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Purpose 

Respiratory motion drastically affects dose profiles in radiation therapy and needs to be 

compensated. Usually the internal motion is inferred from a correlated external surrogate [1][2]. 

We propose an image-based model to estimate internal motion fields from X-ray fluoroscopy 

using dimensionality reduction and regression techniques. Further, we present results of an 

early study investigating possibilities to incorporate multiple surrogates, range imaging [3] and 

fluoroscopy, into the estimation process. 

Methods 

Recently, Taubmann et al. [3] proposed an approach to model dense deformation fields of both 

the internal organs and the external surface based on 3-D MRI sequences. Employing 

dimensionality reduction and multilinear regression the features of the internal motion model 

𝚽 = [𝝓1, … , 𝝓𝑛]𝑇 ∈ ℝ𝑛×𝑙 were estimated from the surface motion model features 𝜮RI =

[𝝈RI1
, … , 𝝈RI𝑛

]
𝑇

∈ ℝ𝑛×𝑓RI, where 𝑛 is the number of respiratory phases and 𝑙, 𝑓RI are the chosen 

feature space dimensionalities. Correlation between the features is understood as a multivariate 

multilinear regression (MLR) problem. 

Using 4-D CT data, we expand on this approach introducing fluoroscopy images as a surrogate. 

Digitally Reconstructed Radiographs (DRR) [4] are used for training purposes. Assuming that 

respiration is the main mode of variation among the images, the first few principal components 

of the set of all vectorized projection images are highly correlated to the breathing signal [5]. 

Principal Component Analysis (PCA) finally yields the feature matrix 𝜮FL =

[𝝈FL1
, … , 𝝈FL𝑛

]
𝑇

∈ ℝ𝑛×𝑓FL, where 𝑓FL is the number of principal components for the 

fluoroscopy model. 

In some cases, multiple surrogates can be acquired during treatment. We consider possibilities 

of combining information from range imaging and fluoroscopy. The information added by the 

second surrogate may be used to improve the estimation or compensate for one surrogate 

failing. To this end, a combined low-dimensional feature vector of both surrogates is created: 

𝝈CB𝑖
= [

𝝈RI𝑖

𝝈FL𝑖
]  ∈  ℝ(𝑓RI+𝑓FL)×1 .  

Then, the feature matrix 𝚺𝐶𝐵 = [𝝈CB1
, … , 𝝈CB𝑛

]
𝑇

∈  ℝ𝑛×(𝑓RI+𝑓FL) is used as the surrogate input 

for regression. The number of retrievable internal features is determined by the column rank 𝑟 

of 𝜮CB. If the feature vectors 𝜹RI𝑖
 and 𝜹FI𝑖

 are linearly independent, suggesting that they contain 

partially unique information, 𝑟 ≤ 𝑓RI + 𝑓FL can exceed the single surrogate bounds. This 

observation indicates that it may be possible to correctly estimate multiple target features while 

only relying on a few surrogate features that are shown to correlate well (see Table 1). 

The approach was evaluated on nine 4-D CT patient data sets consisting of ten volumes each. 

Registration provides nine deformation fields describing distinct motion states. Estimation 

accuracy was assessed in a leave-one-out study for each data set, where each phase was 

subsequently chosen as the test phase. We also excluded the two neighboring phases from 

training to prevent bias. The remaining six phases were used to train the correspondence 

models. Accuracy was defined as the root-mean-square error w.r.t. vector magnitudes between 

the estimated deformation field and the ground truth deformation field of the test phase. 



Results 

Table 1 shows correlation results for three out of nine patients. Exemplary for 𝑙, 𝑓RI, 𝑓FL = 3 the 

first to third PCA scores were compared. While the first component correlates well with the 

internal model, the second one is varying significantly, with the third one mostly correlating 

poorly. Fig. 1 shows the mean estimation error over nine data sets for the three approaches 

surface (RI), fluoroscopy (FL), and their combination (CB). Fluoroscopy outperformed the 

surface with the lowest error of 0.67 ± 0.33 mm for 𝑙 = 2. However, accuracy did not improve 

with higher internal model dimension. Combining two surrogates in the proposed manner did 

not yield consistent improvement. For 𝑓RI, 𝑓FL = 1 both features represent the respiratory phase 

making them redundant. Thus, for a (1/1) combined feature vector the rank-deficient surrogate 

matrix is unable to explain two internal features. In contradiction to the other results, estimating 

𝑙 = 2 internal features from a (2/2) or higher combined feature vector is promising with the 

best overall estimation of 0.62 ± 0.28 mm, indicating that a combination of surrogates is useful 

under certain circumstances. The mean error without compensation was 2.3 ± 0.70 mm. 

Conclusion 
The combination of surrogates did yield improvements, however they were only minor. This 

suggests that for future work more sophisticated approaches need to be explored in order to 

extract mutually exclusive information from the surrogates. Further, a detailed rank analysis of 

the regression matrix can help identify conditions in which a combined approach is useful. 
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Table 1: Pearson’s correlation coefficient of the internal model features and the two surrogate 

features of the first three patient data sets. 
 

 Pat1 Pat2 Pat3 

component 1 2 3 1 2 3 1 2 3 

|cor(𝝓, 𝝈RI)| 0.98 0.85 0.59 0.99 0.99 0.97 0.96 0.92 0.96 

|cor(𝝓, 𝝈FL)| 1.0 0.99 0.57 0.99 0.91 0.88 1.0 0.45 0.39 

|cor(𝝈RI, 𝝈FL)| 0.97 0.85 0.15 1.0 0.94 0.91 0.96 0.36 0.20 

 

 
 

Fig. 1: Mean error and standard deviation for estimation based on single and multiple surrogates 

over nine patient data sets. 𝐶𝐵(𝑥/𝑥) denotes estimation of 𝑙 internal features from a 

combination of 𝑥 features of each surrogate (with 𝑙 ≥ 3 being underdetermined for 𝑥 =  1). 


