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Abstract. Gated 4D cardiac imaging with C-arm CT scanners suffers
from insufficient image quality due to strong angular undersampling. To
deal with this problem, we suggest an iterative reconstruction method
with spatial and temporal total variation regularization based on an es-
tablished framework which controls the relative contributions of raw data
error minimization and regularization. This new method is tested on a
simulated heart phantom and on two clinical data sets. We show that
the additional use of temporal regularization is advantageous compared
to spatial regularization exclusively, with the relative root mean square
error lowered from 11.75% to 8.24% in the phantom study.

1 Introduction

Tomographic medical image generation by an angiographic C-arm system dur-
ing an intervention would be efficient and helpful for planning, guiding and
monitoring the therapeutic procedure. The research efforts of the last few years
make it possible to reconstruct four-dimensional (4D) volumes using C-arm scan-
ners [1, 2]. The projection data of one C-arm rotation documents various cardiac
phases of multiple heart beats. ECG-gating, which divides the projection data
into subsets for individual heart phases, is necessary to achieve sufficient tem-
poral resolution. Each resulting subset contains too few projections and thereby
allows only a highly artifact-impaired 3D image reconstruction. Therefore, 4D
cardiac imaging typically suffers from bad image quality.

To overcome these problems, motion estimation and compensation algo-
rithms are suggested in the framework of filtered backprojection reconstruction
techniques [1, 2]. Further improvements are achieved by incorporating spatio-
temporal smoothing [3]. The problem of undersampled data is also addressed
by iterative optimization algorithms in the context of compressed sensing. They
employ sparsity-based regularization such as spatial total variation (TV) min-
imization. Mory et al. add a temporal TV regularizer for 4D cardiac imaging,
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achieving superior image results [4]. By applying temporal regularization, infor-
mation of data from all heart phases can be leveraged during reconstruction of
each individual phase. The improved total variation (iTV) algorithm [5] is a so-
phisticated implementation of a spatial TV regularized reconstruction in which
the trade-off of data fidelity and spatial regularization is controlled adaptively,
in contrast to a fixed balance as used in, e. g., Mory’s algorithm [4]. In this
paper, we propose to extend the iTV algorithm in order to incorporate temporal
regularization.

2 Materials and methods

The iTV algorithm uses the simultaneous algebraic reconstruction technique
(SART) and spatial TV minimization in an alternating manner [5]. In this sec-
tion, we explain our adjustments to iTV and specify the data used for evaluation.

2.1 Image reconstruction with spatio-temporal regularization

For 4D imaging several cardiac phases t ∈ T = {0, . . . , Nphases} are recon-
structed. The measured projection data p(t) are assigned a heart phase t, with
fn(t) denoting the corresponding reconstruction after iteration n ∈ {1, . . . , N}.

An overview of our method is given in Fig. 1. We start from an empty vol-
ume f0(t) = 0. To ensure data fidelity, a SART update step including a non-
negativity constraint is calculated in the beginning of each iteration resulting in
the volume fSART

n+1 (t). Two temporal regularization steps (orange boxes in Fig. 1)
are introduced in addition to the spatial TV minimization of the original iTV
algorithm. At first, a no-motion constraint is enforced outside of a (manually
chosen) volume of interest (VOI) containing the heart to improve convergence [4].
For this purpose, all voxels outside of the VOI are averaged over the temporal
domain. Then, spatial TV minimization is applied to each volume [5]. Next,
temporal TV regularization is incorporated into the algorithm, extending the
idealized assumption of piecewise constant objects to the temporal domain. The
1D TV norm w. r. t. the temporal domain [4] is calculated. It is minimized for
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Fig. 1. Sequence diagram of the extended iTV algorithm. The new temporal regu-
larization parts are highlighted in orange. When the stopping criterion λ < λlim is
reached, ffinal(t) is calculated using the dashed green path.
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all voxels simultaneously by gradient descent iterations using backtracking line
search and “corner rounding” to enable discrete differentiability. We denote the
resulting volumes as fTV

n+1(t).
So as not to abandon raw data fidelity in spite of the desired regularization,

fSART
n+1 (t) and fTV

n+1(t) are combined linearly at the end of each iteration [5]

fn+1(t, λ) = (1− λ)fSART
n+1 (t) + λfTV

n+1(t) (1)

The variable λ ∈ [0, 1] controls the impact of data fidelity and regularization. We
design it to be independent of the heart phase, thereby avoiding different degrees
of smoothing applied to the individual phases. It is related to the parameter
ω ∈ ]0, 1[ which specifies the permitted loss of data consistency by regularization
for the current iteration n+ 1 regarding the previous n-th iteration

εn+1 = (1− ω)(εSART
n+1 − εn) + εn (2)

where ε now denotes the total data consistency error for all phases

ε =
∑
t∈T

(‖R(t)f(t, λ)− p(t)‖22) (3)

R(t) is the system matrix that describes the projection of f(t) to the correspond-
ing raw data p(t). By solving the quadratic Eq. (2), the ideal λ is determined [5].
If this would result in λ < 0 or λ > 1, λ is set back to its defined limits.

Typically, λ starts at 1 and decreases over the course of optimization [5].
Instead of a fixed maximum number of iterations N , we prefer to stop the re-
construction after λ has dropped below a specified limit λlim. Hence, the desired
degree of smoothness in the resulting images can be specified directly. Higher
values of λlim lead to a more comic-like appearance due to stronger TV mini-
mization. With a high ω, the λ values decrease more slowly, resulting in more
iterations to be performed. Once the stopping criterion is reached, the full reg-
ularization is applied one last time (visualized as the green path in Fig. 1) so
that high-frequency artifacts are reduced in the final volume ffinal(t).

2.2 Experimental setup

The reconstruction method is evaluated on a simulated heart phantom data
set [6]. The projections are generated with a polychromatic X-ray spectrum [7].
The acquisition protocol is identical to that of the clinical data sets described
below, with a simulated heart rate of 120 bpm and no respiratory motion. The
ground truth is a static phantom showing the end-diastolic heart phase. It is
reconstructed from a fully sampled scan with our method (Fig. 2 (a)). As eval-
uation measures, the relative root mean square error (RMSE) and the universal
image quality index (UQI) [8] are calculated over the VOI. Instead of a global
computation, the UQI is averaged over 10 small blocks of size (16mm)3 to in-
crease sensitivity.



4D Cardiac C-Arm CT 173

To test our proposed algorithm on real data, two clinical patient data sets are
acquired using an Artis zee biplane system (Siemens Healthcare GmbH, Forch-
heim, Germany). The detector dimension is 960 x 960 pixels. The isotropic pixel
resolution is 0.312mm/pixel (0.21mm/pixel in isocenter). One C-arm rotation
of 5 s duration is performed, capturing 133 projection images with an angular
increment of 1.5◦ per frame. The heart is paced through external stimulation to
228 bpm for the first and 140 bpm for the second data set, resulting in 19 and
11 heartbeats per rotation, respectively.

The following reconstruction parameters are used: For all data sets, eight
cardiac phases are reconstructed. In every SART update step, eight full SART
subiterations are executed with a relaxation parameter of 0.8. Every SART
subset consists of one complete projection image. For both TV minimization
steps, 10 gradient descent iterations are performed. The chosen values for the
convergence controlling parameters ω = 0.8 and λlim = 0.35 are determined
empirically.

To bring out the effects of our proposed method more clearly, all reconstruc-
tions are repeated with spatial TV minimization only, excluding the temporal
regularization steps.

3 Results

The results for the heart phantom data set are shown in Fig. 2. For the sake
of comparison, a SART reconstruction without any regularization is performed

(a) (b) (c) (d)

Fig. 2. Reconstructed images of the heart phantom data set. From left to right:
Ground truth (a), SART reconstruction (b), iterative reconstruction with spatial TV
regularization (c) and our proposed method (d). All images display the end-diastolic
heart phase. The top row shows an axial plane, a coronal plane is depicted underneath.
The grayscale is set to [−1000, 2480] HU.
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(Fig. 2(b)). The image is dominated by noise and streaks due to undersam-
pling and the process is stopped after 10 iterations as no further improvement
is identified after this point. To a certain degree, these artifacts can be reduced
by applying spatial TV regularization as seen in Fig. 2(c). The image quality
achieved with our proposed spatio-temporal regularization in Fig. 2(d) is a pro-
nounced improvement; all structures seen in the ground truth (Fig. 2(a)) are now
represented more clearly, even though they are somewhat blurred. For the heart
itself, this may in part be caused by residual motion inside the gating window.

The visual advantages of the incorporated temporal regularization compared
to the application of spatial regularization only are reflected by the quantitative
evaluation. The relative RMSE over the VOI is decreased from 11.75% to 8.24%
and the UQI over the VOI is increased from 0.76 to 0.98. Fig. 3 shows that the
temporal regularization helps to accelerate the convergence of the reconstruction
as λ reaches the lower limit of λlim more quickly. Instead of 63 iterations, only
22 iterations are necessary to achieve convergence.

The spatio-temporal regularization also works well on our clinical data. A
clear improvement can be seen for the first data set in Fig. 4(b) compared to 4(a)
as well as for the second in Fig. 4(d) compared to 4(c). In general, the reconstruc-
tion of the second data set struggles with more artifacts due to the lower number
of recorded heart beats. It took 18 iterations for the first and 19 iterations for
the second data set to converge with our proposed method.

4 Discussion

While the chosen parameters appear to be suitable for the examined data sets,
it is yet to be verified how well they generalize over a larger number of cases.
As an extension of the proposed method, it may be helpful to introduce the
possibility to control the influence of the temporal TV minimization separately
from the spatial one. For further research, it may be worthwhile to implement
a different optimization algorithm which does not optimize the data fidelity and
regularization terms alternately but combines them into one cost function to
minimize them jointly as proposed in [9].

We suggest an extended version of the iTV algorithm using spatio-temporal
regularization to overcome the challenges posed by angular undersampling due
to ECG gating. The results of our experiments in a phantom study and on two
clinical data sets demonstrate that especially the use of temporal regularization
is highly beneficial for use in 4D cardiac C-arm CT.

Fig. 3. Development of λ during the
reconstruction of the phantom data set.
The spatial regularization (dashed blue
curve) is compared to the proposed spatio-
temporal regularization (orange curve).
The threshold λlim used in our stopping
criterion is marked with the green line. 0 10 20 30 40 50 60 70
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Fig. 4. Reconstructed images of the clinical patient data sets. From left to right: the
first data set reconstructed with spatial TV regularization (a) and with our proposed
method (b), the second data set reconstructed with spatial TV regularization (c) and
with our proposed method (d). All images show a coronal view. The grayscale is set
to [−1000, 2480] HU.

(a) (b) (c) (d)

Disclaimer. The concepts and information presented in this paper are based
on research and are not commercially available.
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