Combination of Markerless Surrogates for Motion Estimation in Radiation Therapy CARS 2016

T. Geimer, M. Unberath, O. Taubmann, C. Bert, A. Maier June 24, 2016 Pattern Recognition Lab (CS 5) FAU Erlangen-Nürnberg

Universitätsklinikum Erlangen

Motivation

External Beam Radiation Therapy

- Planning CT \rightarrow Optimized dose distribution
- Respiratory motion \rightarrow Target volume displacement
- ! Potential survival of malignant cells

© BrainLAB AG

Motion Estimation

Clinical State of the Art

- Marker Tracking
 - × Control points based
 - \times Only sparse deformation

Motion Estimation

Clinical State of the Art

- Marker Tracking
 - × Control points based
 - \times Only sparse deformation

Novel Approaches

- Range Imaging
 - ✓ Dense surface information
 - ✓ Non-intrusive
- Fluoroscopy
 - ✓ Image-based signal
- Internal motion models
 - Dense internal deformation

Outline

- Motion Estimation
 - Motion Models
 - Correlation & Prediction
 - Multi Surrogate Approach
- Results & Discussion
- Outlook

Motion Models

Internal Motion

- Non-rigid 3D/3D registration w.r.t. reference phase t_{ref}
- Cropping to internal ROI

Surface Motion

- Surface extracted from 3-D data set
- Deformation fields **d**_i interpolated at mesh-vertices

Framework Overview

Framework Overview

Framework Overview

Fluoroscopy Surrogate Model

Preprocessing

- DRRs from volumetric CT data
- According to Vero kV beam geometry

Breathing Signal Extraction

- · Linearized images
- · PCA of the change in intensity
- First few principle component correlate highly with breathing phase

Multi-surrogate Approach

Motivation

- · Combined information from range imaging and fluoroscopy
- · Improve the estimation or compensate for one surrogate failing

Combination

- Concatenated feature vector $\boldsymbol{\sigma}_{{}_{\mathsf{CB}_{i}}} = \begin{bmatrix} \boldsymbol{\sigma}_{{}_{\mathsf{R}_{i}}} \\ \boldsymbol{\sigma}_{{}_{\mathsf{FL}_{i}}} \end{bmatrix} \in \mathbb{R}^{(f_{\mathsf{R}_{i}} + f_{\mathsf{FL}}) \times 1}$
- Regression matrix $\mathbf{R}_{CB} \in \mathbb{R}^{I \times (f_{RI} + f_{FL})}$

Example: $\mathbf{R}_{CB} \in \mathbb{R}^{3 \times (2+2)}$

Evaluation

Data

- Nine 4-D CT patient data sets
- Ten volumes each (voxel size: $0.97 \times 0.97 \times 2.5 \text{ mm}^3$)
- DRRs: detector with 1024×768 pixels and 0.39 mm pixel spacing

Experiments

- Correlation study on feature weights
- Leave-one-out-assessment of the estimation error w.r.t. ground-truth

Results: Correlation

Results: Estimation

Discussion

Single Surrogate

- Fluoro outperforms surface surrogate: 0.67 \pm 0.33 mm for I = 2
- No improvement with higher internal model dimension

Combination Approach

- No consistent improvement
- $f_{\text{RI}}, f_{\text{FL}} = 1$: 1-D respiratory phase \rightarrow Linearly dependent
- Best overall for l = 2 from (2+2) or higher combined features:

$0.62\pm0.28~\text{mm}$

ightarrow Surrogate combination useful under certain circumstances

Outlook

Surrogate Extraction

- DR eliminates non-redundant information
- · Sophisticated ways to extract mutually exclusive information

Data Acquisition & Training

- Training currently only done on 6 of 9 phases (necessity of leave-one-out approach)
 - \times ASMs do not describe an entire cycle
 - ✓ Training on entire cycle
 - ✓ Prediction on another of the same patient

Thank you for your attention.

Questions?

