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Abstract— Digital motion analysis in freestyle snowboarding
requires a stable trick detection and accurate classification.
Freestyle snowboarding contains several trick categories that
all have to be recognized for an application in training sessions
or competitions. While previous work already addressed the
classification of specific tricks or turns, there is no known
method that contains a full pipeline for detection and clas-
sification of tricks from multiple categories. In this paper,
we suggest a classification pipeline containing the detection,
categorization and classification of tricks of two major freestyle
trick categories. We evaluated our algorithm based on data
from two different acquisitions with a total number of eleven
athletes and 275 trick events. Tricks of both categories were
categorized with recall results of 96.6 % and 97.4 %. The
classification of the tricks was evaluated to an accuracy of
90.3 % for the first and 93.3 % for the second category.

I. INTRODUCTION

Digital motion analysis in snowboarding leads to a deeper
insight in the sport, can enhance the performance of athletes
and support the judges’ decisions at competitions [1]. How-
ever, to enable an automated digital motion analysis, tricks
first have to be detected reliably and classified accurately.
An unobtrusive and cheap method for these goals is based on
the data processing of inertial-magnetic measurement units
(IMMUs). These devices provide accelerometer, gyroscope
and magnetometer measurements. Based on IMMUSs attached
to a snowboard, the current state of the board (rest, in motion,
etc.) as well as the board’s orientation can be monitored at
all times. This information can be used for an automated
trick detection and classification.

In literature, various approaches for snowboard trick anal-
ysis were published. The group of Harding et al. focused
on trick analysis in half-pipe snowboarding [2], [3]. They
calculated the rotation angles of the tricks during the air time
and could distinguish between tricks with varying rotations.
Furthermore, Holleczek et al. [4] proposed an algorithm to
determine several snowboard turns and the current riding
style by processing of GPS and gyroscope data. Similar
studies were conducted in the related field of skateboarding.
Anlauff et al. [S] proposed a two-trick classification system
which was implemented to run in real-time. In addition, our
group developed a pattern recognition-based algorithm for
skateboard trick detection and classification in six different
trick classes [6].

The aforementioned studies were always focused on only one
trick category (e.g. only half-pipe tricks). However, freestyle
snowboarding implicates the athletes’ freedom of decision
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for tricks from several categories in one run. Hence, an
extension to previous work is required that is capable of
classifying tricks from multiple categories. Furthermore, all
snowboarding-related approaches were based on decision
making by single assumptions (e.g. rotation about one axis)
and hence are hardly extendable to a wider variety of more
advanced tricks.

In this work, we propose an algorithm that first detects
possible trick events, then distinguishes between two of the
main freestyle trick categories (grind tricks and air tricks, see
Fig. 1) and finally classifies the actual trick. We implemented
the algorithm based on pattern recognition methods, which
are extendable in both the trick categories and the trick
classes.

(a) Grind

(b) Air

Fig. 1. Example of snowboard trick categories grind and air. Grinds are
performed by sliding over static objects, e.g. rails or boxes. Airs are jumps
using a kicker and performing defined rotations during the air time.

II. METHODS
A. Data acquisition

1) Hardware: The data acquisition of this study was
based on the miPod inertial-magnetic measurement unit
(Blank et al. [7]). It contained an InvenSense MPU-9150,
which provides sensing in three-axes by an accelerometer,
a gyroscope and a magnetometer. The accelerometer range
was set to = 16g, the gyroscope was set to £ 2000 °/s and
the magnetometer measured in the range of 4 1200 pT. Data
were obtained with a 16-bit resolution per axis. A miPod
device was attached to each board behind the front binding.
It was adhered by 3M™ Dual Lock™ Reclosable Fasteners
and in addition fixed with duct tape. The sensor was attached
in a way that its x-, y- and z-axes represent the longitudinal,
the lateral and the vertical axis (see Fig. 2). In addition to
the IMMU-device, two GoPro Hero 2 cameras were used
during the data collection. They were set to a resolution of
848 x 480 pixels with a frame rate of 50 Hz.

2) Study design: Data were collected in two different
acquisitions. A short trick description and the number of
executions in both acquisitions are summarized in Tab. I.
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Fig. 2. Coordinate system of board-sensor-system.

All participants were informed of snowboard-related risks
and gave written consent to participate in the study and for
the collected data to be published.

Acquisition A was performed in Hintertux, Austria. Four
subjects (age in years: 18 + 9, size in cm: 167 & 13, all male,
stance direction: two regular and two goofy) participated
in the study by performing freestyle snowboard tricks. The
study contained both grind and air tricks. In total, data of
twelve grinds and 62 airs were collected. However, due to
a large variety of different tricks of the athletes, there was
no differentiation feasible between tricks of one category in
this acquisition.

In contrast, acquisition B was conducted in order to ad-
ditionally differentiate between tricks in both categories.
Therefore, seven further athletes (age in years: 15 =+ 8,
size in cm: 156 =+ 13, all male, stance direction: four
regular and three goofy) performed three different grinds
and three different airs. Data of approximately five runs per
athlete were collected which leads to a total number of 201
performed tricks. Not all athletes performed the same number
of runs nor did they always execute the same number of tricks
in each run.

Both acquisitions contained a specified calibration procedure.
For the accelerometer and gyroscope calibration, the IMMUs s
were set in six static positions and rotated about each of
the three axes. A calibration of the magnetometer was not
necessary. The magnetometer signal was only analyzed for
relative changes and not for absolute measurements of single
axes. All data of the trick performances and the calibration
procedure were stored for later processing.

B. Preprocessing

The obtained data were preprocessed for two purposes:
calibration and correction of the stance phase influence.
Based on the aforementioned calibration procedure, the ac-
celerometer and gyroscope data were calibrated by using the
static measurements and the rotations about all axes. The
implemented calibration method followed the algorithm of
Ferraris et al. [8].

Furthermore, a correction of the stance phase influence

TABLE I
OVERVIEW OF TRICK CATEGORIES AND CLASSES OF BOTH
ACQUISITIONS. THE ROTATION AXES REFER TO REGULAR STANCE
DIRECTION.

BS: BACKSIDE, F'S: FRONTSIDE

acquisition

A: Hintertux
Grinds (category I)
Airs (category II)
B: Bispingen
Grinds (category I)

| description / rotation | number

sliding on obstacle (e.g. box) 12
jump over kicker with air time | 62

- 50-50 straight slide, no rotation 38
- BS-Boardslide 90° (+z), slide, 90° (-z) 37
- FS-Boardslide 90° (-z), slide, 90° (+z) 32
Airs (category II)

- Method straight jump, no rotation 37
- BS-180 180° (-z) 32
- FS-360 360° (+z) 25

was necessary in order to obtain consistent measurements
of all subjects. Snowboarders either ride regular or goofy
which defines the leading foot during motion [9]. Comparing
regular and goofy riding subjects, the obtained data did not
vary for rotations about the y-axis but showed mirrored
behavior in the x- and z-axes. In order to analyze tricks of
both types, the signals of the x- and z-axes of all goofy data
sets were inverted before further processing.

C. Event detection

An event detection was developed in order to extract
possible trick events. These events were found by a distinct
peak in the accelerometer signal produced by the landing
impact after a trick. In order to overcome the influence of
sensor noise, the L'-norm (sum of the absolute values of all
axes) sq¢ was computed for all times . Subsequently, the
signal was analyzed by a window-based threshold-approach
with a window length of 50 samples (0.25s) and an overlap
of 49 samples. Every time s,; exceeded a pre-defined
threshold e, the corresponding signal window was considered
for further processing. The threshold ¢ was determined by a
leave-one-subject-out cross-validation (LOSO-CV) with the
criterion of detecting all trick events of the subjects in the
training data set of each LOSO-CV iteration.

D. Classification of trick category

Each detected event was processed in order to analyze
if it contained a grind trick event (category I), an air trick
event (category II) or an incorrectly detected no-trick event
(category III). Grinds and airs showed typical features that
could be used for the differentiation (see Fig. 3). Grinds
were always performed on a metallic rail or a metallic box.
Hence, the magnetometer signal showed a distinct behavior
that varied from the normal run aside from grind objects.
Airs always included an air time which could be noticed by
a low noise level in the accelerometer signal.

The classification was performed in a two-stage approach.
In the first step, grind events were classified with the mag-
netometer signal. In the second step, all events that were not
classified as grind were further analyzed with the accelerom-
eter signal for containing an air event. It was assumed that



the most relevant information for the category classification
could be extracted from the time interval At,; ..+ before a
detected landing impact. Furthermore, there was no differ-
entiation between single axes and only the L'-norm of both
the magnetometer signal s,, ; and the accelerometer signal
5q,+ were used. A more detailed description of the two-stage
approach is provided in the following paragraphs.

1) Grind classification: The grind classification was
based on the high variance of the magnetometer signal
influenced by the metallic surface. Therefore, the variance
of the magnetometer L!-norm Sm, was calculated with
a moving-window approach with a window length of 10
samples (0.05s). This window length was chosen in order
to eliminate noise while sustaining relevant changes in the
signal. The only feature that was extracted was the number
of samples that exceeded a defined threshold 7yqrmag in
the computed variance signal. The grind classification was
implemented by a Naive Bayes classifier which distinguished
between two classes: grind events (category I) and all other
events (category II and III). The implemented classifier was
based on an adapted cost sensitivity matrix [10] in order to
weight the recall of the classification result over the preci-
sion. The corresponding proportion of costygise negative O
COStfqlse positive Was defined by the weight factor fi, grind.

2) Air classification: Due to the already classified grind
events, some incorrectly detected events (category III) could
be eliminated. Based on the assumption, that there is always
a dead time between two performed tricks, all events, which
were detected within the time interval of A¢p,s. before and
after a classified grind of the same athlete, were excluded
from further processing. Subsequently, an air classification
was performed similarly to the previous grind classification.
The variance of the accelerometer L!-norm was calculated
with a moving-window approach of window length 10 sam-
ples (0.05s). The only used feature was based on the low
signal variance of air tricks during the air time. In order
to detect samples during the air time, a threshold 7,4r ace
was defined. The number of samples that were below this
threshold was used as the extracted feature. Analogue to the
previous approach, a Naive Bayes classifier was trained using
a cost sensitivity matrix. The cost proportion was defined by
the weight factor f, 4ir, respectively.

3) Parameter setting: The two-stage classification was
based on six parameters: the time intervals At,.; ., and
Alpquse, the two thresholds in the magnetometer and ac-
celerometer variance 7Myarmag aNd Nyar,acc and the weight
factors of the classifiers fy gring and fy qir. The time
intervals were defined by manual analysis of tricks of
both acquisitions to be At,e cqt =15 and Atpgyse =25. The
thresholds and weight factors were determined with a grid
search during the classification process. The criteria for the
parameter selection was based on the maximization of the
F-measure [11].

E. Classification of trick class

An event that was determined as trick event of one
category was further classified for the actual trick class. The
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Fig. 3. Example of magnetometer signal of grind trick (a) and accelerom-
eter signal of air trick (b).

classification was performed separately for grinds and airs.
However, both performances followed a similar procedure.
The definition of the relevant signal period was based on
the previously determined time of the landing impact. It was
set to an interval from Af,¢; ;ricr before the landing time to
the landing time. In contrast to the category classification,
the relevant signal period had to be set higher for the
trick classification. In snowboarding, many tricks are already
prepared before the actual grind time or air time. In order to
include this preparation phase, the time interval was defined
to be Atyes trick =25.

For the defined signal interval, features were extracted. These
features were only based on the integrated gyroscope signal
and only contained snowboard-specific rotation features.
These were the total rotation per axis, the rotation per axis
in the first half of the trick and the rotation per axis of the
second half of the trick. Hence, nine features were calculated.
For the classification, four classifiers were compared: Naive
Bayes (NB), C4.5, k-Nearest Neighbors (kNN), and Support
Vector Machine with a radial basis kernel (SVM). kNN
was evaluated for k € {1,3,5}. For the SVM, a grid search
was executed for the determination of the best performing
parameters v and C € {107%, 1072, ..., 10°}.

FE. Evaluation

The evaluation of the event detection and subsequent
classification in trick categories was based on both data
acquisitions. These contained 275 tricks in total, 119 grinds
and 156 airs. The event detection was evaluated by a leave-
one-subject-out cross-validation. The results were calculated
for the recall and precision of the detection of an actual
trick event, without any differentiation of the trick category
or class.

For the two-stage category classification of grind and air
events, one Naive Bayes classifier was trained per classifica-
tion step. The classifiers’ performances were evaluated with
a LOSO-CV. In addition, a grid search was performed for



the defined parameters of each stage. The classification with
the best performing parameter configuration was evaluated
by means of recall and precision.

Subsequently, the actual trick classification for both cat-
egories was evaluated based on the result of the previ-
ously performed event detection and category classification.
Therefore, the trick classification could contain incorrectly
detected and incorrectly categorized events. Both will be
referred to as no-trick in the evaluation. The feature se-
lection and classification with the four classifiers were per-
formed with the Embedded Classification Software Toolbox
(ECST) [12]. Note that the trick classification was only
performed for data of acquisition B as stated in Study design.
All performed tricks were manually labeled by analyzing the
video recordings. All tricks were assigned to a trick category
and for acquisition B in addition to a trick class.

III. RESULTS

The evaluation of the event detection showed a positive
detection of 274 out of 275 trick events and a false positive
detection of 471 events. This results in a recall of 0.996 and
a precision of 0.368.

The classification of trick categories was evaluated for the
745 previously detected events. The one trick event that was
missed by the event detection will not be considered any-
more. In the first stage, 115 out of 119 grinds were classified
correctly. Furthermore, the grind classification contained 15
false positives. By the dead time considerations, 113 no trick
events (but no actual trick event) were eliminated before
performing the air classification. Here, 151 true positive and
15 false positive air events were detected while a total of
four airs were missed in the category classification. Based
on these numbers, the results were determined to a recall
of 0.966 and a precision of 0.885 for grinds and a recall of
0.974 with a precision of 0.910 for airs.

The best performing classifier for the grind classification
was SVM with an accuracy of 90.3 %. The air classification
showed the best result for kNN with an accuracy of 93.3 %.
An overview of the accuracies of all classifiers is provided
in Tab. II. The confusion matrices with the best performing
classifiers of both classifications are provided in Tab. III and
Tab. IV.

TABLE I
RESULTS: ACCURACIES OF ALL COMPARED CLASSIFIERS FOR THE
TRICK CLASSIFICATION OF BOTH CATEGORIES GRINDS AND AIRS.

accuracy [%] NB C4.5 | KNN | SVM
Grind classification | 87.6 | 86.7 89.4 90.3
Air classification 904 | 91.3 93.3 89.4

IV. DISCUSSION

The results of the event detection were evaluated to a
recall of 0.996 and a precision of 0.368. The high recall
results from the specifically set threshold e that was defined
by means of containing all trick events in the training phase.
Although the majority of the incorrectly detected events

TABLE III
RESULTS: CONFUSION MATRIX OF THE GRIND CLASSIFICATION WITH

SVM. THE MATRIX CONTAINS ALL CATEGORIZED GRIND TRICKS
ACCORDING TO TAB. I AND THE no-trick CLASS OF INCORRECTLY

DETECTED AND INCORRECTLY CATEGORIZED EVENTS.

true
pred.  50-50 | BS-Boardsl. | FS-Boardsl. | no-trick
50-50 38 3 0 1
BS-Boardsl. 0 33 0 1
FS-Boardsl. 0 0 28 5
no-trick 0 0 1 3
TABLE IV

RESULTS: CONFUSION MATRIX OF THE AIR CLASSIFICATION WITH
KNN. THE MATRIX CONTAINS ALL CATEGORIZED AIR TRICKS
ACCORDING TO TAB. I AND THE no-trick CLASS OF INCORRECTLY
DETECTED AND INCORRECTLY CATEGORIZED EVENTS.

true

pred. Method | BS-180 | FS-180 | no-trick
Method 35 0 0 2
BS-180 1 32 0 2
FS-180 0 0 24 2
no-trick 0 0 0 6

could be excluded in the subsequent processing steps, a
more sophisticated event detection approach could further
improve the algorithm. The two-stage category classification
performed effectively by incorporating one classifier per
trick category and considering the dead time interval.
However, a combination of the category classification with
the event detection, which would already contain the dead
time considerations between tricks, could widely simplify
the processing chain. The trick classification showed results
of more than 90 % for both trick categories. Considering
the confusion matrices of both classifications, it can be seen
that incorrectly classified events were mainly a result of the
no-trick class. Without incorrectly detected and categorized
events, the accuracy would be considerably higher.

One possibility to overcome this limitation would be a
more thorough analysis of the time interval of the trick
performance. In the proposed approach, the relevant time
intervals for the category and the trick classification were
manually defined to 1s and 2s before the landing impact.
As a result, it could be possible that a too short or too
long signal period was processed and thereby the events of
one and the same category or class are less comparable.
An improvement would be a determination of the actual
grind or air time of the trick as suggested in [13], [14]. The
determined duration of the trick would then be used for a
classification based on an adaptive trick time interval.

With our approach, we established the first step towards
an automated category and trick classification in freestyle
snowboarding. However, we only analyzed two out of
several categories. Further important categories are for
example Big Air and Half-pipe. Although Big Air has



not been considered in this work, the basic idea of our
air detection can be supposed to work as well if the
aforementioned air time dependent trick time interval is
incorporated. For half-pipe, the previous work of Harding
et al. [2], [3] should be further analyzed and extended.

For the application in training sessions or competitions, two
aspects have to be considered: the data transmission and the
real-time capability of the system. While the current system
was based on data which were stored on the sensor device,
an application of the system would require a constant
data transmission over the distance of the whole slope.
Furthermore, the data transmission as well as the data
processing have to be performed in real-time. Therefore,
our algorithm was designed by means of low computational
effort and short window lengths (e.g. in the event detection).
The most crucial part of a real-time implementation is the
incorporation of the proposed SVM classifier for the grind
classification. However, in a final approach also alternative
classifiers can be implemented and would still achieve
comparable accuracies (see Tab. II).

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a full pipeline for the

classification of multiple snowboard freestyle tricks. The
evaluation showed a stable detection and classification
rates of more than 90% for all categories and tricks.
The algorithm was designed to be extendable to more
trick categories and trick classes. Hence, the proposed
method provides the first step towards an application of
trick classification in freestyle snowboard training and
competitions. Furthermore, relevant information for the
athletes, coaches and judges can be extracted from the
processing pipeline. These include the already computed
rotation angles and the proposed calculation of the trick
duration.
The next steps towards an application in training sessions
and competitions contain an extension of the trick categories
in order to cover the full spectrum of freestyle tricks. In
addition, further relevant parameters have to be defined for
training support and attractive ways of motion visualization
in competitions have to be developed. Furthermore, the
algorithm has to be implemented in a real-time capable
system. This includes the design of hardware components
and the adaption of the algorithm for data transmission and
processing in real-time.
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