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Abstract-This paper deals with Parkinson's disease (PD) 
severity estimation according to the Unified Parkinson's Disease 
Rating Scale: motor subscale (UPDRS III), which quantifies the 
hallmark symptoms of PD, using an acoustic analysis of speech 
signals. Experimental dataset comprised 42 speech tasks acquired 
from 50 PD patients (UPDRS III ranged from 6 to 92). It was 
divided into subsets: words, sentences, reading text, monologue 
and diadochokinetic tasks. We performed a parametrization of 
the whole corpus and these groups separately using a wide range 
of conventional and novel speech features. We used guided regu­
larized random forest algorithm to select features with maximum 
clinical information and performed random forests regression 
to estimate PD severity. According to significant correlations 
between true UPDRS III scores and scores predicted by the 
proposed methodology it was shown that information extracted 
through variety of speech tasks can be used to estimate the degree 
of PD severity. 

Keywords-hypokinetic dysarthria; Parkinson's disease; re­
gression; severity estimation; speech processing. 

I. I NTRODUCTION 

Parkinson's disease (PD) is a chronic idiopathic disorder 
with the unknown aetiology characterized by the progressive 
loss of dopaminergic neurons in substancia nigra pars com­

pacta [1] . Besides its hallmark motor symptoms, patients with 
PD often develop a multi-modal disruption of motor speech 
realization referred to as hypokinetic dysarthria (HD) [2]. 
According to the previous studies, HD affects the area of 
phonation, articulation, prosody, speech fluency and facioki­
nesis [3]-[5] . 

In summary, the following speech disorders associated with 
HD in PD have been observed: increased acoustic noise [1], 
reduced voice intensity [6], harsh breathy voice quality [7], 

This work was supported by the Czech Ministry of Health (15-28038A) 
and the following projects: SIX (CZ.1.05/2.1.00/03.0072), LOl401 and COST 
IC1206. For the research, infrastructure of the SIX Center was used. The 
authors would like to thank Fundalizanza Parkinson Colombia for their 
valuable contribution during the recording of the patients. 

increased voice nasality [8], reduced variability of pitch and 
loudness combined with speech rate abnormalities [9], impre­
cise consonant articulation [10], unintentional introduction of 
pauses [11], rapid repetition of words or syllables [11], sudden 
deceleration or acceleration in speech [12]. 

Recently, researchers have focused on the prediction of 
clinical rating scales evaluating severity of PD and its progres­
sion [7], [13]-[16] . This study aims to follow the trend and 
propose a model that can discriminate healthy and disordered 
speech by assessment of hypokinetic dysarthria with a special 
focus on estimation of PD severity using the acoustic analysis 
of speech signals. Degree of severity of PD is estimated ac­
cording to the Unified Parkinson's Disease Rating Scale, motor 
subscale: UPDRS III (evaluation of motor function [17]). 

The rest of this paper is organized as follows. Section II 
presents dataset and methodology respectively. This section 
provides a description of speech features, statistical analysis 
with selection of feature subset with the best discrimination 
power and mapping features to the participant's UPDRS III 
score in order to estimate the degree of PD severity. Ex­
perimental results are discussed in section III, and finally in 
section IV some conclusions are provided. 

II. MATERI ALS AND METHODS 

A. Speech corpus 

A grand total of 100 Spanish native speakers from Colom­
bia were studied. 50 of them suffer from PD (25 menl25 
women; mean age 61.14 ± 9.61 years; mean disease duration 
10.72 ± 9.25 years; UDPRS III score 36.74 ± 18.74; UDPRS 
IV score 2.29 ± 0.76) and the second half are gender and age 
matched controls, (25 menl25 women; mean age 60.90 ± 9.47 
years) [18] . Each speaker performed 42 speech tasks including 
24 isolated words, 10 sentences, one reading text, one mono­
logue, and the rapid repetition of the syllables /pa-ta-ka!, /pa­
ka-ta/ and /pe-ta-ka!. 
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B. Speech features extraction 

Building a regression model for the purpose of this study 
consisted of several stages: processing the original speech sig­
nals to extract distinctive, clinically useful properties (feature 
extraction stage), selecting a parsimonious, information-rich 
subsets of features (feature selection), and mapping the final 
features to the clinical outcome we aim to associate the speech 
signal with (feature mapping). For the purpose of speech 
feature extraction, Praat acoustic analysis software [19] and 
Neurological Disorder Analysis Tool [4] (NDAT) written in 
MATLAB and developed at the Bmo University of Technology 
were used. 

The feature extraction involved application of widely used 
speech signal processing algorithms. To objectively and auto­
matically characterize clinically useful properties of the speech 
signals we computed signal to noise ratio derived from the 
discrete time wavelet transform (SNR DTWT) , harmonics­
to-noise ratio (HNR) , noise-to-harmonics ratio (NHR) , nor­
malised noise energy (NNE), energy ratio (ER), detrended 
fluctuation analysis (DFA) and glottal-to-noise excitation ratio 
(GNE). We also used features based on the theory of empirical 
mode decomposition (EMD) to decompose the speech signal 
into intrinsic mode functions (IMF) and calculated SNR and 
NSR from the first few IMFs. Additionally we computed 
features based on fundamental frequency and amplitude per­
turbations. We applied features like, jitter (local, absolute), 
pitch perturbation quotient (PPQ), pitch period entropy (PPE) 
and glottis quotient (GQ) to track deviations in rhythmicity. 
We also quantified amplitude deviations using shimmer (local) 
and amplitude perturbation quotients (APQ3, APQ5). We also 
investigated the number of voice breaks (NVB) and a degree 
of voice breaks (DVB) to determine possible hesitation. Next, 
we calculated short-time energy (STE), low short-time energy 
ratio (LSTE), zero-crossing rate (ZCR), high zero-crossing rate 
(HZCR) and median frequency of power spectrum (MFPS), 
fraction of locally unvoiced frames (FLUF). 

Next, we computed several statistical functionals [5] . In 
total, we extracted 715 features. Further description of the 
features can be found in our recent articles [4], [5], [20]. 
The exact features selected for each group of speech tasks 
separately and for whole corpus are shown in Table I. 

C. Feature selection 

The objective of feature selection is to select a compact 
subset of features without loss of predictive information. Many 
different feature selection methods exist. They are generally 
divided into following categories: filters, wrappers, and em­
bedded methods. Wrapper methods search for best feature 
subset for a given classifier, however, wrappers are often 
computationally very expensive. Embedded methods select 
feature subset using the information obtained from a classifier. 
Therefore the feature subset selected by embedded methods 
can compete with feature subsets selected by wrappers [21] 
and often can be computationally less demanding. 

In this paper we applied the embedded method: guided 
regularized random forest (GRRF) [21]. We used GRRF for its 

TABLE 1. COMPUTED SPEECH FEATURES 

W tasks S tasks R tasks M tasks D tasks A tasks 
HNR HNR HNR HNR CP HNR 
HNR NHR NHR NHR RATE NHR 
MPSD MPSD MPSD MPSD jitt. DFA 
ZCR ZCR ER ER shimm. GNE 
Fo Fo ZCR ZCR VPL NNE 
PPE PPE Fo Fo OPL Fo 
STE STE PPE PPE SPL jitt. 
TKEO TKEO STE STE V+OPL shimm. 
jitt. jitt. TKEO TKEO O+SPL GQ 
shimm. shimm. NVB NVB Z CR 
NNE NVB DVB DVB STE 
SNR DVB jitt. jitt. MPSD 
GNE NNE shimm. shimm. 
IMF SNR NNE NNE 
RDPE GNE HZCR HZCR 
GQ IMP LSTE LSTE 
DFA FLUF SF SF 

SF FLUF FLUF 
GNE GNE 

1 W -words; S -sentences; R -read text; M -monologue; D-
DDK; A-all; CP-DDK cycle periods; RATE-DDK rate; 
VPL-DDK voicing part lengths; OPL-DDK offset part 
lengths; SPL-DDK silence part lengths. 

ability to deal with the node sparsity issue (ability to select the 
most useful features even if there is only a few instances for 
given node) that is a frequent case with high dimensional data. 
GRRF has 2 tuning parameters: A and f. However, according 
to authors it is sufficient to set first one to a fixed value and 
tune only the other one, which often leads to better results in 
terms of accuracy [21]. For detailed information about GRRF, 
see [21]. In this paper we used 'Y as the only parameter for 
GRRF. 

D. Mapping features to UPDRS III 

To obtain a preliminary insight into statistical properties 
of the selected features, Spearman's rank sum correlation 
coefficient (p) between the feature vectors and associated 
UPDRS III score was computed. Fig. 1 shows correlation 
graphs of the highest correlated feature for each speech task 
group giving a visual impression of the distribution of these 
feature values and their relationship to the severity of PD. 
All selected features significantly correlated with the speakers' 
diagnosis (p < 0.001). 

Building a regression model requires forming of a functional 
relationship Y = f (x) to map the feature subspace into the 
clinical output we want to associate the speech signal with. 
For this purpose we used random forests regression algorithm 
in the classical supervised learning setup, therefore we used 
training data set to learn the final model to predict PD degree 
and evaluated this model using independent data set. 

III. DISCUSSION 

Firstly, we computed a variety of speech features, see 
Table I, to quantify HD. Next, we explored the data by 
computing p to quantify the association strength and relevance 
of speech features to the values of UPDRS III. We also plotted 
the correlation graphs of the highest correlated features, see 
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Fig. 1. Correlation graphs for all training speakers (excluding 5 outliers) 
from elected subsets of speech tasks: words (W.), sentences (S.), reading 
text (R), monologue (M.), DDK (D.), whole corpus (A.). The speakers 
were divided linearly into 5 groups according their UPDRS III value. The 
green line represents a trend of PD severity for associated speech feature 
values (3rd order polynomial fit curve). Figure notation: IOD - index of 
dispersion; Sh. ent - Shannon entropy; R ent - Renyi entropy; p. - percentile; 
r - Spearman's correlation coefficient. 

Fig. 1. All speech features in the figure significantly correlated 
with participants' UPDRS III value (p < 0.001). 

Regression models predicting degree of PD severity was 
constructed considering 5 tree-based sub-models, one for each 
speech task group, and one for the whole corpus. The speech 
features selected for the speech tasks can be seen in Table I. 
Subsequently feature selection was applied using GRRF algo­
rithm, see section II-C. 

Next, we used RF regression algorithm (lO-fold validation 
with 100 repetition) randomly permuting the data before 
splitting into training and testing subsets to find optimal 

model settings using randomForest package [22] written in 
R language and used these models to predict UPDRS III 
score of records from independent data set. The results are 
summarized in Table II and Fig. 2. The highest p was 
computed for the words task group (p = 0.5709) with the 
lowest RMSE = 10.9520. This model also explains the most 
of the variation in data (VE = 63.56 %) using a reasonable 
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Fig. 2. Graph of predicted UPDRS III for the subsets of speech tasks: words 
(W.), sentences (S.), reading text (R), monologue (M.), DDK (D.) computed 
from development data set as a function of true UPDRS III values. Black line 
visualizes ideal correlation (p = 1) between predicted and true UPDRS III 
values. Red line is fitted using least square method and visualizes Pearson 
correlation coefficient p � 0.502. 

amount of features (N = 51). 
Finally, we used the regression models and predicted UP­

DRS III score of patients in test data set. p to estimate 
prediction accuracy. We considered two models (scenarios): a) 
regression model consisted of five submodels (built for speech 
task groups: words, sentences, reading the text, monologue and 
DDK tasks) - model Ml; b) regression model built for the 
whole corpus - model M2. Resulting Spearman's correlation 
coefficients are: Mlp = 0.1933; M2p = -0.2500. These 
results are discussed in section IV. 

IV. CONCLUSION 

In this paper we performed a complex acoustic analysis of 
speech in patients with PD in order to estimate a degree of the 
disease severity described by UPDRS III. The analysis was 
based on parametrization of several speech tasks described 
in [23]. The corpus was split into five subsets: words, sen­
tences, reading text, monologue and diadochokinetic tasks. 
We also tried to analyse the whole corpus at once. Next, 
we performed feature extraction for all speech tasks subsets 
separately using the most suitable features described in Table I. 

Consequently, we computed p to express the association 
of extracted speech features with the participants' clinical 
diagnosis (UPDRS III score) and plotted the correlation graphs 
of the features with the highest p achieved, see Fig. 1 to give 
a visual impression of the distribution of these feature values 
and their relationship to the severity of PD. 

We used GRRF algorithm to select the feature subsets with 
the highest clinical relevance. Next, we built RF regression 
models from our reduced feature subsets. Description of the 
models we used to predict UPDRS III can be found in 
section III. Although we obtained p about 0.5 for speech tasks 
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TABLE II. PERFORMANCE OF REGRESSION MODELS 

Speech tasks p RMSE VE [%] "f N 
W tasks 0.5709 10.9520 63.56 0.20 51 
S tasks 0.4886 11.5227 59.66 0.20 50 
R tasks 0.5014 19.3689 -13.98 0.05 59 
M tasks 0.2136 18.5541 -4.60 0.20 25 
D tasks 0.3222 17.3337 8.71 0.15 170 

1 W -words; S -sentences; R -read text; M -monologue; 
D-DDK; p-Spearman's rank sum correlation coefficient 
between predicted and true UPDRS III score for devel data 
set; RMSE-root-mean-square error; ,-GRRF parameter 
setting the feature subset size (lower , results in larger 
feature subset); VE-variation explained; N -number of 
selected features. 

groups individually, see Table II, when we used Ml regression 
model, resulting p was significantly lower (Mlp = 0.1933). 
This loss was probably caused by inappropriate speech task 
groups construction. From Fig. 1 it is evident that the number 
of observations in R. tasks group and M. tasks group is too 
small in comparison with the rest. Therefore the model (Ml) 
built from these submodels (words, sentences, reading text, 
monologue, DDK) does not sufficiently represent subjects' 
speech degradation. 

In contrast, M2 model achieved higher p compared to Ml, 
which is probably caused by a selection of optimal set of 
features during the feature extraction stage, see Table I. How­
ever, the regression models built for the speech tasks groups 
individually still outperforms both Ml and M2. Therefore, the 
results indicate that a selection of the speech features specific 
for a given speech task can in general increase prediction 
power of the regression model. 

In this paper, we proved that PD severity estimation based 
on acoustic analysis of speech signal has a great potential 

in the field of Parkinson's disease analysis. Nevertheless, 
there is still space for deeper investigation. In our previous 
studies [5], [20], [24] of HD in PD we mainly focused on 
HD quantification and identification. In our future studies 
we will follow our recent research in the field of objective 
assessment of PD [25] and focus on increasing prediction 
accuracy of several scales developed to rate motor (freezing of 
gait) and non-motor (depression, sleeping disorders, cognitive 
impairment) symptoms of PD. 

REFERENCES 

[1] o. Hornykiewicz, "Biochemical aspects of parkinson's disease, " Neu­
rology, vol. 51, no. 2 Suppl 2, pp. S2-S9, 1998. 

[2] A. K. Ho, R. Iansek, C. Marigliani, J. L. Bradshaw, and S. Gates, 
"Speech impainnent in a large sample of patients with Parkinson's 
disease, " J. Behav. Neurol., voL 11, no. 3, pp. 131-137, 1999. 

[3] I. Eliasova, J. Mekyska, M. Kostalova, R. Marecek, Z. Smekal, and 
I. Rektorova, "Acoustic evaluation of short-term effects of repetitive tran­
scranial magnetic stimulation on motor aspects of speech in Parkinson's 
disease, " J. Neural Transm., voL 120, no. 4, pp. 597--605, 2013. 

[4] J. Mekyska, et al., "Robust and complex approach of pathological speech 
signal analysis, " Neurocomputing, voL 167, pp. 94--111, 2015. 

[5] Z. Galaz et aI., "Prosodic analysis of neutral, stress-modified and 
rhymed speech in patients with parkinson's disease;' Com put. Methods. 
Programs. Biomed., voL 127, pp. 301 - 317, 2016. 

[6] K. K. Baker, L. O. Ramig, E. S. Luschei, and M. E. Smith, "Thyroary­
tenoid muscle activity associated with hypophonia in Parkinson's disease 
and aging, " Neurology, voL 51, no. 6, pp. 1592-1598, 1998. 

[7] A. Tsanas, M. A. Little, P. E. McSharry, and L. O. Ramig, "Nonlin­
ear speech analysis algorithms mapped to a standard metric achieve 
clinically useful quantification of average Parkinson's disease symptom 
severity, " J. R. Soc. Interface, vol. 8, no. 59, pp. 842-855, 2010. 

[8] K. A. Spencer and M. A. Rogers, "Speech motor programming in 
hypokinetic and ataxic dysarthria, " Brain Lang., voL 94, no. 3, pp. 347-
366, 2005. 

[9] S. Skodda, H. Rinsche, and U. Schlegel, "Progression of dysprosody 
in Parkinson's disease over time-a longitudinal study, " Mov. Disord., 
voL 24, pp. 716-722, 2009. 

[10] N. Roy, S. L. Nissen, C. Dromey, and S. Sapir, "Articulatory Changes 
in Muscle Tension Dysphonia: Evidence of Vowel Space Expansion 
following Manual Circumlaryngeal Therapy, " Journal of Communication 
Disorders, voL 42, no. 2, pp. 124--135,2009. 

[11] R. Moretti, et aI., "Speech initiation hesitation following subthalamic 
nucleus stimulation in a patient with parkinson's disease, " Eur. Neurol., 
voL 49, no. 4, pp. 251-253, 2003. 

[12] M. Gentil, P. Pollak, and J. Perret, "Parkinsonian dysarthria, " Rev. 
Neurol., voL 151, no. 2, pp. 105-112, 1995. 

[13] A. Tsanas, M. Little, P. McSharry, and L. Ramig, "Accurate telemoni­
toring of Parkinson's Disease progression by noninvasive speech tests, " 
IEEE Trans. Bio-Med. Eng., voL 57, no. 4, pp. 884--893, 2010. 

[14] M. Asgari and I. Shafran, "Predicting severity of parkinson's disease 
from speech, " in Engineering in Medicine and Biology Society (EMBC), 
2010 Annual International Conference of the IEEE, Aug 2010, pp. 5201-
5204. 

[15] M. Castelli, L. Vanneschi, and S. Silva, "Prediction of the unified 
parkinson's disease rating scale assessment using a genetic programming 
system with geometric semantic genetic operators, " Expert Systems with 
Applications, voL 41, no. 10, pp. 4608-4616, 2014. 

[16] B. E. Sakar, C. Sakar, G. Serbes, and O. Kursun, "Determination of the 
optimal threshold value that can be discriminated by dysphonia measure­
ments for unified Parkinson's disease rating scale, " in Bioinformatics and 
Bioengineering (BIBE), 2015 IEEE 15th International Conference on, 
Nov 2015, pp. 1-4. 

[17] S. Fahn and R. L. Elton, UPDRS Development Committee (1987) Unified 
Parkinson's Disease Rating Scale. Recent developments in Parkinson's 
Disease. Macmillan, Florham Park, 1987. 

[18] J. R. Orozco-Arroyave, J. D. Arias-Londono, J. F. Vargas-Bonilla, 
M. C. Gonzalez-Rativa, and E. Noth, "New spanish speech corpus 
database for the analysis of people suffering from parkinson's disease, " 
in Proceedings of the Ninth International Conference on Language 
Resources and Evaluation (LREC'14), N. C. C. Chair), K. Choukri, 
T. Declerck, H. Loftsson, B. Maegaard, J. Mariani, A. Moreno, J. Odijk, 
and S. Piperidis, Eds. Reykjavik, Iceland: European Language Re­
sources Association (ELRA), may 2014. 

[19] P. Boersma and D. Weenink, "Praat: Doing Phonetics 
by Computer (Version 5.3.10), " 2012. [Online]. Available: 
http://www.fon.hum.uva.nl/praati 

[20] Z. Smekal et aI., "Analysis of phonation in patients with Parkinson's 
disease using empirical mode decomposition, " in 2015 International 
Symposium on Signals, Circuits and Systems (ISSCS), July 2015, pp. 
1-4. 

[21] H. Deng and G. Runger, "Gene selection with guided regularized random 
forest, " Pattern Recognit., voL 46, no. 12, pp. 3483-3489, 2013. 

[22] A. Liaw and M. Wiener, "Classification and regression by randomforest, " 
R News, voL 2, no. 3, pp. 18-22, 2002. 

[23] S. Bjorn, S. Stefan, B. Anton, H. Simone, H. Florian, O.-A. Juan Rafael, 
N. Elmar, Z. Yue, and W. Felix, "The INTERSPEECH 2015 Com­
putational Paralinguistics Challenge: Nativeness, Parkinson's & Eating 
Condition, " in Proceedings INTERSPEECH 2015, ISCA, Ed., 2015. 

[24] J. Mekyska et al., Recent Advances in Nonlinear Speech Processing. 
Cham: Springer International Publishing, 2016, ch. Perceptual Features 
as Markers of Parkinson's Disease: The Issue of Clinical Interpretability, 
pp. 83-91. 

[25] J. Mekyska, Z. Galaz, Z. Mzourek, Z. Smekal, and I. Rektorova, "As­
sessing progress of Parkinson's using acoustic analysis of phonation, " 
in 2015 International Work Conference on Bioinspired Intelligence 
(IWOBI), June 2015, pp. 115-122. 

506 


