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Abstract� In this study, we intended to differentiate patients 

with essential tremor (ET) from tremor dominant Parkinson 

disease (PD). Accelerometer and electromyographic signals of 

hand movement from standardized upper extremity movement 

tests (resting, holding, carrying weight) were extracted from 13 

PD and 11 ET patients. The signals were filtered to remove 

noise and non-tremor high frequency components. A set of 

statistical features was then extracted from the discrete wavelet 

transformation of the signals. Principal component analysis 

was utilized to reduce dimensionality of the feature space. 

Classification was performed using support vector machines. 

We evaluated the proposed method using leave one out cross 

validation and we report overall accuracy of the classification. 

With this method, it was possible to discriminate 12/13 PD 

patients from 8/11 patients with ET with an overall accuracy of 

83%. In order to individualize this finding for clinical 

application we generated a posterior probability for the test 

result of each patient and compared the misclassified patients, 

or low probability scores to available clinical follow up 

information for individual cases. This non-standardized post 

hoc analysis revealed that not only the technical accuracy but 

also the clinical accuracy limited the overall classification rate. 

We show that, in addition to the successful isolation of 

diagnostic features, longitudinal and larger sized validation is 

needed in order to prove clinical applicability. 

 

I. INTRODUCTION 

Tremor is defined as rhythmic, oscillating and involuntary 

movements and often involves the upper extremities. 

Differential diagnosis of tremor commonly comprises 

essential tremor (ET) and Parkinson disease (PD) amongst 

other rare forms. The prevalence of ET is high with up to 5% 

with people over 65 years old [1]. PD has an overall 

prevalence of approximately 0.5 increasing up to 2% with 

age [2]. Tremor is one of the core symptoms in PD patients 

and the initial clinical presentation of the tremor dominant 

PD phenotype.  

 
* These authors contributed equally to this work. 

This study is supported by the FAU Emerging Fields Initiative 

(EFIMoves, 2_Med_03). 
N. Haji Ghassemi��, ��D���A��� �,�B�D"BC���!��� � ��B�"���A��A��F�C��

C��� ����C��� .#"ACB� 
A"D#�� ,�CC�A!� ���"�!�C�"!� ����� ��#�AC �!C� "��

�" #DC�A� .���!���� 	A���A���� ���G�!��A� �!�E�AB�C+� �A��!��!-�-A!��A��
(FAU), Erlangen, Germany. 

F. Marxreiter, J. Schlachetzki, C. Pasluosta, and J. Klucken are with the 

Department of Molecular Neurology, University Hospital Erlangen, 
Erlangen, Germany. 

Axel Schramm is with the Department of Neurology, University 

Hospital Erlangen, Erlangen, Germany. 

Prototypically, tremor in ET features a symmetric postural 

and kinetic tremor of the arms, whereas tremor in PD is 

characterized by an often unilateral resting and postural 

tremor. Differential diagnosis however, especially in early 

disease stages remains problematic because tremor in PD 

may not only occur at rest, but also at posture and/or during 

action. Further, tremor at rest is not pathognomonic for PD 

and has been also observed in ET. Due to these overlapping 

symptoms, misdiagnosis of ET and PD tremor may occur in 

20-30% of the cases [3].  In light of the difference in 

prognosis as well as current and evolving treatment options 

for PD and ET, an accurate and reliable diagnosis is urgently 

needed. Despite these challenges, the diagnostic evaluation 

is highly dependent on the experience of the clinician and 

typically includes medical history and physical examination. 

Neuroimaging [4] has been considered as one potential 

diagnostic option to discriminate of PD and ET. However, 

ability, costs, and invasiveness of this diagnostic option have 

to been taken into consideration [5].  

There is a growing interest in methods based on 

accelerometer and surface electromyography (EMG) 

electrodes, since they are readily available, non-invasive and 

cost-efficient diagnostic tools. Combination of these signals 

can be used to detect frequency and muscle activity [6]. 

Several studies differentiated ET from PD based on 

accelerometer and EMG signals [6] [7]. These studies yield 

reasonable differentiation between PD and ET and overall 

classification accuracy was used as the main metric for 

evaluation of performance. However, high classification 

accuracy is not enough to support clinical decision-making. 

A physician should be able to clinically validate 

classification results. Thus, classification procedure should 

be translated into an individual report for the patients. In this 

work, we propose using posterior probability to assess the 

classification result in an individual manner. This meta 

information is essential for us to integrate our method in 

clinical assessment. We utilized a SVM-based classifier, by 

which we can compute the posterior probability of both 

diseases. To the best of our knowledge, this is the first 

attempt to develop such a method for differential diagnosis. 

II. METHODOLOGY�  

Our classification system is composed of the following 

steps: (1) signal preprocessing, (2) discrete wavelet 

transform, (3) feature extraction, (4) dimensionality 

reduction, and (5) classification. The schematic diagram of 

the system is shown in Fig 1. We implemented the entire 

procedure in Matlab R2015a (MathWorks).  
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Figure 1.  Block diagram of the automated classification 

 

A. Data Acquisition 
Data acquisition was performed as part of a standard 

diagnostic tremor test in the neurophysiology lab of the 
Department of Neurology, University Hospital Erlangen, 
Erlangen, Germany. Typically, tremor frequencies and 
synchronization of agonist/antagonists are reported providing 
only a limited amount of information from the raw data 
recorded. Subjects were comfortably seated and placed their 
arms in a resting position on their legs. Prior to electrode 
placement, the skin was cleaned by cotton and ethanol. Two 
calibrated accelerometers were placed on the dorsal side of 
both hands of the subjects. Bipolar Ag/AgCl surface EMG 
electrodes were placed on the extensor and flexor muscles of 
the left and right forearm by an electrophysician. A total of 
six channels were recorded, two accelerometer signals and 
four surface EMG signals. All signals were recorded at 1000 
Hz using a Schwarzer Topas EMG system, Natus, USA. 
Three 30-seconds tests were performed for each patient, the 
first with the arms fully relaxed and rested on the legs (rest), 
the second with their arms and hands extended in a horizontal 
position (hold) and the third in the same position with 
weights of 1 kg attached to the forearm (weight). To discard 
transitions from the recorded data, we considered only the 
signal from 10 to 25 seconds.  

13 PD patients (tremor dominant forms) and 11 ET 

patients were included for this study. For our experimental 

procedures, we followed the declaration of Helsinki 1975, as 

revised in 2000. Initial diagnosis was made by a movement 

disorder specialist prior to tremor analysis.  If possible, 

patients received clinical follow up examinations to confirm 

or change the initial diagnosis.  PD and ET were diagnosed 

according to consensus criteria of the German Society of 

Neurology. Consensus criteria for PD are similar to the UK 

PDS Brain bank criteria for diagnosis of PD [3] Consensus 

criteria for ET are based on the consensus criteria of the 

movement disorders society [9] ,�C��!CB2��� "�A�#���B and 

clinical characteristics are summarized in Tab I. PD severity 

of patients was staged using the Hoehn & Yahr scale and 

motor performance was clinically evaluated using the 

UPDRS-III rating. 

 

    TABLE I.  PATIENT CHARACTERISTICS. 

 

B. Preprocessing and Filtering 

The recording physician visually inspected both EMG and 

accelerometer signals during data acquisition. Measurements 

with bad signal quality were either repeated or not included 

in the study. To remove non-tremor related high frequency 

components, the accelerometer signals and EMG signals 

were filtered with a Butterworth low pass filter with a cutoff 

frequency of 70 Hz. The EMG signals were additionally 

high pass filtered with a cutoff frequency of 20 Hz and DC-

rectified to amplify the visibility of the tremor bursts in the 

signals. 

C. Wavelet-based Feature Extraction  

EMG signal is non-stationary, meaning that the 

characteristic of the signal changes over time. Discrete 

wavelet transform (DWT) [10] is widely used for analysis of 

non-stationary signals. DWT decomposes a signal to 

different level of coefficients corresponding to different 

frequency bands in a way that the coefficients include all 

information of the original signal. Each level of coefficients 

has different time-frequency resolution. In this work, we 

used Haar mother wavelet, since it has been widely used for 

wavelet analysis of EMG signal. The signals were 

decomposed in 10 levels in order to have an effective feature 

extraction from each coefficient in the next step. 

 Four EMG and two accelerometer signals were 

decomposed by DWT method. Then, a set of standard 

statistical features was extracted from the coefficients: mean, 

standard deviation, skewness, kurtosis, entropy, energy, root 

mean square, and mean absolute value. In the majority of PD 

and ET patients, one hand is more affected by the disease 

than the other hand. Feature extraction is performed based 

on the most affected side of the patients rather than left or 

right hand side, in order to obtain more descriptive features. 

D. Dimensionality Reduction  

Dimensionality reduction was performed to reduce the 

dimensionality of the feature vector and avoid overfitting in 

the classification step. This is particularly important in our 

study since the number of features (524 for each test) is 

much higher than the number of subjects (24). Feature 

reduction was achieved by using principal component 

analysis (PCA) [11]. PCA projects the feature space into 

principal components in the direction of maximum variance. 

 
PD ET 

Number of Patients 13 11 

Age at examination(Range) 67 ± 11 (45-88) 66 ± 13 (43-79) 

Gender (Male/Female) 7/6 4/7 

Disease duration 4 ± 4,6 13 ± 14,6 

UPDRS III 17 ± 9,7 

 
H+Y 2 ± 0,9 

 



 

 

No Init. 
Diag. 

Classific. 
result 

Probability Clinical 
confirm. 

ET PD 

1     'ET'     'ET' 90,7% 9,3% confirmed 

2     'ET'     'ET' 61,1% 38,9% confirmed 

3     'ET'     'ET' 54,3% 45,7% OTHER 

4     'ET'     'ET' 75,5% 24,5% confirmed 

5     'ET'     'ET' 76,0% 24,0% confirmed 

6     'ET'     'ET' 63,0% 37,0% no follow up 

7     'ET'     'ET' 50,0% 50,0% confirmed 

8     'ET'     'ET' 95,6% 4,4% no follow up 

9     'ET'     'PD' 3,6% 96,4% OTHER 

10     'ET'     'PD' 43,2% 56,8% no follow up 

11     'ET'     'PD' 46,8% 53,2% no follow up 

12     'PD'     'ET' 83,0% 17,0% confirmed 

13     'PD'     'PD' 43,3% 56,7% no follow up 

14     'PD'     'PD' 31,4% 68,6% confirmed 

15     'PD'     'PD' 47,4% 52,7% confirmed 

16     'PD'     'PD' 46,4% 53,6% confirmed 

17     'PD'     'PD' 38,4% 61,6% no follow up 

18     'PD'     'PD' 40,4% 59,7% confirmed 

19     'PD'     'PD' 48,2% 51,8% confirmed 

20     'PD'     'PD' 34,5% 65,5% confirmed 

21     'PD'     'PD' 48,2% 51,9% confirmed 

22     'PD'     'PD' 42,1% 57,9% confirmed 

23     'PD'     'PD' 34,1% 65,9% no follow up 

24     'PD'     'PD' 39,7% 60,3% confirmed 

These new components compose a feature space with 

reduced dimensionality. In our experiment, the number of 

components was optimized empirically to achieve the 

highest classification performance.  

E.  Classification  

We trained a binary Support Vector Machines (SVM) 

classifier [12] to distinguish between two classes: ET and 

PD. Two kernels, linear and radial basis function (RBF) 

were examined in this work. SVM has a cost parameter, 

which controls number of misclassification of training 

examples. The RBF kernel has an additional parameter, 

gamma, which controls how far the influence of a single 

training example reaches. A grid-search was employed as a 

method of model selection to adjust the SVM parameters. 

Since performing a complete grid-search is very time 

consuming, it was applied in two stages via coarse grid, and 

then, fine grid. In the coarse grid, the range of cost 

parameter was {0.001, 0.01, 0.1, 1, 10, 15, 20, 50, 100, 

1000} and the range of gamma was {0.003, 0.03, 0.3, 3, 9, 

15, 20}. In the fine, the parameters were examined in a range 

of ±5%, ±10%, ±15%, and ±20% of their selected values. 

The input feature vector was normalized to zero mean and 

unit standard deviation.  

 As previously described, we considered the three tests, 

rest, hold and weight separately and trained a classifier for 

each test. From clinical point of view, it is important to 

investigate which of these tests yield a better differentiation 

between ET and PD.  

F. Evaluation  

Accuracy was computed for evaluating the performance of 

our method, meaning the rate of correctly classified patients. 

The evaluation was implemented using leave one out cross-

validation (LOOCV). LOOCV was chosen due to the small 

number of data. Finding principal components and SVM 

parameters was performed for each training fold and the 

result was applied for the test subject. In addition, we 

computed the posterior probability of the classification. The 

SVM algorithm not only predicts the class of a data but can 

also report the posterior probability as an indicator of 

certainty of the classification. The posterior probability is a 

valuable piece of information in clinical applications since it 

allows for an individual result. It provides a measure of 

similarity for each patient assessed to the reference group. 

This information can complement the diagnostic workup for 

the clinician. 

 

III. RESULTS�  

Tab. II shows the results for our classification method 

optimized for the number of PCA components and the 

parameters of SVM and the kernels. We analyzed each test 

of rest, hold and weight separately. The best performance 

was achieved for the weight test. Tab. III presents individual 

classification result for each patient and the posterior 

probabilities for each disease.  

In order to better understand the misclassified patients and 

to associate different probability levels, we obtained 

additional clinical information from clinical records or 

follow up visits if available in a non-standardized form to 

confirm the initial diagnose that was used in the 

classification experiments and to evaluate if the clinical 

heterogeneity of the small patient population might affect 

the classification outcome. 
 

Table II.   CLASSIFICATION ACCURACY RESULT 

IV. DISCUSSION 

The preliminary results of this study suggest that our method 

is effective to discriminate patients with ET from PD 

patients. The best discrimination between ET and PD was 

achieved when there was a load �!�C���BD����CB2���!�B ����B�

finding underlines the ability of the diagnostic test, the 

sensor-paradigm and the algorithms used to identify 

characteristic differences between the two tremor forms. 

However, the classification accuracy is not sufficient to 

identify each patient with the reference group correctly, 

thereby limiting the individual diagnostic application. 

Therefore, we introduced a probability score for each patient 

and compared the resulting similarity levels with the 

available clinical information, in particular, for the 

misclassified patients. 

 

TABLE III.     INDIVIDUAL CLASSIFICATION RESULT and 
CLINICAL CONFIRMATION 

Tests 
No. PCA 

Components 
SVM Parameters Accuracy 

Rest 3 
Linear kernel 

cost = 0.001 
79% 

Hold 3 

RBF kernel 

cost = 14.25 

gamma = 0.003 
75% 

Weight 3 
RBF kernel 

cost = 10
 

gamma = 0.3 
83% 



 

 

The accuracy of the clinical diagnoB�B� L��N� �B� C+#�����+�

�"F�A� C��!� L,�N�� B�!��� C��� #A�B�!��� "�� "C��A� ,�� B#�������

motor symptoms in addition to the tremor typically allow for 

higher accuracy for PD. In this work, three patients with 

initial diagnosis of ET (patient 9-11) and one PD patient 

(patient 12) were misclassified. Patient 9 is an important 

index patient for this clinical validation procedure since the 

probability for ET was extremely low (3,6%). Importantly, 

in the follow-up visits it became evident, that the initial 

���!���������!"B�B�L��N�could not be confirmed. In fact, the 

diagnosis was changed to cervical dystonia with irregular 

tremor. For patients 10 and 11 the probability L��N� F�B�

above 40%, but did not reach the 50% classification 

boundary. Further, patient 7 barely reached 50% probability 

�"A� L��N � Unfortunately, no follow up visits were 

documented for these patients, thus the clinical confirmation 

of the initial diagnosis could not be performed. Likewise, the 

diagnosis of ET for patient 3 was changed in follow-up 

examinations. Even though this patient was classified as ET, 

the probability was only 54,3% suggestion that probabilities 

around 50% generate another level of uncertainty for 

individual test results. The diagnosis of the misclassified PD 

patient 13 was clinically confirmed. Medical history did not 

reveal any signs that might explain the misclassification 

from the clinical point of view except that the patient was at 

the very first stage of PD (disease duration was 0 years), 

suggesting that at very early stage of tremor-dominant PD 

the classification accuracy might be limited. 

Any pattern recognition method is bound to limitations. A 

major limitation of proof-of-concept studies is the small 

number of patients. Larger data set brings better 

generalization and as a result better classification result. 

Besides, our study also revealed that the validity of the 

ground truth is limited by the diagnostic accuracy of clinical 

examinations of PD as well as ET at a given time point, 

especially in early disease stages is not perfect. Therefore, 

careful reevaluation and the assessment of the response to 

treatment are often needed to finally decide upon the final 

diagnosis.  

 Despite of all limitations, our method brought good 

classification accuracy. Furthermore supporting that the 

study design and analysis enables the identification of 

different tremor forms. In this regard, the concept of 

probability definition is a first attempt to translate successful 

classification paradigms into individualized results that can 

complement the diagnostic workup in clinical settings. It is 

foreseeable that with increasing numbers of future patients 

that undergo the instrumented tremor testing the reference 

group can be increased and refined. This may also make lead 

to a better classification accuracy for patients in early 

disease stages. Moreover the acceptance of treating 

physicians and patients of the individual probability results 

can be evaluated in longitudinal studies. 

V. CONCLUSION 

In this work, accelerometer and EMG signals were analyzed 

to differentiate ET from PD using pattern recognition 

methods. With the proposed method we were able to 

discriminate ET from PD patient with an overall accuracy of 

83%. Additionally, we propose the posterior probability of 

the classification outcome as a clinical indicator of patients 

presenting disease-specific symptoms. The clinical 

validation revealed that studies using clinically confirmed 

and small sized patient cohorts share the risk that the ground 

truth or gold standard for the classification experiment might 

be also affected by the clinical accuracy of the diagnoses. 

Thus, larger study cohorts, better clinical validation (e.g. 

neuroimaging, etc.) and/or standardized follow-up 

paradigms are required to clinically validate instrumented 

tests for diagnostic workup in the future. Our findings also 

underline that studies aiming at clinical translation of 

instrumented movement analysis have to include technical 

and clinical accuracy considerations in the study design to 

ultimately prove clinical applicability. 
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