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ABSTRACT

Three-dimensional cone-beam (CB) imaging using a multi-axis floor-mounted (or ceiling-mounted) C-arm system
has become an important tool in interventional radiology. This success motivates new developments to improve
image quality. One direction in which advancement is sought is the data acquisition geometry and related CB
artifacts. Currently, data acquisition is performed using the circular short-scan trajectory, which yields limited
axial coverage and also provides incomplete data for accurate reconstruction. To improve the image quality, as
well as to increase the coverage in the longitudinal direction of the patient, we recently introduced the ellipse-
line-ellipse trajectory and showed that this trajectory provides full R-line coverage within the field-of-view, which
is a key property for accurate reconstruction from truncated data. An R-line is any segment of line that connects
two source positions. Here, we examine how the application of asymmetrical variations to the definition of the
ELE trajectory impacts the R-line coverage. This question is significant to understand how much flexibility
can be used in the implementation of the ELE trajectory, particularly to adapt the scan to patient anatomy
and imaging task of interest. Two types of asymmetrical variations, called axial and angular variations, are
investigated.

1. INTRODUCTION

Three-dimensional cone-beam (CB) imaging using a multi-axis floor-mounted (or ceiling-mounted) C-arm system
has become an important tool in interventional radiology (see e.g.1–6). This tool helps physicians plan more
effective interventions, reduces treatment-related complications, and enables the development of novel minimally-
invasive surgical procedures, which is not only beneficial for the patient but also reduces financial costs. These
attractive features motivate a continuous effort towards technological advances that aim at improving the quality
of images.

One direction in which advancement is sought is the data acquisition geometry and related CB artifacts.
Currently, data acquisition is performed using the circular short-scan trajectory, which yields limited axial
coverage and also provides incomplete data for accurate reconstruction. To improve the image quality, as well as
to increase the coverage in the longitudinal direction of the patient, it is needed to move away from the circular
short-scan trajectory. Fortunately, many data acquisition geometries are now feasible, thanks to the increase in
the range of motions offered by some multi-axis robotic mounted C-arm systems. For example, the multi-axis
Artis Zeego system (Siemens Healthcare GmbH, Forchheim, Germany) offers eight degrees of freedom in motion,
as illustrated in Figure 1. Using such a system, we recently demonstrated the ability to acquire data and perform
reconstruction using a reverse helix as the source trajectory.7

An important constraint applied to the data acquisition geometry is that it should allow accurate image
reconstruction from truncated data, while being mechanically practical. In terms of modern CB reconstruction
algorithms, this constraint means that the source trajectory should provide full R-line coverage. An R-line is any
line that connects two points on the source trajectory. Each point within the field-of-view (FOV) should belong
to an R-line. Unfortunately, this property is not satisfied by the reverse helix,8 so that accurate and practical
image reconstruction with this trajectory has remained elusive.
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Figure 1: Multi-axis Artis Zeego system (Siemens Healthcare GmbH, Forchheim, Germany), which offers eight degrees
of freedom in motion for data acquisition. These degrees of freedom are highlighted by red arrows.

Recently, we introduced a novel practical data acquisition geometry, the ellipse-line-ellipse (ELE) trajectory.9

The R-lines properties of this trajectory have been extensively studied, and it has been found that the ELE tra-
jectory offers full R-line coverage.9,10 Additionally, reconstruction algorithms that are dedicated to this geometry
have been developed and successfully tested on simulated data, with competitive detector size requirements.10,11

Here, we are interested in examining how the application of asymmetrical variations to the definition of the ELE
trajectory impacts the R-line coverage. This question is significant to understand how much flexibility can be
used in the implementation of the ELE trajectory, particularly to adapt the scan to patient anatomy and imaging
task of interest. We investigate two types of asymmetrical variations, called axial and angular variations.

2. BACKGROUND

The ELE trajectory consists of two tilted elliptical arcs (called T-arcs, where T stands for trajectory) and a
segment of line (called T-line) that connects them. The T-line is in the longitudinal direction of the patient,
whereas the T-arcs are in planes that are nearly orthogonal to this direction. See Figure 2 for an illustration.

As illustrated, the ELE trajectory lies on a cylinder of radius R centered on a z-axis that corresponds to the
long axis of the patient. The three points, O, O+ and O−, on the z-axis represent the origin and the center of
the T-arcs. The T-arc centered on O+ is called the upper T-arc, whereas the other one is called the lower T-arc.
Any point on a T-arc is described with a polar angle λ that varies between −γm and π+γm, where γm is a given
angle. In Cartesian coordinates, (x, y, z), the components of a point on a T-arc are

(R cosλ,R sinλ,H1,2(λ)) (1)

where H1(λ) = H+∆H cosλ for the upper T-arc and H2(λ) = −(H+∆H cosλ) for the lower T-arc. Parameter
∆H ∈ (0, H) controls the tilt magnitude of the T-arcs, whereas H specifies the distance in z between the origin
and the center of each T-arc.

A more convenient notation is obtained by normalizing ∆H relative to H. Let d = ∆H/H. Then, a source
point on a T-arc can be expressed as

(R cosλ,R sinλ,±H (1 + d cosλ)) (2)

When d = 0, the T-arcs lie in planes that are orthogonal to the z-axis, but the ELE trajectory does not provide
full R-line coverage in this configuration, unless γm = π/2. Given the limitations of mounted C-arms in terms
of angular motion, it is however preferable to have 2γm much closer to the minimum fan angle that covers the
FOV, which is pictured as a cylinder of radius r centered on the z-axis (or more precisely the portion thereof
that is between the two T-arcs).
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Figure 2: ELE trajectory. Top left: in 3D; the z-axis is in the longitudinal direction of the patient. Top right: projection
onto the (x, z) plane. Bottom: projection onto the (x, y) plane.

R-line coverage for the ELE trajectory can be examined on a slice-by-slice basis, using slices that are or-
thogonal to the z-axis. Consider any given such slice, and assume that an R-line intersects this slice, then the
intersection point is one location within the slice where R-line coverage exists. If we pick a point on the upper
T-arc and connect it successively with each point on the lower T-arc, we get a set of R-lines that create, by
intersection, a segment of ellipse in any given slice. Such a segment of ellipse is called an AA R-arc, where AA
stands for T-arc to T-arc. The union of AA R-arcs obtained by varying the point on the upper T-arc gives,
within the slice, the R-line coverage that is associated with any R-line joining a point on the upper T-arc to a
point on the lower T-arc. Figure 3 (left) shows a number of AA R-arcs in slice z = 0.25H, all in red.

To identify all points that are covered by R-lines within a given slice, we also need to consider the coverage
associated with R-lines that connect a point on the T-line to a point on a T-arc. This coverage is identified by
two special R-arcs, called AL R-arcs, where AL stands for T-arc to T-line. The first AL R-arc comes from the
R-lines that connect the point at λ = −γm on the upper T-arc to all points on the lower T-arc. The second AL
R-arc comes from the R-lines that connect the point at λ = −γm on the lower T-arc to all points on the upper
T-arc. The convex hull of each of these AL R-arcs corresponds to points covered by R-lines that connect a point
on the T-line to a point on a T-arc. Figure 3 (middle) shows the two AL R-arcs in slice z = 0.25H, both in
black. Figure 3 (right) shows the entire R-line coverage within slice z = 0.25H, as obtained when considering
all possible R-lines, with grayscale color coding indicating the number of R-lines passing through each location.

An interesting aspect for the ELE trajectory is that R-line coverage within the FOV can be examined by
simply evaluating the coverage in slice z = 0. If the FOV is fully covered by R-lines in that plane, then the whole
3D FOV is covered by R-lines. This property is a consequence of the symmetry of the trajectory. Figure 4 shows
a set of AA R-arcs contributing to the coverage in slice z = 0, as well as the two AL R-arcs, and the resulting
total coverage. This figure corresponds to parameters such that the FOV, drawn as a blue circle, is fully covered.
Note that there is only one AL R-arc visible in slice z = 0, because the two AL R-arcs in this plane are identical
to each other. Note also that the AA R-arcs all share a common point in slice z = 0; the coordinates of this point
can be shown to be (−Rd, 0, 0). Finally, for future reference, note that we call the region of missing coverage
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Figure 3: R-line coverage in a plane orthogonal to the z-axis. See section 2 for details.
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Figure 4: R-line coverage in the central plane, z = 0. See section 2 for details.

in slice z = 0 as region M ; this region, marked in Figure 4 (left), is bounded by three curves, specifically it is
bounded below by line y = −R sin γm, bounded on the left by an AA R-arc, and bounded on the right by the
AL R-arc.

Mathematical analysis based on the observations in Figure 4 yields the following theorem characterizing the
R-line coverage for the ELE trajectory:9

The ELE trajectory yields full R-line coverage of the FOV when parameters γm and d are such that
γm ≥ arcsin(r/R) and d ≥ r/R together with r/R < 0.85.

3. ASYMMETRICAL VARIATIONS

We examine two asymmetrical variations in the definition of the ELE trajectory: axial variations, which refer to
asymmetrical settings along the z-axis, and angular variations, which refer to changes in the projection view on
the (x, y) plane. These variations are first analyzed independently of each other. However, a thorough analysis
will reveal that they can be jointly considered.

3.1 Axial Variations

The axial variations under consideration correspond to using different values for H and ∆H in the description
of the upper and lower T-arcs. The upper T-arc is now characterized by values H1 and ∆H1, whereas the lower
T-arc is characterized by values H2 and ∆H2, as illustrated in figure 5. Using a coordinate transformation that
amounts to a translation in z by (H1 −H2)/2, we immediately notice that, without loss of generality, the axial
variations can be analyzed under the assumption that H1 = H2, i.e., axial variations can be entirely expressed
using ∆H1 and ∆H2. Indeed, R-line coverage is invariant under such a transformation. Hereafter, H1 and H2

are denoted as H. We assume that ∆H1,2 ∈ (0, H), and we introduce d1 = ∆H1/H and d2 = ∆H2/H, as well
as d̄ = (d1 + d2)/2 and ∆d = (d2 − d1)/2.
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Figure 5: ELE trajectory with axial variations. (left) Projection onto the (x, z) plane. (right) 3D view. Compare with
Fig. 2.

3.2 Angular Variations

The angular variations under consideration correspond to using a different expression for the starting and ending
angles on the upper and lower T-arcs. We now assume that λ ∈ [−γ1, π + γ2], where γ1,2 ∈ [0, π/2), and γ1 and
γ2 need not be equal, as shown in figure 6. Note that this angular variation causes a change in the positioning
of the T-line, which could be useful for some applications. For convenience, we introduce γ̄ = (γ1 + γ2)/2
and ∆γ = (γ2 − γ1)/2. We assume that γ̄ ≥ arcsin(r/R), which is a minimum requirement to ensure data
completeness. By construction, the following inequalities hold: γ̄ > 0, |∆γ| ≤ γ̄, and |∆γ| ≤ π/2− γ̄.
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Figure 6: ELE trajectory with angular variations. (left) Projection of the trajectory onto the (x, y) plane. (right) 3D
view. Compare with Fig. 2 and notice how the angular variations affect the position of the T-line.

3.3 R-line coverage with asymmetrical axial variations

As with the classical ELE trajectory, R-line coverage can be investigated on a slice-by-slice basis, using slices
orthogonal to the z-axis. Results of such an investigation are shown hereafter. They allow appreciating differ-
ences, but do not unfortunately lead to a theorem on coverage of the FOV as straightforwardly as in.9,10 Indeed,
a complication arises from the fact the trajectory is not mirror-symmetric about the (x, y) plane when axial
variations are present. Hence, examining coverage in slice z = 0 is not sufficient anymore.

First, we inspected the arrangement of AA and AL R-arcs in slice z = 0. This inspection highlighted a first
major difference: the R-arcs do not anymore share a common point in slice z = 0 when ∆H1 6= ∆H2. In fact, the
arrangement of the R-arcs in this slice appears more similar to the arrangement observed in a slice z 6= 0 when
∆H1 = ∆H2. We then varied z and observed that there actually still exists a z-slice where the AA R-arcs share
a common point when ∆H1 6= ∆H2. The position of this slice can be shown to be z = ecH with ec = d̄∆d,
and the coordinates of the common point are (−R d̄, 0, ecH). A second major difference we observed is that
the AL R-arcs are not such that one is embedded in (and tangent to) the other one when ∆H1 6= ∆H2, and
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there does not seem to exist any z-location where they overlap. Figure 7 shows the arrangement of AA and
AL R-arcs in slices z = {0, 0.5 ec, ec, 2 ec}H, and the resulting coverage of R-lines in these slices. These results
convey that, even though important differences can be observed, the FOV may remain fully covered by R-lines
when ∆H1 6= ∆H2.

Figure 7: Comparison of R-line coverage in slice z = eH without and with axial variations. First and third row: results
without axial variations. Second and last row: results with axial variations. From left to right: e = 0, e = 0.5 ec, e = ec,
e = 2 ec. For this illustration, we used γm = π/6, d̄ = 0.5 and ec , d̄∆d = 0.125.

We have found a mathematical methodology to analyze the R-line coverage with axial variations. This
methodology will be reported in a future publication. It shows that R-line coverage is guaranteed when param-
eters γm and d̄ are such that γm ≥ arcsin(r/R) and d̄ ≥ r/R together with r/R < 0.85. Thus, we can state that
great flexibility exists in terms of axial variations.
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3.4 R-line coverage with asymmetrical angular variations

Here, we assume that ∆H1 = ∆H2. However, it is possible to show that the results below also apply to
∆H1 6= ∆H2 if d is replaced by d̄. Under the assumption that ∆H1 = ∆H2, we can prove as in the classical case
that it is only necessary to analyze coverage in slice z = 0.

Figure 8 illustrates the arrangement of AA and AL R-arcs in slice z = 0 for γ̄ = π/6 and also for γ̄ = π/4.
In each case, the arrangements are shown for five different choices of ∆γ. This illustration conveys that R-line
coverage is affected by the values chosen for γ1 and γ2: the portion of the AL R-arc that contributes to the
boundary of region M (i.e., the region where there is no R-line coverage) moves towards the FOV as γ1 is
decreased.

Figure 9 shows the whole R-line coverage in slice z = 0 for the extreme case where γ1 = 0, in comparison
with the case where γ1 = γ2. The coverage is shown for both cases, γ̄ = π/6 and γ̄ = π/4, assuming the radius
of the FOV is R sin γ̄. In the case where γ̄ = π/4, we observe that using γ1 = 0 results in a situation where the
FOV is not fully covered by R-lines. Hence, new careful analysis is required to understand which parameters are
acceptable.

We have found that to the method used in 9,10 to evaluate the coverage can be generalized to account for
angular variations. Detailed explanations will be reported in a future publication, along with our results on axial
variations. Based on this generalization, it appears that arcsin(r/R) ≤ γ̄ ≤ π/6 with d = r/R is sufficient to
guarantee full R-line coverage of the FOV. Although this condition is fairly restricting on r/R, relative to the
case where ∆γ = 0, it is equivalent to the geometry of a diagnostic CT scanner and thus practical.

Figure 8: R-line coverage with angular variations. AA and AL R-arcs are shown in slice z = 0 for various choices of ∆γ,
with the FOV drawn as a blue circle. Top row: γ̄ = π/6 with ∆γ = −π/6, −π/12, 0, π/12, π/6 from left to right. Bottom
row: γ̄ = π/4 with ∆γ = −π/4, −π/6, 0, π/6, π/4 from left to right. In both cases, the radius of the FOV is R sin γ̄.

4. DISCUSSION

We have examined R-line coverage for modified versions of the ELE trajectory that include asymmetrical vari-
ations. Both axial and angular variations were considered. We have found that a large flexibility exists in
the configuration of the ELE trajectory without impacting the R-line coverage. This feature further reinforces
attractiveness of this trajectory for long object imaging in interventional radiology.

5. DISCLAIMER

The concepts presented in this paper are based on research and are not commercially available.
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Figure 9: R-line coverage in slice z = 0 with angular variations. From left to right: γ̄ = π/6 with γ1 = γ2; γ̄ = π/6 with
γ1 = 0; γ̄ = π/4 with γ1 = γ2; γ̄ = π/4 with γ1 = 0.
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