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Abstract. Objective analysis of intelligibility by a speech recognizer and proso-
dic features was performed for close-talking recordings before. This study exam-
ined whether this is also possible for reverberated speech.In order to ensure that
only the room acoustics are different, artificial reverberation was used. 82 patients
after partial laryngectomy read a standardized text, 5 experienced raters assessed
intelligibility perceptually on a 5-point scale. The best feature subset, determined
by Support Vector Regression, consists of the word correctness of a speech rec-
ognizer, the average duration of silent pauses, the standard deviation of theF0 on
the entire sample, the standard deviation of jitter, and theratio of the durations
of the voiced sections and the entire recording. A human-machine correlation of
r = 0.80 was achieved for the close-talking recordings andr = 0.72 for the worst
case of the examined signal qualities. By adding three more features, alsor = 0.80
was reached for the reverberated scenario.

Keywords: intelligibility, automatic assessment, prosody, SVR, reverberation

1 Introduction

Automatic evaluation of voice and speech impairment allowsto obtain objective assess-
ment of the current state and temporal changes of distorted communication by voice [1].
In this study, the topic is the evaluation of intelligibility after partial removal of the lar-
ynx. Earlier work has shown that this can be performed using an automatic speech
recognition (ASR) system, supported by a prosodic analysismodule [2]. As a reference
evaluation, the perceptual assessment by a speech therapist is the standard.

In order to get the best possible acoustic quality of the recordings to be analyzed,
usually a headset or another close-talking microphone is used. However, this recording
situation might have a negative influence on the patient. Thepatient might feel watched
or controlled when he or she is aware that other people could get access to the record-
ing. For patients after head or neck surgery, wearing a headset can also be painful. If the
microphone is somewhere else in the room, both effects are attenuated, but the samples
will be affected by reverberation then. It has been shown that, with according training
data for the ASR system, speech recognition does also work inreverberated environ-
ment, even if the properties in the recording environment, such as the room impulse
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response, are not exactly known [3]. It has, however, not been examined whether a
close-talking ASR system, supported by prosodic analysis,can be also used for intelli-
gibility assessment in reverberated environment, i.e. forlarger distances between mouth
and microphone, and whether the same prosodic features are optimal for different dis-
tances. This will be addressed in this paper. The reference evaluation for all scenarios,
however, is the human evaluation of a close-talking speech sample, because in a therapy
session the patient and the therapist sit close to each other.

This paper is organized as follows: Section 2 introduces thespeech data used for the
experiments, Sect. 3 describes the artificial reverberation of these data. The processing
of the features from the speech recognizer (Sect. 4) and the prosody module (Sect. 5) by
Support Vector Regression follows in Sect. 6. The results will be discussed in Sect. 7.

2 Test Data and Subjective Evaluation

Two sets of speech data have been used for this study. The samples of the first set,
further denoted as sett82, were used to determine prosodic measures of reverberated
recordings that can describe perceptual intelligibility results. The second set – here
called sett85– was used to test whether the findings on sett82also hold for other data
with the same type of voice disorder. Sett82contains recordings of 82 persons (68 men
and 14 women) after partial laryngectomy due to laryngeal cancer. Their average age
was 62.3 with a standard deviation of 8.8 years; the youngestspeaker was 41, the oldest
one was 86 years old. Sett85 was recorded from 85 patients (75 men, 10 women) suf-
fering from cancer in different regions of the larynx. 65 of them had already undergone
partial laryngectomy, 20 speakers were still awaiting surgery. The average age of the
speakers was 60.7 years with a standard deviation of 9.7 years. The youngest and the
oldest person were 34 and 83 years old, respectively.

Informed consent had been obtained by all participants prior to the examination.
The study respected the principles of the World Medical Association (WMA) Decla-
ration of Helsinki on ethical principles for medical research involving human subjects
and has been approved by the ethics committee of our university. All persons read the
German version of the tale “The North Wind and the Sun” [4], which is widely used
in medical speech evaluation in German-speaking and other countries. It consists of
71 disjoint words and 108 words in total (172 syllables). Thepatients were recorded
by a close-talking microphone (Logitech Premium Stereo Headset 980369-0914) with
16 kHz sampling frequency and 16 bit linear amplitude resolution.

Five experienced voice professionals (ear-nose-throat doctors, speech therapists)
evaluated the intelligibility of each recording. The samples were played to the experts
once via loudspeakers in a quiet seminar room without disturbing noise or echoes. Rat-
ing was performed on a five-point Likert scale. For computation of average scores for
each patient, the grades were converted to integer values (1= ‘very high’, 2 = ‘rather
high’, 3 = ‘medium’, 4 = ‘rather low’, 5 = ‘very low’). The setst82 andt85 were eval-
uated by two different rater groups. Three of the therapistswere part of both groups;
however, sett85 had already been evaluated about one year before sett82. The hu-
man raters evaluated only the original close-talking recordings and not the artificially
reverberated samples that will be introduced in Sect. 3.
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Fig. 1.Measuring room impulse responses for artificial reverberation (microphone position:•) at
12 speaker positions in a room with variable reverberation timesT60

3 Artificial Reverberation of Speech Samples

In order to obtain reverberated speech with a large variety of acoustic quality, speech
data must be collected in many rooms with different impulse responses. This leads to
the problem that not always the same speakers are available,and if so, they will not
be able to reproduce a given text exactly as in the other recording sessions. Hence, the
recordings will not only be different with respect to the room impulse response, but
also with respect to speaking style and maybe vocabulary. Reverberating close-talking
speech artificially with previously measured room impulse responses can avoid this
problem and also drastically reduce the effort of data acquisition.

For this study, the required impulse responses were obtained in a room where the
reverberation time could be changed fromT60 = 250 ms toT60 = 400 ms by removing
sound absorbing carpets and curtains. 12 impulse responseswere measured for loud-
speaker positions on three semi-circles in front of the microphone at distances 60 cm,
120 cm, and 240 cm (see Fig. 1 and Table 2). The recording anglewas counted clock-
wise from 0˚ to 165˚. Six impulse responses each were measured withT60 = 250 ms and
T60 = 400 ms. The available close-talking speech data (Sect. 2) were reverberated with
each of them so that 12 reverberated versions of the originalsamples were available.

4 The Speech Recognition System

The speech recognition system used for the experiments has been described in [5].
It is based on semi-continuous Hidden Markov Models (HMM) and was trained with
close-talking speech only. For each 16 ms frame, a 24-dimensional feature vector is
computed. It contains short-time energy, 11 Mel-frequencycepstral coefficients, and
the first-order derivatives of these 12 static features. Therecognition vocabulary of the
recognizer was changed to the 71 words of the standard text. The word accuracy and
the word correctness were used as basic automatic measures for intelligibility since they
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had been successful for other voice and speech pathologies [6, 7]. They are computed
from the comparison between the recognized word sequence and the reference text
consisting of thenall = 108 words of the read text. With the number of words that were
wrongly substituted (nsub), deleted (ndel) and inserted (nins) by the recognizer, the
word accuracy in percent is given as

WA = [1− (nsub + ndel + nins)/nall] · 100

while the word correctness omits the wrongly inserted words:

WR = [1− (nsub + ndel)/nall] · 100

Only a unigram language model was used so that the results mainly depend on the
acoustic models. A higher-order model would correct too many recognition errors and
thus make WA and WR useless as measures for intelligibility.

5 Prosodic Features

In order to find automatically computable counterparts for intelligibility, also a ‘prosody
module’ was used to compute features based upon frequency, duration, and speech
energy (intensity) measures. This is common in automatic speech analysis on normal
voices [8–10]. The prosody module processes the output of the word recognition mod-
ule and the speech signal itself. ‘Local’ prosodic featuresare computed for each word
position. Originally, there were 95 of them. After several studies on voice and speech
assessment, however, a relevant core set of 33 features has been defined for further
processing [11]. The components of their abbreviated namesare given in parentheses:

– Length of pauses (Pause): length of silent pause before (–before) and after (–after),
and filled pause before (Fill-before) and after (Fill-after) the respective word

– Energy features (En): regression coefficient (RegCoeff) and the mean square error
(MseReg) of the energy curve with respect to the regression curve; mean (Mean)
and maximum energy (Max) with its position on the time axis (MaxPos); absolute
(Abs) and normalized (Norm) energy values

– Duration features (Dur): absolute (Abs) and normalized (Norm) duration
– F0 features (F0): regression coefficient (RegCoeff) and mean square error (MseReg)

of theF0 curve with respect to its regression curve; mean (Mean), maximum (Max),
minimum (Min), voice onset (On), and offset (Off) values as well as the position of
Max (MaxPos), Min (MinPos), On (OnPos), andOff (OffPos) on the time axis; all
F0 values are normalized.

The last part of the feature name denotes the context size, i.e. the interval of words
on which the features are computed (see Table 1). They can be computed on the current
word (W) or in the interval that contains the second and first word before the current
word and the pause between them (WPW). A full description of the features used is
beyond the scope of this paper; details and further references are given in [5, 12].

Besides the 33 local features per word, 16 ‘global’ featureswere computed for inter-
vals of 15 words length each. They were derived from jitter, shimmer, and the number
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of detected voiced and unvoiced sections in the speech signal [12]. They covered the
means and standard deviations of jitter and shimmer, the number, length, and maxi-
mum length of voiced and unvoiced sections, the ratio of the numbers of voiced and
unvoiced sections, the ratio of the length of the voiced sections to the length of the sig-
nal, and the same for unvoiced sections. The standard deviation of theF0 was measured
in two ways: it was computed for all voiced sections only and also over all sections of
the speech recordings. In the latter case, each unvoiced frame contributed a value of 0.
Hence, it incorporated also information about the percentage of frames where no regu-
lar voice signal was detected. Since all patients read the same text, this was supposed to
indicate the degree of pathology.

The human listeners gave ratings for the entire text. In order to receive also one
single value for each feature that could be compared to the human ratings, the average
of each prosodic feature over the entire recording served asfinal feature value.

Table 1. Local prosodic features; the context size denotes the interval of words on which the
features are computed (W: one word,WPW: word-pause-word interval)

features context size
WPW W

Pause: before, Fill-before, after, Fill-after •

En: RegCoeff, MseReg, Abs, Norm, Mean • •

En: Max, MaxPos •

Dur: Abs, Norm • •

F0: RegCoeff, MseReg • •

F0: Mean, Max, MaxPos, Min, MinPos, Off, OffPos, On, OnPos •

6 Support Vector Regression (SVR)

In order to determine the best subset of WA, WR, and prosodic features to model the
human intelligibility rating, Support Vector Regression (SVR, [13]) was used. The un-
derlying SVM used a linear kernel. The complexity constantC for the SVR was set to 1.
Each training example for the regression consisted of a set of features from the close-
talking t82data set (the inputs) and a human intelligibility score (thetarget output). The
sequential minimal optimization algorithm (SMO, [13]) of the Weka toolbox [14] was
applied in a 10-fold cross-validation manner. For the attribute selection, the Greedy
Stepwise algorithm was applied. The standard settings werenot changed. In contrast
to [2], all input features were not normalized but standardized (mean value:µ= 0, stan-
dard deviation:σ = 1) for the analysis.

7 Results and Discussion

Former experiments on data sett82had revealed optimal features for close-talking anal-
ysis [2]. The human-machine correlation wasr = 0.79 when prosodic features and the



6 Tino Haderlein et al.

word correctness (WR) were combined. Using the WA instead gave worse results. The
best feature subset consisted of WR, the average duration ofthe silent pauses before a
word (Pause–before), the standard deviation of the fundamental frequency on the entire
sample (StandDevF0/Sig), the standard deviation of jitter (StandDevJitter), and the ra-
tio of the durations of the voiced sections and the entire recording (RelDur+Voiced/Sig).
This set revealed also the best results on the same data in this study (r = 0.80; see Ta-
ble 2), although the setup of the regression has been slightly changed.

In earlier experiments on the analysis of chronic hoarseness, also the absolute en-
ergy measured in a word-pause-word interval (EnAbsWPW) was among the candidates
for the best feature set [15]. When this feature was added in this study, however, no
significant rise of human-machine correlations could be obtained, except for impulse
responseh421045 (r = 0.78 instead of 0.77) andh423075 (r = 0.74 instead of 0.72).
All other correlations were equal to those of the smaller setor even lower. For this
reason,EnAbsWPW has been removed from the feature set again.

As expected, the human-machine correlation got lower in a higher reverberation
time and with rising microphone distance, but still the lowest measured correlation was
as high as 0.72 for 240 cm microphone distance andT60 = 400 ms where it had been 0.80
for the close-talking case. The angle at which the speaker spoke towards the microphone
did not show consistent influence. The standard situation would be 90˚, i.e. right in front
of the microphone. All available pairs of the sameT60 and microphone distance showed
a relative difference in the angle of 90˚, but very often not the one, which was closer
to the absolute 90˚ position, was better with respect to human-machine correlation.
Additionally, the influence of the angle was usually only∆r = 0.02.

The weights of the single features in the regression formulae for thet82 data (see
Table 2) do not show a unique behavior that would make it easy to relate them toT60

or microphone distance. The weight for the pauses between words (Pause–before) is
relatively stable at about 0.2 to 0.4 among the simulated recording situations. The stan-
dard deviation of jitter (StandDevJitter) tends to get higher absolute values for more
reverberant environments. The ratio of the durations of thevoiced segments and the
whole recording (RelDur+Voiced/Sig) loses influence with rising reverberation. So does
also the word correctness (WR). The reason is obviously the mismatch between the
acoustic properties of training and test environment of therecognizer. For theF0 and
jitter features, also the worse acoustic quality and hence the unreliable detection ofF0

is the most probable reason. However, the weight forStandDevF0/Sig is at about the
same level in all experiments, and theStandDevF0, which is not related to the overall
duration, but only to the voiced segments, does not occur in the best feature sets at all.

In general, the feature set, which was best for the close-talking case, can also basi-
cally be considered suitable for reverberated environment. In another experiment, a fea-
ture set has been determined, which is best for the acoustic scenario most deviant from
the close-talking case (impulse responseh423075, T60 = 400 ms, microphone distance
240 cm, angle 165˚; see Table 3). Here, for thet82 data the best feature set is a super-
set of the one for the close-talking case. It contains additionally the mean of jitter, the
number of voiced sections in the recording (#+Voiced), and the ratio of the numbers of
voiced and unvoiced sections (RelNum+/–Voiced). This lifts the human-machine cor-
relation from 0.74 to 0.80. For the close-talking recordings, however, the correlation
drops from 0.80 to 0.73 with this set, and the additional features show very low regres-
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sion weights. The results on thet85data set (Table 2 and 3) confirm the suitability of the
selected features for intelligibility assessment both in good and bad acoustic conditions.

Table 2.Feature weights (columns 5 to 9) and human machine correlationr for artificially rever-
berated and close-talkingt82 data (last line:t85); reverberation timeT60, microphone distance
(‘dist.’) and recording angle for the impulse responses aregiven on the left side

impulse T60 dist. angle Pause– StandDev RelDur+ WR StandDev r

response (ms) (cm) (˚) before Jitter Voiced/Sig F0/Sig

h411000 250 60 0 0.207 0.074 –0.542–0.419 0.524 0.78
h411090 250 60 90 0.253 0.151 –0.676–0.356 0.521 0.79

h412060 250 120 60 0.313 0.136 –0.699–0.377 0.468 0.78
h412150 250 120 150 0.256 –0.067 –0.593–0.323 0.560 0.80

h413030 250 240 30 0.260 –0.234 –0.436–0.376 0.573 0.77
h413120 250 240 120 0.238 –0.194 –0.451–0.304 0.511 0.75

h421045 400 60 45 0.286 0.179 –0.700–0.382 0.471 0.77
h421135 400 60 135 0.245 0.225 –0.782–0.362 0.544 0.80

h422015 400 120 15 0.232 –0.265 –0.414–0.154 0.524 0.76
h422105 400 120 105 0.322 –0.174 –0.471–0.267 0.549 0.74

h423075 400 240 75 0.387 –0.222 –0.328–0.116 0.472 0.72
h423165 400 240 165 0.292 –0.325 –0.364–0.237 0.570 0.74

– (close-talk) — 3–5 90 0.191 0.223 –0.881–0.412 0.511 0.80

– (close-t., t85) — 3–5 90 0.485 –0.013 –0.551–0.313 0.554 0.73

Table 3. Feature weights and human-machine correlationr for the set optimal for reverberated
(impulse responseh423165) t82data, tested on reverberated and close-talkingt82 andt85data

impulse Pause– Mean StandDev #+Voiced RelNum RelDur+ StandDev r

response before Jitter Jitter +/–Voiced Voiced/Sig F0/Sig

h423165 (t82) 0.290 0.895 –0.970 –0.422 –0.206 –0.200 0.608 0.80
h423165 (t85) 0.504 0.640 –0.553 –0.121 –0.349 –0.292 0.452 0.75

– (close-t.,t82) 0.432 0.027 0.147 –0.072 0.056 –0.847 0.508 0.73
– (close-t., t85) 0.377 0.658 –0.659 –0.215 –0.288 –0.403 0.493 0.74

The inter-rater correlation between a single rater’s intelligibility scores and the av-
erage of the 4 other raters wasr = 0.84 for thet82 recordings (for details, see [2]) and
r = 0.81 for thet85 data [16]. These are the reference values that an automatic system
should reach to be regarded as reliable as an average human rater. The current results
are almost at this level. Due to slight differences in correlations and regression weights
for different features that occurred in this study, the experiments have to be continued
with larger data sets in order to reassure the relevance of the selected features and to
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add other features where applicable. Nevertheless, the conclusion of this study is that
automatic evaluation of intelligibility can be done on reverberated speech samples as
reliable as for close-talking samples.
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