan connection carrying non-
zero torsion [27, Thm 3.9 & App. B ]. This (left) Car-
tan connection is not to be mistaken with torsion-free bi-
invariant Cartan-Schouten connections on Lie groups, which
also have various interesting applications in image analysis
and statistics on Lie groups, cf. [51,52]. Within our orienta-
tion score framework, considered in the application section,
right-invariance is undesirable, see [27, Lemma 3.3]. The (left)
Cartan-connection also underlies “the shortest curves” i.e.
(sub)-Riemannian geodesics within SE(d) [24,30].

with torsion τ (t) = |c(1) · c(2)|κ(t) and curvature

κ(t) = 1
‖c(1)‖

(
cos(t‖c(2)‖) c(2) × c(1))

+ sin(t‖c(2)‖)
‖c(2)‖ c(2) × c(2) × c(1)

)
.

(35)

Another feature is deviation from horizontality:

dH = dH
c(1) × ez
‖c(1) × ez‖

, dH = arccos
|c(1) · ez|
‖c(1)‖

. (36)

They tell us how much our Riemannian manifold struc-

ture spatially deviates from sub-Riemannian manifold

(SE(3), ∆ = span{A3,A4,A5}, G|∆×∆).

Curves γ̃(t) = (x(t),R(t)) with ˙̃γ ∈ ∆ are typically

called horizontal [53,11,19,24] and along precisely those

curves γ̃ = (x(·),R(·)) one has the natural correspon-

dence between position and orientation part

˙̃γ ∈ ∆⇔ n(t(s)) = R(t(s))ez =
d

ds
x(t(s)) ∈ S2, (37)

where s denotes spatial arc length and t denoting sub-

Riemannian arc length, with

dt

ds
(s) =

√
‖κ(s)‖2 + µ2 ,

with curvature magnitude ‖κ(s)‖ = ‖ẍ(s)‖. In partic-

ular, for horizontal exponential curves one has

dH = 0 = c6 ⇔ γcg (·) is horizontal

⇔ γ̇cg (·) ∈ ∆⇔ c1 = c2 = c6 = 0.

However, it is not always wise to enforce (37) as can

be deduced from Fig. 8. In this Figure, we visualize a

distribution U : R3oS2 → R+ via ‘glyph visualization’.

If U : R3 o S2 → C is not strictly positive we perform

a glyph field visualization of the absolute value |U |.

Definition 2 A glyph visualization of the distribution

U : R3 × S2 → R+ is a visualization of a field y 7→
Sµ(U)(y) of glyphs, where each glyph is given by

Sν(U)(y) = {y + ν U(y,n) n | n ∈ S2} ⊂ R3, (38)

for some y ∈ R3, and some suitably chosen ν > 0.

In Fig. 9 we show examples of how best exponential

curve fits provide more suitable frames for line enhance-

ment and tracking in distributions U : R3 o S2 → R+.
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Fig. 8: Glyph-visualization of distribution U : R3 o
S2 → R+, recall Definition 2. We recognize a straight-

line structure s 7→ x(s) = s(0, 1, 0). However, only

at one point on the spherical distributions one has

n(s) = ẋ(s) whereas at other points the arrows aligned

with n via horizontality condition (37) (i.e. dH = 0)

do not point in the correct direction (cf. the transpar-

ent arrows). The best exponential curve fits that we

derive in Sections 4.2 and 4.2.2 provide us tangents

c∗ = (c(1), c(2)) with dH 6= 0, Eq. (36), which do point

in the correct direction (cf. the dark blue arrows).

4.2 Exponential Curve Fits in SE(3) of the 1st Order

Now let us generalize Definition 1 to the setting of

R3 o S2. The first problem that arises is that many

exponential curves are not well-defined on the quotient

R3 o S2, Eq. (1). Also the left-invariant gradient, com-

puted via Mµ = diag{µi} := diag{µ, µ, µ, 1, 1, 1}:

∇Ũ = G−1dŨ =
6∑
i=1

µ−2i (AiŨ)Ai

≡Mµ−2(A1Ũ ,A2Ũ ,A3Ũ ,A4Ũ ,A5Ũ ,A6Ũ)T ,

(39)

is not well-defined on the quotient. Therefore, we must

resign to the embedding space of SE(3) first.

Using Eq. (39), we rewrite the exponential curves in

SE(3), Eq. (29), as

γ̃cg (t) = g et c·(Mµ2 ∇|e) = g et (Mµ2c)·∇|e , (40)

Fig. 9: Top: Density plot of example image f : R3 → R.

The real part of the orientation score U : R3 o S2 → R
(using a cake-wavelet described in [43]) provides us

a density from which exponential curve fits are com-

puted via the algorithm in Section 4.2.3. Top: spatial

parts of exponential curves aligned with spatial genera-

tor A3|(x,Rnmax(x))
, where nmax(x) = argmax

n∈S2

|U(x,n)|.

These exponential curves are aligned with the high-

est angular response in the orientation score only and

lack data-adaptation. In contrast to our best exponen-

tial curve fit t 7→ γ̃
c∗final(x,Rnmax )

x,Rnmax
(t)� (0, ez), Eq. (63),

whose spatial parts are depicted as black lines.

constraining the gradient to unity element e = (0, I).

For explicit formulas of the exponential map

e : Te(SE(3))→ SE(3), see e.g. [29, ch.5.1].

Let µ denote the left-invariant Haar measure on

SE(d), i.e. dµ(h′) = dx′ dµSO(3)(R
′), with µSO(3) the

left-invariant Haar measure on SO(3). Then we con-

sider the optimization problem (generalizing (19)):

c∗(g) = arg min
c∈R6,‖c‖µ=1,c6=0∫

SE(3)

G̃ρp,ρo(h
−1g)

∣∣∣ ddtṼ (γ̃ch,g(t))
∣∣∣
t=0

∣∣∣dµ(h),
(41)

with Ṽ := G̃sp,so∗SE(3)Ũ , and where we recall that ‖·‖µ
was defined in (33). Eq. (41) needs some explanation.
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Firstly, both smoothing kernels are given by

G̃sp,so(x,R) = GR3

sp (x)GS
2

s0 (Rez), (42)

with GR3

sp the heat kernel on R3 and GS
2

so the heat kernel

on S2, yielding separability and SO(2)-invariance:

G̃sp,so ∗SE(3) Ũ = 2π GR3

sp ∗R3 G̃S
2

so ∗SO(3) Ũ

G̃sp,so(g) = G̃sp,so(hg) for all h = (0,Rez,α).
(43)

The invariance is needed for well-posed convolution op-

erators on R3 o S2 [28, Cor.1], as we will employ soon.

Secondly, regarding Eq. (41), we stress that γ̃ch,g(t) is

defined as follows.

Definition 3 Curve γ̃ch,g(t) is the unique exponential

curve starting from h which is parallel transported from

exponential curve γ̃cg (t), in the sense that it has both

the same spatial velocity and the same angular velocity.

This is similar to Eq. (20) where only spatial velocity

is preserved. The next theorem tells us more explicitly

what this means both on Lie group and Lie algebra

level. Note that γ̃cg,g = γ̃cg .

Theorem 4 Let γ̃ch,g(t) = (xh(t),Rh(t)) be the parallel

transported curve in SE(3) departing from h = (x′,R′)
of exponential curve γ̃cg(t) departing from g = (x,R),

as defined above, then we have

xh(t) = x′ − x + xg(t),

Rh(t) = Rg(t)R
−1R′,

(44)

and we have the following fundamental relations

γ̃ch,g(t) = h et ((R
′)TR⊕(R′)TR)c·(Mµ2 ∇|e),

γ̃ch,g(t) = h (0, (R′)TR) (g−1γ̃g(t)) (0, (R′)TR)−1.
(45)

Proof See Appendix B. �

See Fig. 10 for an intuitive illustration of the theorem.

Remark 8 In order to achieve parallel transport of ex-

ponential curves in SE(3) one applies transformation

c 7→ ((R′)TR⊕ (R′)TR)c

in the Lie algebra. Indeed such a transformation pre-

serves the left-invariant metric:

1 = G|γ̃c
g(t)

( ˙̃γcg (t), ˙̃γcg (t)) = G|γ̃c
h,g(t)

( ˙̃γch,g(t), ˙̃γch,g(t)),

for all h ∈ SE(3) and all t ∈ R. For further differential

geometrical details see Appendix B.

Now that we have taken into account parallel trans-

portation of curves in SE(3) let us include the appro-

priate structure tensor into problem (41) of finding best

exponential curve fits of the first order.

Fig. 10: Illustration of the parallel transport in Theo-

rem 4. Left: The (spatially projected) exp-curve t 7→
PR3 γ̃cg (t), with g = (x,Rn). Middle: (spatially pro-

jected) parallel transported exp-curve t 7→ PR3 γ̃cg,h(t)

with h = (x′,Rn), x 6= x′, i.e. parallel transported

exp-curve departing with same orientation and differ-

ent position. Right: exp-curve t 7→ PR3 γ̃cg,h(t) with

h = (x,Rn′), n′ 6= n, parallel transported exp-curve

departing with same position and different orientation.

The rotation part of the exp-curves is visualized by

frames attached to the spatially projected exp-curves.

4.2.1 The Structure Tensor on SE(3)

According to Theorem 4, and in view of Remark 8, we

define structure matrices Ssp,so,ρp,ρo(g) of Ũ by

Ssp,so,ρp,ρo(g) =
∫

SE(3)

G̃ρp,ρo(h
−1g)·

R̃
T

h−1g∇sp,soŨ(h)(∇sp,soŨ(h))T R̃h−1gdµ(h)
(46)

where we use matrix

R̃h−1g := ((R′)TR⊕ (R′)TR) ∈ SO(6), (47)

for all g = (x,R), h = (x′,R′). Furthermore, we use

left-invariant Gaussian gradient given by

∇sp,so = Mµ−2(Asp,so1 , . . . ,Asp,so6 )T , (48)

with Asp,soj Ũ = Aj Ṽ , j = 1, . . . , 6, with Ṽ = G̃sp,so ∗Ũ .

Remark 9 Gaussian gradient (48) generalizes (16), and

it respects the non-commutative group structure

[Asp,soi ,Asp,soj ] =

6∑
k=1

ckijA
2sp,2so
k for all s ≥ 0, (49)

thanks to the isotropy of the spatial diffusion.

Remark 10 By construction (27) and (31) we have

(A6Ũ)(g) = lim
h↓0

Ũ(g ehA6)− Ũ(g)

h
= 0,
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so the null space of our structure-matrix includes

N := span{(0, 0, 0, 0, 0, 1)T }. (50)

Remark 11 We assume that sp, so > 0 and function Ũ

are chosen in such a way that the null space of the struc-

ture matrix is precisely equal to N (and not larger).

Due the assumption in Remark 11 we need to impose

the condition

c6 = 0 ⇔ ˙̃γcg (0) ∩ N = ∅ (51)

in our best exponential curve optimization to avoid non-

uniqueness of solutions.

Theorem 5 Problem (41) can be rewritten as

c∗(g) = arg min
c∈R6,‖c‖µ=1,c6=0∫

SE(3)

G̃ρp,ρo(h
−1g)

∣∣∣ ddt Ṽ (γ̃ch,g(t))
∣∣∣
t=0

∣∣∣2 dµ(h)

= arg min
c∈R6,‖c‖µ=1,c6=0

cTMµ2Ssp,so,ρp,ρo(g)Mµ2 c,

where Ṽ := G̃sp,so ∗SE(3) Ũ . The solution c∗(g) provides

the best exponential curve fit γ̃
c∗(g)
g (·) of first order to

data Ũ at g = (x,R) ∈ SE(3) via Eq. (40).

Proof By direct computations (where we recall that

the gradient by definition is the Riesz representation

vector of the exterior derivative d with respect to metric

tensor Gµ (39)) we have∣∣∣ ddt (Ṽ (γ̃ch,g(t))
)∣∣∣
t=0

∣∣∣2 =
∣∣∣〈dṼ |γ̃c

h,g(0)
, ˙̃γch,g(0)〉

∣∣∣2
=

∣∣∣∣〈dṼ |h, 6∑
i=1

(R̃h−1gc)i Ai|h〉
∣∣∣∣2

=

∣∣∣∣Gµ|h (∇Ṽ (h),
6∑
i=1

(R̃h−1gc)i Ai|h)

∣∣∣∣2 =

cTMµ2R̃T
h−1g(∇Ṽ (h))(∇Ṽ (h))T R̃h−1gMµ2c.

(52)

This yields∫
SE(3)

G̃ρ(h
−1g)

∣∣∣ ddt Ṽ (γ̃ch,g(t))
∣∣∣
t=0

∣∣∣2 dµ(h)

= cTMµ2Ssp,so,ρp,ρo(g)Mµ2c,
(53)

providing us the final result. �

So we have the following Euler-Lagrange equations.

Corollary 1 The Euler-Lagrange equations boil down

to finding the eigenvector with smallest eigenvalue

Mµ2Ssp,so,ρp,ρo(g)Mµ2c∗(g) = λ1 Mµ2c∗(g)⇔
MµS

sp,so,ρp,ρo(g)Mµ(Mµc
∗(g)) = λ1 (Mµc

∗(g)).

4.2.2 Exponential Curve Fits in R3 o S2 fitted to U at

Location (x,n)

In reducing the problem to R3 o S2 we first note that

Ssp,so,ρp,ρo(g hα) = ZTαSsp,so,ρp,ρo(g)Zα,

with Zα := Rez,α ⊕Rez,α ∈ SO(6),
(54)

with Rez,α ∈ SO(3) the counterclockwise rotation about

ez where from now on hα := (0,Rez,α). Eq. (54) follows

from ∇Ṽ (ghα) ≡ ZTα∇Ṽ (g). We deduce that

c∗(ghα) = ZTαc∗(g), (55)

for all α ∈ [0, 2π), g ∈ SE(3). As a result we have

c∗(ghα) ·Mµ2∇(ghα) ≡ c(g) ·Mµ2∇(g),

and thereby we obtain:

γ̃
c∗(ghα)
ghα

(t)� (0, ez) = γ̃
c∗(g)
g (t)hα � (0, ez)

= γ̃
c∗(g)
g (t)� (0, ez),

(56)

and we can define the following curve on R3 o S2:

(x∗(t),n∗(t)) := ( γ̃
c∗(x,Rn)
(x,Rn)

(t) )� (0, ez)

= (x∗(t),R∗(t) ez),
(57)

with g∗(t) = (x∗(t),R∗(t)) = γ̃
c∗(g)
g (t), as (57) is in-

dependent of the choice of Rn (denoting any rotation

which maps ez onto n).

Theorem 6 The structure tensor defined by (46) can

be expressed as Ssp,so,ρp,ρo(x,Rn) =

2π
∫
R3

∫
S2

GR3

sp (x−x′) GS2

s0 (RT
n′n)

RT
n,n′∇Ṽ (x′,Rn′) (∇Ṽ (x′,Rn′))

TRn,n′dσ(n′)dx′,
(58)

with RT
n,n′ = (RT

n′Rn ⊕ RT
n′Rn) ∈ SO(6). Its eigen-

vector c∗(x,Rn) with smallest eigenvalue provides the

solution of (41) and defines a curve in R3 o S2:

(x∗(t),n∗(t) = ( γ̃
c∗(x,Rn)
(x,Rn)

(t) )� (0, ez). (59)

Proof We use Theorem 5 and Corollary 1 as our

venture point. Then we note that the integrand in the

structure tensor definition Eq. (46) is invariant under

h 7→ hhα = h(0,Rez,α) on the integration variable. For

the matrix-part within (46) this invariance is clear as

Zα defined in (54), satisfies Zα(Zα)T = I. Furthermore

by Eq. (45) in Theorem 4 (setting R′ = RRez,α) one

has Eq. (55), and indeed

∇Ṽ (hhα) ≡ ZTα∇Ṽ (h), R̃
T

(hhα)−1g = R̃
T

h−1gZα.

Thereby integration over third Euler-angle α is no longer

needed in the definition of the structure tensor (41) as it

just produces a constant 2π factor. Using (42) we have

G̃ρp,ρo(R
T
n′(x − x′),RT

n′Rn) = GR3

sp (x − x′)GS
2

s0 (RT
n′n)

where we use isotropy of GR3

sp on R3. Furthermore, ap-

ply Corollary 1. Finally, by Eq. (56) optimal curve (59)

is independent of the choice of Rn ∈ SO(3). �.
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4.2.3 Torsion-free Exponential Curve Fits of the 1st

Order via a Two-step Approach

Theorem 5 provides us best exponential curve fits that

possibly carry torsion. On the one hand, from Eq. (34)

we deduce that along an exponential curve one has

τ = (c1c4+c2c5+c3c6)κ. On the other hand, we need to

exclude the null space N from our optimization domain

and by Eq. (51) this is achieved by including constraint

c6 = 0. As a result we are insisting on zero torsion along

horizontal exponential curves where c1 = c2 = 0. Along

other exponential curves torsion appears if c1c4+c2c5 6=
0. On top of this, torsion is a higher order less-stable fea-

ture than curvature. Therefore we would like to exclude

it altogether from our exponential curve fits presented

in Theorem 5 and Theorem 6, by a different theory and

algorithm. The results of the algorithm clearly show

that even if structures do have torsion, the local best

exponential curve fits do not need to to carry torsion in

order to achieve good results in local frame adaptation,

see e.g. Fig. 9.

The constraint of zero torsion forces us to split our

best exponential curve fit algorithm into two parts:

1. Estimate at g ∈ SE(3) the spatial velocity part

c(1)(g) from the spatial structure tensor.

2. Move to a different location gnew ∈ SE(3) where

a horizontal exponential curve fit makes sense and

then estimate the angular velocity c(2) from the ro-

tation part of the structure tensor over there.

This forced splitting is a consequence of the next lemma.

Lemma 1 Among the class of exponential curves with

nonzero spatial velocity c(1) 6= 0 such that their spatial

projections do not have torsion, we have that the con-

straint c6 = 0 does not impose constraints on curvature

if and only if the exponential curve is horizontal.

Proof For a horizontal curve γ̃cg (t) we have dH = 0⇔
c1 = c2 = 0 and indeed τ = c(1) · c(2)κ = (c3c6)κ = 0

and we see that constraints c6 = 0 and τ = 0 reduce to

only one constraint (as c(1) 6= 0 ⇔ c3 6= 0). The cur-

vature magnitude stays constant along the exponential

curve and the curvature vector at t = 0, recall Eq. (35),

is in this case given by

κ(0) =
1

|c3|

 c5c3

−c4c3
0

 ,

which can indeed be any vector orthogonal to spatial

velocity c(1) = (0, 0, c3)T .

Now let us check whether the condition is necessary.

Suppose t 7→ γ̃cg (t) is not horizontal, and suppose it is

torsion free with c6 = 0. Then we have c1c4 + c2c5 = 0,

as a result the initial curvature

κ(0) =
1

|c3|

 c5c3

−c4c3
c4c2 − c1c5

 ,

is both orthogonal to vector c(1) = (c1, c2, c3)T and

orthogonal to (−c2, c1, 0)T , and thereby constrained to

a one dimensional subspace. �

Corollary 2 In order to allow for all possible curva-

tures in our torsion-free exponential curve fits we must

relocate the exponential curve optimization at g ∈ SE(3)

in the score Ũ : SE(3)→ R to a position gnew ∈ SE(3)

where an horizontal exponential curve can be expected.

Subsequently, we can use Theorem 4 to parallel trans-

port the horizontal and torsion-free curve through gnew
to a torsion-free exponential curve through g.

The algorithm follows 4 subsequent steps:

Step 1: Initialization. Compute structure tensor

Ssp,so,ρp,ρo(g) from input image U : R3 × S2 → R+ via

Eq. (46), or more explicitly via Eq. (58).

Step 2: Find the optimal spatial velocity:

c(1)(g) = argmin
c(1) ∈ R3,
‖c(1)‖ = µ−1{(

c(1)

0

)T
Mµ2Ssp,so,ρp,ρo(g)Mµ2

(
c(1)

0

)}
,

(60)

which boils down to finding the eigenvector with min-

imal eigenvalue of the 3 × 3 spatial sub-matrix of the

structure tensor (46).

Step 3: Given c(1)(g) we aim for an auxiliary set of
coefficients, where we also take into account rotational

velocity. To achieve this in a stable way we will transfer

to a different location in the group:

gnew = (x,Rnnew), nnew = Rnc(1),

and apply parallel transport (of Theorem 4) afterwards.

At gnew, it is natural to enforce horizontality, and we

consider auxiliary optimization problem

cnew(gnew) =

argmin
c ∈ R6,
‖c‖µ = 1,

c1 =c2 =c6 =0

{
cTMµ2Ssp,so,ρp,ρo(gnew)Mµ2c

}
,

(61)

where we note that zero deviation from horizontality

(36) and zero torsion (34) is equivalent to

dH = 0 and τ = 0⇔ c1 = c2 = c6 = 0.

Step 4: The auxiliary coefficients cnew(gnew) =

(0, 0, c3(gnew), c4(gnew), c5(gnew), 0)T of a torsion-free,
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horizontal optimal exponential curve γ̃cnewgnew through gnew.

Now we apply parallel transport (via Theorem 4) of this

horizontal optimal exponential curve towards the cor-

responding exponential curve through g:

c∗final(g) = (RT
nRnnew ⊕RT

nRnnew) cnew(gnew). (62)

This gives the final (not necessarily horizontal), torsion-

free, best exponential curve fit t 7→ γ̃
c∗(g)
g (t) in SE(3),

yielding output curve

t 7→ (γ̃
c∗final(g)
g (t))� (0, ez) ∈ R3 × S2, (63)

with g = (x,Rn), where in the final product in the

righthand side, group element γ̃
c∗final(g)
g (t) ∈ SE(3) acts

on (0, ez) ∈ R3 × S2 in the usual way Eq. (28).

Lemma 2 The preceding algorithm is well-defined on

the quotient R3 o S2 = SE(3)/({0} × SO(2)).

Proof By Eq. (56), the choice of Rn ∈ SO(3) s.t.

Rnez = n does not matter in the final result (63). Fi-

nally, the choice of Rnnew ∈ SO(3) s.t. Rnnewez = nnew
does not matter either in the final result (63). This fol-

lows from the fact that Rnew 7→ RnewRez,α in Eq. (62)

effectively results in c 7→ ZTαc so that cnew 7→ ZTαcnew
from which we deduce that

c∗final(g(0,Rez,α)) = ZTαc∗final(g) for all α ∈ [0, 2π). �

Remark 12 The parameters c∗final(g) of the final best

exponential curve fit follow by a two-step optimization

and need not be equal to c∗(g) in Theorem 5, where a

single optimization over the full space SE(3) is done.

4.3 Exponential Curve Fits in SE(3) of the 2nd Order

In this section we will generalize Theorem 2 to the case

d = 3, where again we include the restriction to torsion-

free exponential curves.

Before continuing with this, we would like to stress

that it is very hard to generalize the other approach

presented in Theorem 3 to the case d = 3, as the corre-

sponding non-symmetric Hessian on SE(3) contains a

final zero row instead of a final zero column (that would

correspond to N = span(0, 0, 0, 0, 0, 1)T ). This problem

has been overlooked in previous work [29, ch:9].

4.3.1 The Hessian on SE(3)

We define the 6× 6 non-symmetric Hessian matrix by

Hsp,so(g) = Mµ−2 [AjAi(Ṽ )](g) Mµ−2 , (64)

with Ṽ = G̃sp,s0 ∗ Ũ , and where i = 1, . . . , 6 denotes the

row index and where j = 1, . . . , 6 denotes the column

index. Note that the double scaling with the matrix

Mµ−2 is natural in view of (22).

Remark 13 To implement the Hessian efficiently we use

[Ai,Aj ] =
6∑
k=1

ckijAk, recall Remark 9. Furthermore, for

the purpose of accuracy we apply

AjAiṼ = AjAi(G̃sp,so ∗ Ũ) = A
sp
2 ,

so
2

j A
sp
2 ,

so
2

i Ũ

= (AjAiG̃sp,so) ∗SE(3) Ũ .

Theorem 7 Let g ∈ SE(3) be such that the symmetrized

Hessian matrix 1
2Mµ(Hsp,so(g) + (Hsp,so(g))T )Mµ has

eigenvalues with the same sign. Then the normalized

eigenvector Mµc
∗(g) with smallest absolute non-zero

eigenvalue of the symmetrized Hessian matrix provides

the solution c∗(g) of the following problem:

c∗(g) = arg min
c∈R6,‖c‖µ=1,c6=0

∣∣∣ d2

dt2 Ṽ (γcg(t))
∣∣∣
t=0

∣∣∣ , (65)

with Ṽ = G̃sp,so ∗ Ũ .

Proof The proof is essentially the same as proof of

Theorem 2 (now summations run from 1 to 5). �

Remark 14 The restriction to g ∈ SE(3) such that the

eigenvalues of the symmetrized Hessian carry the same

sign is necessary for a unique solution of the optimiza-

tion. Note that in case of our first order approach via

the structure tensor, no such cumbersome constraints

arise. In case g ∈ SE(3) is such that the eigenvalues of

the symmetrized Hessian have different sign there are

3 natural options:

1. Move towards a neighboring point where the Hes-

sian eigenvalues have the same sign and apply par-

allel transport (Theorem 4) of the best exponential

curve fit at the neighboring point.

2. Construct within the set of multiple minimizers c∗

the one with minimal curvature via an additional

Euler-Lagrange technique.

3. Take c∗(g) still as the eigenvector with smallest ab-

solute eigenvalue (representing minimal absolute prin-

cipal curvature). This is no longer solves (65), but

maximizes the energy in the orthogonal subspace.

Although it is not difficult to solve the equations in the

second approach analytically, it does not seem to pro-

duce appropriate fits at curved structures. Therefore,

we prefer the other options.

4.3.2 Torsion-free Exponential Curve Fits of the 2nd

Order via a Two-step Approach

Similar to the first order approach via the structure

tensor in Section 4.2.3, we must impose c6 = 0 in order

to have a well-posed optimization problem, since

A6Ṽ = 0 and (0, 0, 0, 0, 0, 1)Hsp,so = (0, 0, 0, 0, 0, 0).
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Now similar considerations as in Subsection 4.2.3 ap-

ply and again torsion-free exponential curves are ob-

tained via the two-step approach. Here we follow the

same algorithm as in Subsection 4.2.3, but now with

the Hessian field Hsp,so (64) instead of the structure

tensor field. However, there is one additional complica-

tion to be taken into account compared to the first order

approach via the structure tensor: the computation of

mixed left-invariant derivatives for the horizontal 3×3-

Hessian

Mhor
µ Hhor(gnew)Mhor

µ = 1
µ 0 0

0 1 0

0 0 1

 A2
3Ũ A4A3Ũ A5A3Ũ

A3A4Ũ A2
4Ũ A5A4Ũ

A3A5Ũ A4A5Ũ A2
5Ũ

 1
µ 0 0

0 1 0

0 0 1

 ,
(66)

with Mhor
µ = diag{µ, 1, 1}, at gnew = (x,Rnnew) with

nnew = Rnc(1)(g) and Hhor = Mhor
µ−2 [AiAj ]i,j=3,4,5M

hor
µ−2 .

Here c(1)(g) is the spatial velocity vector that is found

as the eigenvector with smallest eigenvalue of the left-

invariant Hessian computed with Gaussian spatial deriva-

tives at scale sp. The solution of auxiliary problem (61)

(with the Hessian Hsp,so instead of structure tensor)

now boils down to finding the eigenvector with small-

est eigenvalue of the matrix in (66). The final solution

is again found via Eq. (63).
So it just remains to compute (66). Expressed in

standard Euler-angles Rnew = Rez,γRey,βRex,α where

we can set α = 0, we find that Mhor
µ Hhor(gnew)Mhor

µ =
(n·∇R3 )

2Ũ

µ2 − (n·∇R3∂γ+(∂γn)·∇R3)Ũ
µ sin β

(n·∇R3∂β+(∂βn)·∇R3)Ũ
µ

−n·∇R3∂γŨ

µ sin β

∂2
γ
Ũ

| sin β|2 −∂β∂γŨ
sin β

n·∇R3∂βŨ

µ
−∂β∂γŨ

sin β
∂2
βŨ

 ,

with n = (sinβ cos γ, sinβ sin γ, cosβ)T , which follows

from the formulas of the left-invariant derivatives in

standard Euler angles in [29, Eq. 24], that hold for β 6=
0, i.e. gnew 6= (x, I), with x ∈ R3 free. In the vicinity

of gnew = (x, I) one relies on different Euler angles, see

[29, Eq. 5, Fig. 4].

4.3.3 Adaptation of Exponential Curve Fits of the 2nd

Order via Factorization

Practical experiments (see e.g. Fig. 11) indicate it is

helpful to use the basis symmetric Hessians

H(g) = M−2
µ

A1A1Ṽ . . . A1A6Ṽ
...

. . .
...

A1A6Ṽ . . . A6A6Ṽ

M−2
µ ,

where in every entry (both in the upper triangle and in

the lower triangle) the angular derivative comes first.

Such matrices have both a zero last column and zero

last row as ∂αṼ = 0. Again the null space is avoided by

imposing c6 = 0 in the minimization. However, the ven-

ture point is now different; instead of fitting exponential

curves directly, we apply the following optimization to

obtain c∗(g).

Theorem 8 Let g ∈ SE(3) be such that Hessian ma-

trix Mµ(H(g))Mµ has two eigenvalues with the same

sign. Then the normalized eigenvector Mµc
∗(g) with

smallest eigenvalue provides the solution c∗(g) of the

following optimization problem:

c∗(g) = arg min
c∈R6,‖c‖µ=1,c6=0∣∣∣ d2

dt2 Ṽ (g et(c
1A1+c

2A2+c
3A3)et(c

4A4+c
5A5))

∣∣∣
t=0

∣∣∣ ,
with Ṽ = G̃sp,so ∗ Ũ .

Proof We have (for details see Appendix C)∣∣∣ d2

dt2 Ṽ (g et(c
1A1+c

2A2+c
3A3)et(c

4A4+c
5A5))

∣∣∣
t=0

∣∣∣
=
∣∣∣cTMµ2H

sp,so
(g)Mµ2c

∣∣∣ , (67)

for Ṽ = Gsp,so∗Ũ , and again boundary condition ‖c‖µ =

cTM2
µc = 1, from which the result follows via Euler-

Lagrange (via left multiplication with M−1
µ ). �

This can be decomposed in the two-step approach. Ef-

fectively, this means that in (66) the upper triangle of

the Hessian is replaced by the lower triangle, whereas

the lower triangle is maintained. See Fig. 11, where the

results of the best exponential curve fits of second or-

der (relying on Hessians) are similar to best exponential

curve fits of first order (relying on the structure tensor)

depicted in Fig. 9.

5 Embodiment of Applications

In Section 6 we present image analysis applications of

the theory as developed according to the grand scheme

depicted in Fig.4. This requires specification of the ori-

entation scoreWψ, and, in particular, of the wavelet ψ,

and the application dependent left-invariant operator Φ

that together yield the image enhancing operator Υ act-

ing on images f . To this end, we describe in this section

the continuous-wavelet/coherent-state transform that

we use, based on cake-wavelets appropriate for pro-

cessing of disk-limited images f . Furthermore, we de-

scribe three types of left-invariant operators Φ, one for

multiple-scale vessel detection, one for coherence en-

hancing diffusion via multiple-scale 2D orientation scores,

and one for coherence enhancing diffusion via 3D ori-

entation scores.
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Fig. 11: In black the spatially projected part of best

local exponential curve fits t 7→ γcg (t) of the second

kind (fitted to the real part Ũ = Re{Wψf} of 3D

invertible orientation score Wψf , cf. Fig. 12) via cake

wavelet ψ, cf. Fig. 13, of example 3D image density f .

Left: Output of the 2-step approach outlined in Subsec-

tion 4.3.2. Right: Output of the 2-step approach out-

lined in Subsubsection 4.3.3 with the same parameters

sp = 1
2 , so = 1

2 (0.4)2 and µ = 10. For explanation on

the used wavelet ψ see Section 5.

In the image analysis applications discussed in this

section our function U : Rd o Sd−1 → R+ is given by

either the real part of the invertible orientation score,

see Fig. 3 for d = 2, or the real part of a fixed scale

layer of a continuous wavelet transform. An orientation

score is given by

U(x,n) = Re{Wψf(x,Rn)},

where Rn is any rotation mapping reference axis a onto

n ∈ Sd−1, and where

Wψf(x,Rn) =

∫
Rd

ψ(R−1n (y− x))f(y) dy, (68)

and for d > 2 we restrict ourselves to ψ satisfying

ψ(R−1a,αx) = ψ(x), for all x ∈ Rd (69)

and for all rotations Ra,α ∈ Stab(a) (for d = 3 this

means for all rotations about axis a, Eq. (3).

As a result U is well-defined on the left cosets

Rd o Sd−1 = SE(d)/({0} × SO(d − 1)) as the choice

of Rn ∈ SO(d) mapping a onto n is irrelevant. See

Fig. 12 for an example of a 3D orientation score. We

will rely on both the 2D ‘cake-wavelets’ used in [6,22]

and their recent 3D-equivalents [42]. Detailed formu-

las and recipes to construct such wavelets efficiently

can be found in [42], and are therefore omitted here.

Nonetheless, in order to provide the global intuitive pic-

ture these wavelets are depicted in Fig. 13. In this ar-

ticle, in all experiments using 3D-invertible orientation

f(x)

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAAAA 

Ãex(x) U(x;ex)

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAAAA 

Ãni(x) U(x;ni) U(x;n)

Fig. 12: Visualization of the real part of an invertible

orientation score of a 3D-image created by a cigar-

shaped cake wavelet.

scores, we used the following 3D cake-wavelet parame-

ters: N0 = 42, sφ = 0.7, k = 2, N = 20, γ = 0.85, L = 16

evaluated on a grid of 21x21x21 pixels, for details see

[42]. Here we restrict ourselves to disk-limited images

f ∈ L%2(Rd) := {f ∈ L2(Rd) | suppFf ⊂ B0,%}, with

B0,% = {ω ∈ Rd|‖ω‖ < ρ}, with ρ close to the Nyquist

frequency. In this case admissible wavelets satisfy:

ψ ∈ L2(Rd) ∩ L1(Rd) with 0 < δ ≤

Mψ(ω) := (2π)
d
2

∫
SO(d)

|Fψ(RTω)|2dµSO(d)(R) ≤M,

uniformly for ω ∈ Rd, for some a priori fixed δ,M > 0.

Under this assumption, the condition number of the

transform between image and orientation score equals
max

ω∈B0,%
|Mψ(ω)|

max
ω∈B0,%

|M−1
ψ (ω)| ≤Mδ−1, see cf. [23, Thm.20] where the

inequality is in fact an equality. Here the ideal case of

condition number 1 is obtained if δ = M = 1, but if

M/δ is not too large this is also fine.

For admissible wavelets exact reconstruction is per-

formed via the adjoint:

f =W∗ψWψf = F−1
[
ω 7→ 1

(2π)
d
2Mψ(ω)∫

SO(d)

F [Wψf(·,R)](ω)Fψ(R−1ω)dµSO(d)(R)

]
.

(70)
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2D Cake-wavelets 

3D Cake-wavelets 

Line Detector 
[Re] 

Edge Detector 
[Im] 

IFT 

IFT 

IFT 

Fig. 13: Visualization of cake-wavelets in 2D (top) and

3D (bottom). In 2D we fill up the ‘pie’ of frequencies

with overlapping differentiable “pieces of cake”, and ap-

plication of an inverse DFT (for details see [6]) provides

complex-valued wavelets whose real parts are line de-

tectors, and whose imaginary parts are edge detectors.

In 3D one must include anti-symmetrization and the

Funk transform [21] on L2(S2) to obtain the same, for

details see [42]. The intuitive idea behind applying the

Funk transform, is to redistribute spherical data from

orientations towards great circles which lay in planes

orthogonal to those orientations. After all we want the

real part of our oriented wavelets to be line detectors

(and not plate detectors) in the spatial domain.

This allows us to robustly relate operators Φ on orien-

tation scores to operators on images Υ via

Υ =W∗,extψ ◦ Φ ◦Wψ, (71)

whereW∗,extψ is the natural extension of the adjointW∗ψ
from the range R(Wψ) to its embedding Hilbert space,

for details see [22]. Recall Fig. 4. In general operator Φ

does not map the space of orientation scores into itself,

but that is not problematic as the orthogonal comple-

ment to the space of orientation scores is mapped to 0

by W∗,extψ .

In order to obtain sensible Euclidean invariant op-

erators Υ (i.e. operators Υ commuting with rotations

and translation) operators Φ must be left-invariant and

not right-invariant, see [23]. Operator Φ is left-invariant

if Φ ◦ Lg = Lg ◦ Φ, for all g ∈ SE(d), where we recall

Lg is given by (26).

In the subsequent sections we consider two types of

left-invariant operators:

1. for d = 2, 3, non-linear adaptive diffusions steered

along the gauge frame {B1, . . . ,Bnd}, i.e.

W (x,n, t) = W̃ (x,Rn, t) = Φt(Ũ)(x,Rn), (72)

where W̃ (g, t), with t ≥ 0, is the solution of: ∂W̃
∂t (g, t) =

nd∑
i=1

Dii (Bi)2
∣∣
g
W̃ (g, t),

W̃ (g, 0) = Ũ(g),
(73)

where we recall {B1, . . . ,Bnd} denotes the gauge

frame associated to locally best exponential curve

fit to data Ũ at location g ∈ SE(d).

2. for d = 2, differential invariants on orientation scores

based on gauge frames {B1,B2,B3}. In particular we

shall be concerned with SE(2)-vesselness:

Φ(Ũ)(g) =

 e
− R2

2σ21

(
1− e−

S
2σ2

)
if Q ≥ 0,

0 if Q < 0.
,

with anisotropy measure: R =
B 2

1 Ũ

B 2
2 Ũ+B 2

3 Ũ
,

structureness: S = (B 2
1 Ũ)2 + (B 2

2 Ũ + B 2
3 Ũ)2,

concaveness: Q = B 2
2 U + B 2

3 U ,

(74)

with σ1 = 1
2 and σ2 = 0.2‖B 2

2 Ũ + B 2
3 Ũ‖∞, and

where the decomposition of vesselness in structure-

ness S, anisotropy R and convexity Q extends the

general principle of vesselness [35] to SE(2), cf. [40].

Occasionally, for d = 2 we extend the (all-scale) ori-

entation scores to multiple-scale invertible orientation

scores. Such multiple-scale orientation scores [55] co-
incide with wavelet transforms on the similitude group

SIM(2) = R2oSO(2)×R+, where one uses another B-

spline [61,31] basis decomposition along the log-radial

axis in the Fourier domain.

In our experiments for d = 2 we used N = 4, N =

12 or N = 20 orientation layers and a decomposition

centered around M = 4 discrete scales al given by

al = amine
l (M−1)−1 log(amax/amin), (75)

l = 0, . . . ,M − 1 where amax is inverse proportional

to the Nyquist-frequency ρn and amin close to the in-

ner scale [32] induced by sampling. For details see [55],

for the overall idea of splitting an invertible orientation

score into multiple scales yielding a continuous wavelet

transform on SIM(2), see Fig. 14. Such wavelet trans-

form on Wψf : SIM(2)→ C is given by

Wψf(x, θ, a) =

∫
Rd

ψ(a−1R−1θ (y− x))f(y) dy, (76)
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Fig. 14: Top: Decomposition of an (“all-scale”) 2D in-

vertible orientation score of a retinal image into mul-

tiple scales leads to a continuous wavelet transform

on SIM(2) using a log-polar B-spline basis. Bottom:

Cake wavelets in this continuous wavelet transform on

SIM(2) and illustration of the B-spline decomposition

in the angular and the log-radial direction.

and we again set U := Re{Wψf}. Then we define the

total integrated multiple scale SIM(2)-vesselness by:

(ΦSIM(2)(U))(x) :=

µ−1∞
M−1∑
i=0

µ−1i,∞
N∑
j=1

(Φ(U(·, ·, ·, ai)))(x, θj),
(77)

where SE(2)-vesselness operator Φ is given by Eq.(74),

and where µ∞ and µi,∞ denote maxima w.r.t. sup-norm

‖ · ‖∞ taken over the subsequent terms.

6 Image Analysis Applications

In case d = 2 and Φ is the SIM(2)-vesselness filter (77),

we consider the application of enhancing and detect-

ing the vascular tree structure in retinal images. Such

image processing task is highly relevant as the retinal

vasculature provides the only means for non–invasive

observation of the human vascular system. A variety of

eye–related and systematic diseases such as glaucoma,

age–related macular degeneration, diabetes, hyperten-

sion, arteriosclerosis or Alzheimer’s affect the vascula-

ture and may cause functional or geometric changes

[41]. Automated quantification of these defects promises

massive screenings for systematic and eye–related vas-

cular diseases on the basis of fast and inexpensive imag-

ing modalities, i.e. retinal photography. To automati-

cally assess the state of the retinal vascular tree, vessel

segmentations and/or models have to be created and

analyzed. Because retinal images usually suffer from

low contrast on small scales, the vasculature needs to

be enhanced prior to model creation/segmentation. One

well–established approach is the Frangi vesselness filter

[35]. It frequently occurs in rubust retinal vessel seg-

mentation methods [14,48]. However, a known draw-

back of the Frangi filter is that it can not handle cross-

ings or bifurcations that make up huge parts of the

retinal vascular network. This is precisely where the

orientation score framework and the presented locally

adaptive frame theory comes into play.

We will show SIM(2)-vesselness via multiple scale

orientation scores has advantages over multiple-scale

vesselness filtering acting directly in the image domain.

Furthermore, we show that SIM(2)-vesselness (given

by Eq. (77) and Eq. (74)) really benefits from including

the left-invariant locally adaptive frame {B1,B2,B3}
into Eq. (74) instead of the non-adaptive left-invariant

frame {A1,A2,A3}.
In case d = 2 and Φ = Φt is a left-invariant dif-

fusion steered by the gauge frame {B1,B2,B3} given

by Eq. (72) and Eq. (73), we consider medical imag-

ing examples where elongated structure need to be en-

hanced in noisy data. E.g. 2-photon microscopy 2D-

images containing collagen fibers which need crossing

preserving enhancement, prior to coherence quantifi-

cation, also investigated in 3D-imaging [36]. Here we

show benefits of extending results [34,27] to a multiple

scale setting, again employing locally adaptive frames

in SE(2), adapted to each scale layer in the continuous

wavelet transform (76).

In case d = 3 the envisioned applications include

blood vessel detection in 3D MR-angiography, e.g. the

detection of the Adamkiewicz vessel, relevant for surgery

planning. Also extensions towards fiber-enhancement

of diffusion-weighted MRI [29,28] the non-linear diffu-

sions are of interest. Some preliminary practical results

have been conducted on such 3D-datasets [42,22,20],

but here we shall restrict ourselves to very basic artifi-

cial 3D-datasets to show proof of concept of our locally

adaptive frames in the roto-translation space only, and

leave these three applications for future work.

6.1 Experiments in 2D Images

6.1.1 Improved Differential Invariants

As a basic example of a practical differential invariant

[32,47,10,39], we consider our SIM(2)-vesselness (77).

We will compare our method using the locally adap-

tive frame {B1,B2,B3}, to SIM(2)-vesselness relying

on the left-invariant frame {A1,A2,A3}. Furthermore,

we compare our method to the multiple scale vesselness

filter acting directly in the image domain.
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In order to perform a first, simple practical compar-

ison, we test these 3 techniques on the publically avail-

able4 High Resolution Fundus (HRF)-dataset [44], con-

taining manually segmented vascular trees by medical

experts. The HRF-dataset consists of wide–field fundus

photographs for a healthy, diabetic retinopathy and a

glaucoma group (15 images each).

These practical experiments on the HRF-dataset re-

veal two advantages, supporting practical relevance and

proof of concept of our locally adaptive frame theory via

invertible multiple scale orientation scores. In short, we

show the following two advantages:

Advantage 1: The improvement of a multiple scale

version of SE(2)-vesselness (74) via multiple scale

invertible orientation scores, compared to standard

multiple scale vesselness [35] acting directly on im-

ages.

Advantage 2: Further improvement when using the

locally adaptive gauge frames {B1,B2,B3} instead

of using the left-invariant vector fields {A1,A2,A3}
in SE(2)-vesselness (74).

For the comparison we rely on a basic standard morpho-

logical component segmentation that we will explain

next. We could also have used more state-of-the-art ves-

sel segmentation techniques, such as e.g. VETOS (Ves-

sel Edge Tracking via Orientation Scores) [6] possibly

followed by effective automatic optic disk detection [7],

but in order to check for the effectivity of our SIM(2)-

extension of vesselness and the use of gauge frames, the

simple morphological segmentation seems more suited

here as this segmentation does not include any further

contextual alignment modeling in SE(2).

To show the advantages mentioned above, we de-

vised a simple segmentation algorithm to turn a ves-

selness filtered image V(f) into a segmentation (i.e. a

binary map). First an adaptive thresholding is applied,

yielding a binary image

fB = Θ
(
[V(f)−Gγ ∗ V(f)]− h

)
, (78)

where Θ is the unit step function, Gγ is a Gaussian

of scale γ = 1
2σ

2 � 1 and h is a threshold param-

eter. In a second step, the connected morphological

components in fB are subject to size and elongation

constraints. Components counting less than τ pixels or

showing elongations below a threshold ν are removed.

Parameters γ, τ and ν are fixed at 100 px, 500 px and

0.85 respectively. The vesselness map V(f) : R2 → R is

either the multi-scale vesselness by Frangi et al.[35] or

the SIM(2)-vesselness (77).

4 cf. http://www5.cs.fau.de/research/data/fundus-images/

The segmentation algorithm described above is eval-

uated on the HRF dataset. Average sensitivity and ac-

curacy over the whole dataset are shown in Fig. 18 as

a function of the threshold value h.

Regarding the first advantage, our method via in-

vertible scale–orientation scores performs considerably

better than the one based on the multi–scale Frangi fil-

ter. The segmentation results obtained with SIM(2)-

vesselness (77) are more stable w.r.t variations in the

threshold h and the performance on the small vascula-

ture has improved as measured via the sensitivity. Av-

erage sensitivity, specificity and accuracy at a threshold

of h = 0.05 resp. given by 0.786, 0.988, 0.969 (healthy),

0.811, 0.963, 0.953 (diabetic retinopathy) and 0.797, 0.976,

0.964 (glaucoma) compare well with other segmentation

methods evaluated on the HRF dataset for the healthy

cases (see [14, Tab. 5]). On the diabetic retinopathy and

glaucoma group, our method even outperforms exist-

ing segmentation methods. Fig.18 shows a full segmen-

tation computed with the proposed method together

with a more detailed patch. In Fig. 16 we see that

our method improves sensitivity both at non-crossing

structures (due to line propagation of the anisotropic

wavelets ψ in the wavelet transform (76)) and at cross-

ing/bifurcating structures. As expected, we see a larger

improvement at crossings.

Finally, regarding the second advantage we refer

to Fig. 15 and Fig. 19, where the SIM(2)-vesselness-

filtering via the locally adaptive frame produces a vi-

sually much more appealing soft-segmentation of the

blood vessels than SIM(2)-vesselness filtering via the

non-adaptive frame. It therefore also produces a more

accurate hard-segmentation as can be deducted from

the comparison in Fig. 18. For comparison, the multi-

scale Frangi vesselness filter is also computed via sum-

mation over single scale results and max-normalized.

Generally, we conclude from the experiments that the

locally adaptive frame approach better reduces back-

ground noise, showing much less false positives in the

final segmentation results. See the typical segmentation

results on relatively challenging patches in Fig. 17.

6.1.2 Improved Crossing-Preserving Flows on

Continuous Wavelet Transforms

Here, we briefly show a multiple-scale extension of co-

herence enhancing diffusion [34] via multiple scale ori-

entation scores. In fact, instead of constructing an in-

vertible orientation score as done in [34] we apply the

continuous wavelet transform (76) where we split the

cake-wavelets in a B-spline basis along the log radial

axis, cf. Fig. 14. Then we apply coherence enhancing

diffusion via Eq. (73) based on gauge frames (using the
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Fig. 19: Top: original image from HRF-dataset (healthy subject nr. 5). Other rows: the 2 vesselness measures

yielding soft-segmentation (left) and the corresponding performance maps (right) based on the hard segmentation

(78). In green: true positives, in blue true negatives, in red false positives, compared to manual segmentation by

expert. 1st row: SIM(2)-vesselness (77) but then based on non-adaptive frame {A1,A2,A3}. 2nd row: SIM(2)-

vesselness (77) based on the locally adaptive frame {B1,B2,B3}. We see the benefit of including the locally adaptive

frame.

Fig. 15: From left to right: Retinal image f (from HRF-

database), multi–scale vesselness filtering results for the

multi-scale Frangi vesselness filter on R2, our SIM(2)-

vesselness via invertible multi–scale orientation score

based on left-invariant frame {A1,A2,A3}, and based

on adaptive frame {B1,B2,B3}.

second order approach from Theorem 3) on each fixed

scale separately, with scale-adapted diffusion times, be-

fore image-reconstruction takes place. See Fig. 20.

6.2 Experiments in 3D Images

We now show first results of the extension of coherence

enhancing diffusion via orientation scores (CEDOS [34])

to the 3D setting. Again, data is processed according to

Fig. 4. First, we construct an orientation score accord-

ing to (68), using the 3D cake wavelets (Fig. 13). For

determining the gauge frame {B1, . . . ,B6} we use the

first order structure tensor method in combination with

Eq. (79) in Appendix A. In CEDOS we have Φ = Φt,

as defined in (72) and (73), which is a diffusion along

the gauge frame. In comparison to 2D CEDOS we did

not yet include adaptivity (via structureness [34]) in the

diffusion matrix.

For the parameters involved in the creation of cake-

wavelets and their values we refer to [42]. The settings

for tangent vector estimation using the structure ten-

sor are sp = 1
2 (1.5)2, s0 = 0, ρo = 1

2 (0.8)2 and µ = 0.5.
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Junctions Non-junct.
Method Sens. Acc. Sens. Acc.

Our method
All 0.84 0.92 0.76 0.97
Healthy 0.82 0.94 0.75 0.97
Diabetic 0.84 0.93 0.74 0.97
Glaucoma 0.85 0.90 0.78 0.96

Frangi [35]
All 0.71 0.92 0.67 0.97
Healthy 0.71 0.93 0.67 0.97
Diabetic 0.75 0.93 0.68 0.97
Glaucoma 0.69 0.91 0.65 0.97

Fig. 16: Top: Boxed regions depict areas containing

junction points. Bottom: Results for bifurcation and

crossing areas (Junctions) compared to the complement

of this set (Non-junctions)

Fig. 17: Two challenging patches (one close to the op-

tic disk and one far away from the optic disk processed

with the same parameters). The gauge frame approach

typically reduces false positives (red) on the small ves-

sels, and increases false negatives (blue) at the larger

vessels. The top patch shows a missing hole at the top

in the otherwise reasonable segmentation by the expert.

We used ρp = 1
2 (2)2 for the first dataset (Fig. 21), and

ρp = 1
2 (3.5)2 for the second dataset (Fig. 22). For the

diffusion we used t = 2.5, D11 = D22 = 0.01, D33 =

1, D44 = D55 = D66 = 0.04, where the diffusion matrix

is given w.r.t. gauge frame {B1,B2,B3,B4,B5,B6}, and

normalized frame {µ−1A1, µ
−1A2, µ

−1A3,A4,A5,A6}.
These diffusion operators can enhance elongated struc-

tures in 3D data, see Fig. 21 and Fig. 23, while preserv-

ing the crossings as can be seen in Fig. 22.

Fig. 18: Left: Comparison of multiple scale Frangi-

vesselness directly on image domain, and SIM(2)-

vesselness via multiple scale orientation scores,via

gauge frame {B1,B2,B3}. Average accuracy and sen-

sitivity on the HRF dataset over threshold values h.

Shaded regions correspond to ±1σ. Right: comparing

of SIM(2)-vesselness with including the gauge frame

(i.e. using {B1,B2,B3} in Eq. (74)) and without includ-

ing the gauge frame (i.e. using {A1,A2,A3} in Eq.(74)).

(a) Noisy Image (b) CED t = 4 (c) CED-OS t = 4

(d) CED-OS t = 10 (e) CED-WT

Fig. 20: Results of CED, CED-OS (with N = 20 orien-

tation layers) and CED-WT (with N = 20 orientation

layers and 4 scale layers M = 4) on a microscopy im-

age of a collagen tissue in the cardiac wall. CED-OS

(with enforced horizontality dH = 0) exhibits artefacts

for small end time, which vanish if the algorithm is

allowed to run longer at the cost of small-scale infor-

mation. Therefore best visual results are obtained with

CED-WT (again with dH = 0 and tai = 0, 1, 3, 16) at

scale al given by Eq. (75). For nonlinear diffusion pa-

rameters and cake-wavelet settings see [55, ch. 5].
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(a) 3D Data (b) Slice of Data (c) Curve fits

(d) Slice+Noise (e) Gauge (f) No Gauge

Fig. 21: Results of CEDOS on 3D data, with and with-

out the use of gauge frames on an artificial dataset con-

taining a highly curved structure. Gauge frames are ob-

tained, see Appendix A, via 1st order exponential curve

fits using the two-step approach of Subsection 4.2.3.

(a) 3D Data (b) Data Slice (c) Curve fits

(d) Slice+Noise (e) Gauge (f) No Gauge

Fig. 22: Results of CEDOS (coherence-enhancing diffu-

sion via invertible orientation scores) with and without

the use of 1st order gauge frames on an artificial 3D

data set containing multiple crossing structures.

(a) Data (b) Data & Rician Noise

(c) Enhanced using frame
{B1, . . . ,B6}

(d) Enhanced using frame
{A1, . . . ,A6}

Fig. 23: Glyph visualization (recall Definition 2,

Eq. (38)) of the absolute value of the diffused orienta-

tion scores with and without the use of gauge frames in

the invertible orientation score of the artificial dataset

depicted in Fig. 21. Diffusion along the gauge frames

include better adaptation for curvature. This is mainly

due to the angular part in the B3-direction, cf. Fig. 24,

which includes curvature, in contrast to A3-direction.

The angular part in B3 causes some additional angular

blurring leading to more isotropic glyphs.

7 Conclusion

Locally adaptive frames (‘gauge frames’) on images based

on the gradient, structure tensor or Hessian are ill-

posed at the vicinity of complex structures such as

bifurcations and crossings. Therefore we create locally

adaptive frames within invertible orientation scores to

allow for curvature adaptation and adaptation for de-

viation from horizontality. This gives rise to a whole

family of local frames (indexed by Sd−1) per position

in the image domain, enabling us to deal with crossings

and bifurcations. In order to generalize gauge frames in

the image domain to gauge frames in the orientation

scores, we rely on local best exponential curve fits at

each position and orientation within the real part of

the orientation score. In Appendix A we have shown

how such a single best exponential curve fit gives rise

to a suitable locally adaptive frame {B1|g , . . . Bnd |g} in
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Tg(SE(d)). We distinguished between best exponential

curve fits of the first order and second order:

1. Along first order exponential curve fits, the first or-

der variation of the data (on SE(d)) along the expo-

nential curve is locally minimal. The Euler-Lagrange

equations are solved by finding the eigenvector of

the structure tensor with smallest eigenvalue.

2. Along second order exponential curve fits, a sec-

ond order variation of the data (on SE(d)) along

the exponential curve is locally minimal. The Euler-

Lagrange equations are solved by finding the eigen-

vector of the corresponding Hessian with smallest

eigenvalue.

In case d = 3, i.e. in SE(3), these two approaches are

presented for the first time. Closer inspection revealed

it is natural to include a restriction to torsion-free ex-

ponential curve fits in order to be both compatible with

the null-space of the structure/Hessian tensors and the

quotient structure of R3 o S2 embedded in SE(3).

We have presented algorithms following an efficient

two-step approach to compute such torsion-free expo-

nential curve fits. Experiments on artificial datasets

show that even if the elongated-structures have torsion,

the frame {B1|g , . . . , Bnd |g} is well-adapted to the lo-

cal structure at g ∈ SE(d). This adequate adaptation

of the frame field {B1, . . . ,Bnd} allows us to perform

crossing-preserving coherence enhancing diffusion via

invertible orientation scores (CEDOS). Regarding the

CEDOS algorithm, we managed to

– improve it to a multiple scale setting for d = 2,

dealing with (crossing) multiple scale structures,

– construct and implement CEDOS, for the first time,

for 3D images (d = 3).

In the application section we performed experiments on

biomedical images containing crossing collagen fibers to

show advantages of our multiple scale extension of CE-

DOS [34]. Finally, we considered the application of a

differential invariant (SIM(2)-vesselness) via continu-

ous wavelet transforms, where we applied multiple-scale

vesselness based on the locally adaptive frame per fixed

scale layer. Experiments show clear advantages over

multi-scale vesselness filtering directly in the image do-

main, e.g. in comparison to performance maps relative

to annotated vessel segmentation by medical experts.

Furthermore, these experiments also show clear advan-

tages of including the locally adaptive left-invariant frame

{B1,B2,B3} over the standard non-adaptive left-invariant

frame {A1,A2,A3}. As such, the generic applicability

and advantage of locally adaptive frames in orientation

scores in 2D medical imaging has been shown.

In this work, the advantages of including locally

adaptive left-invariant frames into adaptive diffusions

(extending CEDOS [34] to 3D) in 3D-imaging has only

been shown on artificial datasets. Therefore, in future

work we will study the use of locally adaptive frames

in real 3D medical imaging applications, e.g. in 3D MR

angiography [43], or in improved enhancement and de-

tection of Adamkiewicz vessel [22].
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A Construction of the Locally Adaptive Frame

from an Exponential Curve Fit

Let γcg(t) = g e
t
nd∑
i=1
ciAi

be an exponential curve through g

that fits data Ũ : SE(d)→ R best at g ∈ SE(d) in Lie group
SE(d) of dimension nd = d(d + 1)/2. In Section 3 (d = 2),
and in Section 4 (d = 3), we provide theory and algorithms to
derive such curves. In this section we assume γcg(·) is given.

Let us write c =

(
c(1)

c(2)

)
∈ Rnd , with spatial velocity

c(1) ∈ Rd and rotational velocity c(2) ∈ Rrd , with rd =
dimSO(d) = d(d− 1)/2 of the exponential curve γcg(·).

Akin to the case d = 2 discussed in the introduction we
define the Gauge frame via Eq. (14), but now with

B = (B1, . . . ,Bnd)T ,
A = (A1, . . . ,And)T ,

Mµ = µId ⊕ Ird ∈ Rnd×nd ,

Rc = R2R1 ∈ SO(nd).

(79)

Again R1 is the counter-clockwise rotation that rotates the

spatial reference axis

(
a
0

)
, recall our convention (3), onto(

µ‖c(1)‖a
c(2)

)
strictly within the 2D-plane spanned by these

two vectors. Rotation R2 is the counter-clockwise rotation
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that rotates

(
µ‖c(1)‖a

c(2)

)
onto

(
µc(1)

c(2)

)
strictly within the

2D-plane spanned by these two vectors, so that(
a
0

)
R17→

(
µ‖c(1)‖a

c(2)

)
R27→

(
µc(1)

c(2)

)
= Mµc⇔

c = M−1
µ Rc

(
a
0

)
.

(80)

Concluding, the preferred spatial direction

(
a
0

)
·A is mapped

onto

(
a
0

)
· B = c · A. Furthermore, all other spatial gener-

ators stay in the spatial tangent bundle (and they remain
unchanged iff the exponential curve γcg is a horizontal curve).

The next theorem shows us that our choice of assigning
an entire gauge frame to a single best exponential curve fit is
the right one. For explicit formulae of the left-invariant vector
fields in the d-dimensional case we refer to [30], and for d = 3
see [29].

Theorem 9 Let c(g) be the local tangent of best exponential
curve fit t 7→ γ̃cg(t) at g ∈ SE(d) in the data

Ũ(g) = U(g � (0,a)), recall (28). Consider the mapping of
the frame of left-invariant vector fields A|g to the locally
adaptive frame:

B|g := (Rc(g))TM−1
µ A|g , (81)

with Rc = R2R1 ∈ SO(nd), with subsequent counter-clockwise
planar rotations R1,R2 given by (80). The mapping Ag 7→
Bg has the following properties:

– The main spatial tangent direction (Lg)∗

(
a
0

)
· A|e is

mapped to best exponential curve fit direction cT (g)· A|g.
– Spatial left-invariant vector fields that are Gµ-orthogonal

to this main spatial direction stay in the spatial part of
the tangent space Tg(SE(d)) under rotation Rc and they
are invariant up to normalization under the action (81)
iff the best exponential curve fit is horizontal.

Proof Regarding the first property we note that

(Lg)∗

(
a
0

)
· A|e =

(
a
0

)
· A|g

as left-invariant vector fields are obtained by push-forward of
the left multiplication. Furthermore, by Eq. (81) and Eq. (80)
we have(

a
0

)
· B = M−1

µ Rc

(
a
0

)
· A = c · A.

Regarding the second property, we note that if b · a = 0⇒

Rc

(
b
0

)
= R2R1

(
b
0

)
= R2

(
b
0

)
and γ̃cg is horizontal iff c(1)

‖c(1)‖ = a in which case the planar ro-

tation R2 reduces to the identity and R2R1

(
b
0

)
=

(
b
0

)T
and only spatial normalization by µ−1 is applied. �

Remark 15 For d = 2 and a = (1, 0)T the above theorem
can be observed in Fig. 7, where main spatial direction A1 =
cos θ∂x + sin θ∂y is mapped onto B1 = c · A and where A2 is
mapped onto B2 = µ−1(− sin dHA1 + cos dHA2).

Remark 16 For d = 3 and a = (0, 0, 1)T the above theorem
can be observed in Fig.24, where main spatial direction A3 =
n · ∇R3 is mapped onto B3 = c · A, and where A2 and A3

are mapped to the strictly spatial generators B2 and B3. For
further details see [43, ch:6.4.1].

Remark 17 For d = 3 and a = (0, 0, 1)T the above theorem
can be observed in Fig.24, where main spatial direction A3 =
n · ∇R3 is mapped onto B3 = c · A, and where A2 and A3

are mapped to the strictly spatial generators B2 and B3. For
further details see [43, ch:6.4.1].

Remark 18 It is important that the same µ is used both in the
optimization procedures of Theorems 1,2,3,5,7,8, and in the
construction (79) of orthonormal gauge frame {B1, . . . ,Bnd},
nd in this appendix. This is consistent from the geometri-
cal viewpoint. Furthermore all optimization procedures are
of the type arg min

c
{cTA(g)c | cTMµ2c = 1} with A(g) inde-

pendent of µ yielding eigensystem Mµ−1A(g)Mµ−1(Mµc) =
λMµc. Let {ei}ndi=1 be the orthonormal basis of eigenvectors
of matrix Mµ−1A(g)Mµ−1 w.r.t. innerproduct (·, ·)µ=1. Then
{Mµ−1ei}ndi=1 (containing c∗(g)) is indeed µ-orthonormal.

B Proof of Theorem 4

By definition γ̃ch,g is the parallel transported curve from γ̃cg
s.t. it has the same spatial velocity and the same rotational
(and angular) velocity for all times, i.e.:

ẋg(t) = ẋh(t),
R−1Rg(t) = etΩ = (R′)−1Rh(t),

with Ω = c(2) · ∇|e. Considering γ̃ch,g(0) = h = (x′,R′) and

γ̃cg(0) = g = (x,R) we deduce that

xh(t)− xg(t) = xh(0)− xg(0) = x′ − x,
(Rg(t))−1Rh(t) = (Rg(0))−1Rh(0)−1 = R−1R′

from which (44) can be deduced.
Furthermore, by separate application of standard parallel

transport on both the spatial and the rotational part of the
tangent bundle T (SE(3)) we have

∇(x,R) ≡ (RT ⊕RT )∇e ⇔
∇(1)

(x,R) ≡ RT∇(1)
e and ∇(2)

(x,R) ≡ RT∇(2)
e ,

with unity element e = (0, I), and where we stress that we
have equivalence (via standard parallel transport on T (R3)
and T (SO(3))). Therefore we have for initial velocity and
initial rotational velocity

ẋh(0) ≡
3∑
i=1

(R′c
(1)
h )iAi =

3∑
i=1

(Rc(1))iAi ≡ ẋg(0)

Ṙh(0) ≡
6∑
i=4

(R′c
(2)
h )iAi =

6∑
i=4

(Rc(2))iAi ≡ Ṙg(0),

and thereby we find

ch =

(
c
(1)
h

c
(2)
h

)
=

(
(R′)TRc(1)

(R′)TRc(2)

)
for the exponential curve γ̃ch,g starting from h, and thereby

γ̃ch,g(t) = h et((R
′)TRc(1),(R′)TRc(2))·Mµ2 ∇|e .

The final equality follows by direct computation (i.e. ap-
plication of Eq. (2) and (x,R)−1 = (−R−1x,R−1)) which
shows that (44) is equivalent to (45). �
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Fig. 24: Visualization of the mapping of left-invariant vector fields {A1,A2,A3,A4,A5,A6}|g onto locally adaptive spatial

left-invariant vector fields {B1,B2,B3,B4,B5,B6}|g and γ̃cg(·) a non-horizontal and torsion-free exponential curve passing

trough g = e = (0, I). The top row indicates the spatial part in R3, whereas the bottom row indicates the angular part in S2.

The top black curve is the spatial projection of γ̃cg(·), and the bottom black curve is the angular projection of the exponential

curve. After application of RT2 the exponential curve is horizontal w.r.t. the intermediate frame {Âi}, subsequently RT1 leaves

spatial generators orthogonal to a horizontal curve invariant, so that Â1 = B1 and Â2 = B2 are strictly spatial, as is in

accordance with Theorem 9. The angular part of B3 is visually included via the curvature at the blue arrow. The spatial part

of B4 and B5 is depicted in the center of the ball.

Remark 19 In fact the parallel transportation, recall Remark 8,
is achieved via the following push-forward:

(Lh ◦ conj(0, (R′)−1R)) ◦ (Lg−1))∗
= (Lh)∗ ◦Ad(0, (R′)−1R)) ◦ (Lg−1)∗
= (Lh)∗((R′)TR⊕ (R′)TR)(Lg−1)∗,

which maps Tg(SE(3)) isometrically onto Th(SE(3)), for each
pair g = (x,R), h = (x′,R′) ∈ SE(3), where we recall
Eq.(30), where conj(g)h = ghg−1, and where Ad(g) = (conj(g))∗
denotes the adjoint representation of SE(3) onto its own Lie
Algebra Te(SE(3)).

Remark 20 Regarding (45) we can also relate the first equa-
tion to the second equation in (45), without the detour via
(44). To this end we note that (for Q = (R′)TR):

etQc(1)·∇(1)|
e = Q etc

(1)·∇(1)|
e ,

etQc(2)·∇(2)|
e = Q etc

(2)·∇(2)|
eQ−1,

(0,Q)(x′,R′)(0,Q−1) = (Qx′,QR′Q−1).

C Derivation of (67) in Proof of Theorem 8

Define F1 := c(1)·A(1) ∈ Te(SE(3)) with A(1) := (A1, A2, A3)T.
Define F2 := c(2)·A(2) ∈ Te(SE(3)) with A(2) := (A4, A5, A6)T.
Define vector fields F1|g := (Lg)∗F1, F2|g := (Lg)∗F2. Then

d2

dt2
Ṽ (g etF1etF2)

∣∣∣
t=0

= lim
h→0

Ṽ (g ehF1ehF2 )−2Ṽ (g)+Ṽ (ge−hF1e−hF2 )

h2

= F1F1Ṽ (g) + F2F2Ṽ (g) + 2F1F2Ṽ (g)

= (c(g))TMµ2H(g)Mµ2c(g).

This follows by direct computation and the formula

Ṽ (qehFk ) = Ṽ (q) + hFkṼ (q) +
h2

2
F2
k Ṽ (q) +O(h3),

applied for (q = gehF1 , k = 2) and (q = g, k = 1).
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