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Abstract. Fast and robust detection of anatomical structures or patholo-
gies represents a fundamental task in medical image analysis. Most of the
current solutions are however suboptimal and unconstrained by learning
an appearance model and exhaustively scanning the space of parameters
to detect a specific anatomical structure. In addition, typical feature
computation or estimation of meta-parameters related to the appear-
ance model or the search strategy, is based on local criteria or predefined
approximation schemes. We propose a new learning method following a
fundamentally different paradigm by simultaneously modeling both the
object appearance and the parameter search strategy as a unified behav-
ioral task for an artificial agent. The method combines the advantages of
behavior learning achieved through reinforcement learning with effective
hierarchical feature extraction achieved through deep learning. We show
that given only a sequence of annotated images, the agent can automat-
ically and strategically learn optimal paths that converge to the sought
anatomical landmark location as opposed to exhaustively scanning the
entire solution space. The method significantly outperforms state-of-the-
art machine learning and deep learning approaches both in terms of ac-
curacy and speed on 2D magnetic resonance images, 2D ultrasound and
3D CT images, achieving average detection errors of 1-2 pixels, while
also recognizing the absence of an object from the image.

1 Introduction

At the core of artificial intelligence is the concept of knowledge-driven compu-
tational models which are able to emulate human intelligence. The textbook [8]
defines intelligence as the ability of an individual or artificial entity to explore,
learn and understand tasks, as opposed to following predefined solution steps.

Machine learning is a fundamental technique used in the context of med-
ical image parsing. The robust detection, segmentation and tracking of the
anatomy are essential in both the diagnostic and interventional suite, enabling
real-time guidance, quantification and processing in the operating room. Typical
machine learning models are learned from given data examples using subopti-
mal, handcrafted features and unconstrained optimization techniques. In addi-
tion, any method-related meta-parameters, e.g. ranges, scales, are hand-picked



2 F. Ghesu et al.

or tuned according to predefined criteria, also in state-of-the-art deep learn-
ing solutions [3, 11]. As a result, such methods often suffer from computational
limitations, sub-optimal parameter optimization or weak generalization due to
overfitting, as a consequence of their inability to incorporate or discover intrinsic
knowledge about the task at hand [1, 5, 6]. All aspects related to understanding
the given problem and ensuring the generality of the algorithm are the responsi-
bility of the engineer, while the machine, completely decoupled from this higher
level of understanding, blindly executes the solution [8].

In this paper we make a step towards self-taught virtual agents for image
understanding and demonstrate the new technique in the context of medical im-
age parsing by formulating the landmark detection problem as a generic learning
task for an artificial agent. Inspired by the work of Mnih et al. [7], we leverage
state-of-the-art representation learning techniques through deep learning [1] and
powerful solutions for generic behavior learning through reinforcement learn-
ing [10] to create a model encapsulating a cognitive-like learning process to
discover strategies, i.e. optimal search paths for localizing arbitrary landmarks.
In other words, we enable the machine to learn how to optimally search for a
target as opposed to following time-consuming exhaustive search schemes. In
parallel to our work, similar ideas have been exploited also in the context of 2D
object detection [2].

2 Background

Building powerful artificial agents that can emulate or even surpass human
performance at given tasks requires the use of an automatic, generic learning
model inspired from human cognitive models [8]. The artificial agent needs
to be equipped with at least two fundamental capabilities to achieve intelli-
gence. At perceptual level is the automatic capturing and disentangling of high-
dimensional signal data describing the environment, while on cognitive level is
the ability to reach decisions and act upon the observed information [8]. Deep
learning and reinforcement learning provide the tools to build such capabilities.

2.1 Deep Representation Learning

Inspired by the feed-forward type of information processing observable in the
early visual cortex, the deep convolutional neural network (CNN) represents a
powerful representation learning mechanism with an automated feature design,
closely emulating the principles of the animal and human receptive fields [1]. The
architecture is composed of hierarchical layers of translation-invariant convolu-
tional filters based on local spatial correlations observable in images. Denoting
the l-th convolutional filter kernel in the layer k by w(k,l), we can write the
representation map generated by this filter as: oi,j = σ((w(k,l) ∗ x)i,j + b(k,l)),
where x denotes the representation map from the previous layer (used as input),
(i, j) define the evaluation location of the filter and b(k,l) represents the neuron
bias. The function σ represents the activation function used to synthesize the
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Fig. 1. System diagram showing the interaction of the artificial agent with the envi-
ronment for landmark detection. The state st at time t is defined by the current view,
given as an image window. The actions of the agent directly impact the environment,
resulting in a new state and a quantitative feedback: (st+1, rt). The experience memory
stores the visited states, which are periodically sampled to learn the behavior policy.

input information. In our experiments we use rectified linear unit activations
(ReLU) given their excellent performance. In a supervised setup, i.e. given a set
of independent observations as input patches X with corresponding value as-
signments y, we can define the network response function as R( · ;w, b) and use
Maximum Likelihood Estimation to estimate the optimal network parameters:
ŵ, b̂ = arg minw,b ‖R(X;w, b)−y‖22. We solve this optimization problem with a
stochastic gradient descent (SGD) approach combined with the backpropagation
algorithm to compute the network gradients.

2.2 Cognitive Modeling using Reinforcement Learning

Reinforcement learning (RL) is a technique aimed at effectively describing learn-
ing as an end-to-end cognitive process [9]. A typical RL setting involves an ar-
tificial agent that can interact with an uncertain environment, thereby aiming
to reach predefined goals. The agent can observe the state of the environment
and choose to act on it, similar to a trial-and-error search [9], maximizing the
future reward signal received as a supervised response from the environment
(see Figure 1). This reward-based decision process is modeled in RL theory as a
Markov Decision Process (MDP) [9] M := (S,A, T ,R, γ), where: S represents
a finite set of states over time, A represents a finite set of actions allowing the
agent to interact with the environment, T : S × A × S → [0; 1] is a stochastic
transition function, where T s′s,a describes the probability of arriving in state s′

after performing action a in state s, R : S × A × S → R is a scalar reward
function, where Rs′s,a denotes the expected reward after a state transition, and
γ is the discount factor controlling future versus immediate rewards.

Formally, the future discounted reward of an agent at time t̂ can be written
as Rt̂ =

∑T
t=t̂ γ

t−t̂rt, with T marking the end of a learning episode and rt defin-
ing the immediate reward the agent receives at time t. Especially in model-free
reinforcement learning, the target is to find the optimal so called action-value
function, denoting the maximum expected future discounted reward when start-
ing in state s and performing action a: Q∗(s, a) = maxπ E [Rt|st = s, at = a, π],
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where π is an action policy, in other words a probability distribution over ac-
tions in each given state. Once the optimal action-value function is estimated
the optimal action policy, determining the behavior of the agent, can be directly
computed in each state: ∀s ∈ S : π∗(s) = arg maxa∈AQ

∗(s, a). One impor-
tant relation satisfied by the optimal action-value function Q∗ is the Bellman
optimality equation [9]. This is defined as:

Q∗(s, a) =
∑
s′

T s
′

s,a

(
Rs
′

s,a + γmax
a′

Q∗(s′, a′)
)

= Es′
(
r + γmax

a′
Q∗(s′, a′)

)
, (1)

where s′ defines a possible state visited after s, a′ the corresponding action and
r = Rs

′

s,a represents a compact notation for the current, immediate reward.
Viewed as an operator τ , the Bellman equation defines a contraction map-
ping. Strong theoretical results [9] show that by iteratively applying Qi+1 =
τ(Qi),∀(s, a), the function Qi converges to Q∗ at infinity. This standard, model-
based policy iteration approach is however not always feasible in practice. An
alternative is the use of model-free temporal difference methods, typically Q-
Learning [10], which exploit correlations of consecutive states. A step further
towards a higher computational efficiency is the use of parametric functions to
approximate the Q-function. Considering the expected non-linear structure of
the Q-function [10], neural networks represent a potentially powerful solution
for policy approximation [7]. In the following we leverage these techniques in an
effort to make a step towards machine-driven intelligence for image parsing.

3 Proposed Method

We propose to formulate the image parsing problem as a deep-learning-driven
behavior policy encoding automatic, intelligent paths in parametric space to-
wards the correct solution. Let us consider the example of landmark detection.
The optimal search policy in this case represents a trajectory in image space
converging to the landmark location p ∈ Rd (d is the image dimensionality).

3.1 Agent Learning Model

As previously motivated, we model this new paradigm with an MDPM. While
the system dynamics T are implicitly modeled through our deep-learning-based
policy approximation, the state space S, the action space A and reward/feedback
scheme R need to be explicitly designed:

– States describe the surrounding environment - in our context we model
this as a focus of attention, a region of interest in the image with its center
representing the current position of the agent.

– Actions denote the moves of the agent in the parametric space. We select a
discrete action-scheme allowing the agent to move one pixel in all directions:
up, down, left, right - corresponding to a shift of the image patch. This allows
the agent to explore the entire image space.
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– Rewards encode the supervised feedback received by the agent. Opposed
to typical choices [7], we propose to follow more closely a standard human
learning environment, where rewards are scaled according to the quality
of a specific move. We select the reward to be δd, the supervised relative
distance-change to the landmark location after executing a move.

3.2 Deep Reinforcement Learning for Image Parsing

Given the model definition, the goal of the agent is to select actions by inter-
acting with the environment in order to maximize cumulative future reward.
The optimal behavior is defined by the optimal policy π∗ and implicitly optimal
action-value function Q∗. In this work we propose a model-free, temporal dif-
ference approach introduced in the context of game learning by Mnih et al. [7],
using a deep CNN to approximate the optimal action-value function Q∗. Defin-
ing the parameters of a deep CNN as θ, we use this architecture as a generic,
non-linear function approximator Q(s, a; θ) ≈ Q∗(s, a) called deep Q network
(DQN). A deep Q network can be trained in this context using an iterative ap-
proach to minimize the mean squared error based on the Bellman optimality
criterion (see Equation 1). At any learning iteration i, we can approximate the

optimal expected target values using a set of reference parameters θrefi := θj
from a previous iteration j < i: y = r + γmaxa′ Q(s′, a′; θrefi ). As such we ob-
tain a sequence of well-defined optimization problems driving the evolution of
the network parameters. The error function at each step i is defined as:

θ̂i = arg min
θi

Es,a,r,s′
[
(y −Q(s, a; θi))

2
]

+ Es,a,r [Vs′ [y]] . (2)

This is a standard, supervised setup for DL in both 2D and 3D (see Section 2).
Reference Update-Delay Using a different network to compute the ref-

erence values for training brings robustness to the algorithm. In such a setup,
changes to the current parameters θi and implicitly to the current approximator
Q( · ; θi) cannot directly impact the reference output y, introducing an update-
delay and thereby reducing the probability to diverge and oscillate in suboptimal
regions of the optimization space [7].

Experience Replay To ensure the robustness of the parameter updates and
train more efficiently, we propose to use the concept of experience replay [4]. In
experience replay, the agent stores a limited memory of previously visited states
as a set of explored trajectories: E = [t1, t2, · · · , tP ]. This memory is constantly
sampled randomly to generate mini-batches guiding the robust training of the
CNN and implicitly of the agent behavior policy.

4 Experiments

Accurate landmark detection is a fundamental prerequisite for medical image
analysis. We developed a research prototype to demonstrate the performance of
the proposed approach on this type of application for 2D magnetic resonance
(MR), ultrasound (US) and 3D computed tomography (CT) images.
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Fig. 2. Figures depicting the landmarks considered in the experiments. Figure (a)
shows the LV-center (1), RV-extreme (2) and the anterior / posterior RV-insertion
points (3) / (4) in a short-axis cardiac MR image. Figure (b) highlights the mitral septal
annulus (1) and the mitral lateral annulus points (2) in a cardiac ultrasound image and
figure (c) the right carotid artery bifurcation (1) in a head-neck CT scan. Figures (d)
and (e) depict trajectories/optimal paths followed by the agent for detection, blue
denotes the random starting point, red the groundtruth and green the optimal path.

4.1 Datasets

We use three datasets containing 891 short-axis view MR images from 338 pa-
tients, 1186 cardiac ultrasound apical four-chamber view images from 361 pa-
tients and 455 head-neck CT scans from 455 patients. The landmarks selected for
testing are presented in Figure 2. The train/cross-validation/test dataset split is
performed randomly at patient level, for the MR dataset 711/90/90 images, for
the US dataset 991/99/96 images and for the CT dataset 341/56/58 images. The
results on the MR dataset are compared to the state-of-the art results achieved
in [5,6] with methods combining context modeling with machine-learning for ro-
bust landmark detection. Please note that we use the same dataset as [5,6], but
a different train/test split. On the CT dataset we compare to [11], a state-of-the-
art deep learning solution combined with exhaustive hypotheses scanning. Here
we use the same dataset and data split. In terms of preprocessing we resample
the images to isotropic resolution, 2mm in 2D and 1mm in 3D.

4.2 Learning How to Find Landmarks

The learning occurs in episodes in which the agent explores random paths in ran-
dom training images, constantly updating the experience memory and implicitly
the search policy modeled by the deep CNN. Based on the cross-validation set
we systematically select the meta-parameters and number of training rounds
following a grid search: γ = 0.9, replay memory size P = 100000, learning rate η
= 0.00025 and ROI 602 pixels, respectively 263 voxels. The network topology is
composed of 3 convolution+pooling layers followed by 3 fully-connected layers
with dropout. We emphasize that except for the adaptation of the CNN to use
3D kernels on 3D data, the meta-parameters are kept fixed for all experiments.

Policy Evaluation During the evaluation the agent starts in a random
state and follows the optimal policy with no knowledge about the groundtruth,
navigating through the image space until an oscillation occurs - an infinite loop
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Table 1. Table showing the detection error on the test sets with superior results high-
lighted in bold. The error is quantified as the distance to the ground-truth, measured
in mm. With * we signify that the results are reported on the same dataset, but on a
different training/test data-split than ours.

Detection error [mm]

2D-MRI 2D-US 3D-CT

LV-center RV-ext RV-post RV-ant M-sep M-lat Bifurc.

Our [6] Our [5] Our [6] [5] Our Our Our Our [11]

Mean 1.8 6.2∗ 4.9 8.4∗ 2.2 7.9∗ 5.9∗ 3.7 1.3 1.6 1.8 2.6

Median 1.7 5.4∗ 4.2 5.9∗ 1.8 4.7∗ 3.9∗ 3.0 1.2 1.3 0.8 1.2

STD 2.2 4.0∗ 3.6 16.5∗ 1.5 11.5∗ 16.0∗ 2.3 0.8 1.4 2.9 5.0

between two neighboring states, indicating the location of the sought landmark.
The location is considered a high-confidence landmark detection if the expected
reward from this location maxaQ

∗(starget, a) < 1, i.e. the agent is closer than
one pixel. This means the policy is consistent, rejecting the possibility of a local
optimum and giving a powerful confidence measure about the detection. Table 1
shows the results on the test sets for all modalities and landmarks.

Object not in the image? Using this property we not only detect diverging
trajectories, but can also recognize if the landmark is not contained in the image.
For example we evaluated trained agents on 100 long-axis cardiac MR images
from different patients, observing that in such cases the oscillation occurs at
points where maxaQ

∗(starget, a) > 4. This suggests the ability of our algorithm
to detect when the anatomical landmark is absent. (see Figure 3(c-d)).

Convergence We observed in random test images that typically more than
90% of the possible start points converge to the solution (see Figure 3(a-b)).

Speed Performance While typical state-of-the-art methods [3,11] exhaus-
tively scan solution hypotheses in large 2D or 3D spaces, the agent follows a
simple path (see Figure 2(d-e)). The average speed-up to scanning with a simi-
lar network (see for example [11]) is around 80× in 2D and 3100× in 3D. The
very fast detection in 3D in less than 0.05 seconds highlights the potential of this
technology for real-time applications, such as tracking of anatomical objects.

5 Conclusion

In conclusion, in this paper we presented a new learning paradigm in the context
of medical image parsing, training intelligent agents that overcome the limita-
tions of standard machine learning approaches. Based on a Q-Learning inspired
framework, we used state-of-the-art deep learning techniques to directly approx-
imate the optimal behavior of the agent in a trial-and-error environment. We
evaluated our approach on various landmarks from different image modalities
showing that the agent can automatically discover and efficiently evaluate strate-
gies for landmark detection at high accuracy.
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Fig. 3. Figure (a) highlights in transparent red all the starting positions converging
to the landmark location (the border is due to the window-based search). Figure (b)
shows an example of a failed case. Figures (c) and (d) visualize the optimal action-
value function Q∗ for two images, the latter not containing the landmark. For this
image there is no clear global minimum, indicating the absence of the landmark.
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