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Abstract. Objective analysis of intelligibility by a speech recogiand proso-
dic features was performed for close-talking recordindgstee This study exam-
ined whether this is also possible for reverberated spéparder to ensure that
only the room acoustics are different, artificial reverlierawas used. 82 patients
after partial laryngectomy read a standardized text, Srampeed raters assessed
intelligibility perceptually on a 5-point scale. The besafure subset, determined
by Support Vector Regression, consists of the word coresstiof a speech rec-
ognizer, the average duration of silent pauses, the stdnidaiation of thef, on
the entire sample, the standard deviation of jitter, andrtie of the durations
of the voiced sections and the entire recording. A humanhimaccorrelation of
r=0.80 was achieved for the close-talking recordingsan@.72 for the worst
case of the examined signal qualities. By adding three neateifes, also=0.80
was reached for the reverberated scenario.
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1 Introduction

Automatic evaluation of voice and speech impairment alltmabtain objective assess-
ment of the current state and temporal changes of distoot@etinication by voice [1].
In this study, the topic is the evaluation of intelligibyliafter partial removal of the lar-
ynx. Earlier work has shown that this can be performed usmgaomatic speech
recognition (ASR) system, supported by a prosodic anatysidule [2]. As a reference
evaluation, the perceptual assessment by a speech thésapisstandard.

In order to get the best possible acoustic quality of thendings to be analyzed,
usually a headset or another close-talking microphonedd.usowever, this recording
situation might have a negative influence on the patient.pelient might feel watched
or controlled when he or she is aware that other people catldgress to the record-
ing. For patients after head or neck surgery, wearing a le¢ads also be painful. If the
microphone is somewhere else in the room, both effects teuated, but the samples
will be affected by reverberation then. It has been showt thith according training
data for the ASR system, speech recognition does also warkverberated environ-
ment, even if the properties in the recording environmamnthsas the room impulse
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response, are not exactly known [3]. It has, however, nohlee@mined whether a
close-talking ASR system, supported by prosodic analgais be also used for intelli-
gibility assessment in reverberated environment, i.dafger distances between mouth
and microphone, and whether the same prosodic featureptneabfor different dis-
tances. This will be addressed in this paper. The referevadaation for all scenarios,
however, is the human evaluation of a close-talking speacipe, because in a therapy
session the patient and the therapist sit close to each other

This paper is organized as follows: Section 2 introducespieech data used for the
experiments, Sect. 3 describes the artificial reverberaticthese data. The processing
of the features from the speech recognizer (Sect. 4) andtsegy module (Sect. 5) by
Support Vector Regression follows in Sect. 6. The resullisbgidiscussed in Sect. 7.

2 Test Data and Subjective Evaluation

Two sets of speech data have been used for this study. Thdesaofpthe first set,
further denoted as s#82, were used to determine prosodic measures of reverberated
recordings that can describe perceptual intelligibiligults. The second set — here
called set85— was used to test whether the findings ont82@lso hold for other data
with the same type of voice disorder. $82 contains recordings of 82 persons (68 men
and 14 women) after partial laryngectomy due to laryngeatea Their average age
was 62.3 with a standard deviation of 8.8 years; the yourspestker was 41, the oldest
one was 86 years old. S&5 was recorded from 85 patients (75 men, 10 women) suf-
fering from cancer in different regions of the larynx. 65lo¢in had already undergone
partial laryngectomy, 20 speakers were still awaiting stygThe average age of the
speakers was 60.7 years with a standard deviation of 9.5.y€he youngest and the
oldest person were 34 and 83 years old, respectively.

Informed consent had been obtained by all participants poidhe examination.
The study respected the principles of the World Medical Agdmn (WMA) Decla-
ration of Helsinki on ethical principles for medical resgfaimvolving human subjects
and has been approved by the ethics committee of our urtivehdli persons read the
German version of the tale “The North Wind and the Sun” [4]jokhs widely used
in medical speech evaluation in German-speaking and othantdes. It consists of
71 disjoint words and 108 words in total (172 syllables). Pla¢ients were recorded
by a close-talking microphone (Logitech Premium Stereoddet980369-0914) with
16 kHz sampling frequency and 16 bit linear amplitude retsoru

Five experienced voice professionals (ear-nose-throetods) speech therapists)
evaluated the intelligibility of each recording. The saagplvere played to the experts
once via loudspeakers in a quiet seminar room without digtgmoise or echoes. Rat-
ing was performed on a five-point Likert scale. For compatabf average scores for
each patient, the grades were converted to integer valuesv@ry high’, 2 = ‘rather
high’, 3 = ‘medium’, 4 = ‘rather low’, 5 = ‘very low’). The set82 andt85 were eval-
uated by two different rater groups. Three of the therapistee part of both groups;
however, set85 had already been evaluated about one year befort88eThe hu-
man raters evaluated only the original close-talking réitmys and not the artificially
reverberated samples that will be introduced in Sect. 3.
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Fig. 1. Measuring room impulse responses for artificial reverl@ngimicrophone positions) at
12 speaker positions in a room with variable reverberafimesTso

3 Atrtificial Reverberation of Speech Samples

In order to obtain reverberated speech with a large variecoustic quality, speech
data must be collected in many rooms with different impuésponses. This leads to
the problem that not always the same speakers are avaitailef so, they will not
be able to reproduce a given text exactly as in the other daugpsessions. Hence, the
recordings will not only be different with respect to the modmpulse response, but
also with respect to speaking style and maybe vocabulamerRerating close-talking
speech artificially with previously measured room impulesponses can avoid this
problem and also drastically reduce the effort of data agitioim.

For this study, the required impulse responses were oldtama room where the
reverberation time could be changed frdigy = 250 ms toT, =400 ms by removing
sound absorbing carpets and curtains. 12 impulse respaesesmeasured for loud-
speaker positions on three semi-circles in front of the apbone at distances 60 cm,
120cm, and 240cm (see Fig. 1 and Table 2). The recording avagecounted clock-
wise from 0° to 165°. Six impulse responses each were meastitle 7, = 250 ms and
Tso =400 ms. The available close-talking speech data (Secte® veverberated with
each of them so that 12 reverberated versions of the origaraples were available.

4 The Speech Recognition System

The speech recognition system used for the experiments dwxs deescribed in [5].
It is based on semi-continuous Hidden Markov Models (HMMJl avas trained with

close-talking speech only. For each 16 ms frame, a 24-diimealsfeature vector is
computed. It contains short-time energy, 11 Mel-frequetepstral coefficients, and
the first-order derivatives of these 12 static features.r€begnition vocabulary of the
recognizer was changed to the 71 words of the standard thetwbrd accuracy and
the word correctness were used as basic automatic measuigefigibility since they
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had been successful for other voice and speech patholdiék They are computed
from the comparison between the recognized word sequeradéhanreference text
consisting of then,;; = 108 words of the read text. With the number of words that were

wrongly substituted(s,1,), deleted (q.) and inserteds;,,s) by the recognizer, the
word accuracy in percent is given as

WA = [1 - (nsub + Ndel + nins)/nall] - 100
while the word correctness omits the wrongly inserted words
WR = [1 — (Nsub + Nde1) /Mant] - 100

Only a unigram language model was used so that the resultdyrdépend on the
acoustic models. A higher-order model would correct too yrasognition errors and
thus make WA and WR useless as measures for intelligibility.

5 Prosodic Features

In order to find automatically computable counterpartstitelligibility, also a ‘prosody
module’ was used to compute features based upon frequen@tiah, and speech
energy (intensity) measures. This is common in automagedp analysis on normal
voices [8-10]. The prosody module processes the outpueafititd recognition mod-
ule and the speech signal itself. ‘Local’ prosodic feataeescomputed for each word
position. Originally, there were 95 of them. After severaidses on voice and speech
assessment, however, a relevant core set of 33 featuresehasdefined for further
processing [11]. The components of their abbreviated nareegiven in parentheses:

— Length of pausesPause): length of silent pause beforel{efore) and after £after),
and filled pause befor&i(l-before) and after Fill-after) the respective word

— Energy featuresHn): regression coefficienRegCoeff) and the mean square error
(MseReg) of the energy curve with respect to the regression curvemgdean)
and maximum energWMax) with its position on the time axisMaxPos); absolute
(Abs) and normalizedNorm) energy values

— Duration features{ur): absolute Abs) and normalizedNorm) duration

— Fy featuresk0): regression coefficienRegCoeff) and mean square erroiigeReg)
of the Fy curve with respect to its regression curve; medean), maximum (ax),
minimum (Min), voice onset®n), and offset Off) values as well as the position of
Max (MaxPos), Min (MinPos), On (OnPos), and Off (OffPos) on the time axis; all
Fy values are normalized.

The last part of the feature name denotes the context siz¢he interval of words
on which the features are computed (see Table 1). They canrbputed on the current
word (W) or in the interval that contains the second and first woraigethe current
word and the pause between thewiPW). A full description of the features used is
beyond the scope of this paper; details and further refeeare givenin [5, 12].

Besides the 33 local features per word, 16 ‘global’ featurexe computed for inter-
vals of 15 words length each. They were derived from jitteinsner, and the number
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of detected voiced and unvoiced sections in the speechlditfla They covered the
means and standard deviations of jitter and shimmer, thebrgnength, and maxi-
mum length of voiced and unvoiced sections, the ratio of thmlers of voiced and
unvoiced sections, the ratio of the length of the voicedisestto the length of the sig-
nal, and the same for unvoiced sections. The standard @evaitthe F was measured
in two ways: it was computed for all voiced sections only als® aver all sections of
the speech recordings. In the latter case, each unvoicerfcantributed a value of 0.
Hence, it incorporated also information about the perggntd frames where no regu-
lar voice signal was detected. Since all patients read tine $ext, this was supposed to
indicate the degree of pathology.

The human listeners gave ratings for the entire text. In otale@eceive also one
single value for each feature that could be compared to theahuatings, the average
of each prosodic feature over the entire recording servéidaldeature value.

Table 1. Local prosodic features; the context size denotes theveitef words on which the
features are computetiM; one word WPW: word-pause-word interval)

features context size|
WPW| W

Pause: before, Fill-before, after, Fill-after
En: RegCoeff, MseReg, Abs, Norm, Mean °
En: Max, MaxPos

Dur: Abs, Norm

FO: RegCoeff, MseReg

FO: Mean, Max, MaxPos, Min, MinPos, Off, OffPos, On, OnPos

6 Support Vector Regression (SVR)

In order to determine the best subset of WA, WR, and prosaditufes to model the
human intelligibility rating, Support Vector Regressi@MR, [13]) was used. The un-
derlying SVM used a linear kernel. The complexity const@mor the SVR was set to 1.
Each training example for the regression consisted of afdeatures from the close-
talkingt82data set (the inputs) and a human intelligibility score tdrget output). The
sequential minimal optimization algorithm (SMO, [13]) tiet Weka toolbox [14] was
applied in a 10-fold cross-validation manner. For the lattié selection, the Greedy
Stepwise algorithm was applied. The standard settings na@rehanged. In contrast
to [2], all input features were not normalized but standegdi(mean value: =0, stan-
dard deviations = 1) for the analysis.

7 Results and Discussion

Former experiments on data 82 had revealed optimal features for close-talking anal-
ysis [2]. The human-machine correlation was0.79 when prosodic features and the
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word correctness (WR) were combined. Using the WA insteae garse results. The
best feature subset consisted of WR, the average duratitwe ailent pauses before a
word (Pause—before), the standard deviation of the fundamental frequency emttiire
sample §tandDevF0/Sig), the standard deviation of jitteG{andDevJitter), and the ra-
tio of the durations of the voiced sections and the entirenging (RelDur+Voiced/Sig).
This set revealed also the best results on the same dataisttily ¢ =0.80; see Ta-
ble 2), although the setup of the regression has been sligitinged.

In earlier experiments on the analysis of chronic hoarseraso the absolute en-
ergy measured in a word-pause-word inter&lAbsWwPW) was among the candidates
for the best feature set [15]. When this feature was addedisnstudy, however, no
significant rise of human-machine correlations could beioled, except for impulse
responsé421045 (r=0.78 instead of 0.77) antt423075 (r =0.74 instead of 0.72).
All other correlations were equal to those of the smalleraseg¢ven lower. For this
reasonEnAbsWPW has been removed from the feature set again.

As expected, the human-machine correlation got lower inghéri reverberation
time and with rising microphone distance, but still the lstiw@easured correlation was
as high as 0.72 for 240 cm microphone distanceZgd 400 ms where it had been 0.80
for the close-talking case. The angle at which the speakatespwards the microphone
did not show consistent influence. The standard situatiarichme 90°, i.e. right in front
of the microphone. All available pairs of the saffig and microphone distance showed
a relative difference in the angle of 90°, but very often et bne, which was closer
to the absolute 90° position, was better with respect to mimachine correlation.
Additionally, the influence of the angle was usually odly =0.02.

The weights of the single features in the regression formfdathet82 data (see
Table 2) do not show a unique behavior that would make it easglate them tdg
or microphone distance. The weight for the pauses betweedsseause—before) is
relatively stable at about 0.2 to 0.4 among the simulatedrdiag situations. The stan-
dard deviation of jitter $tandDevJitter) tends to get higher absolute values for more
reverberant environments. The ratio of the durations ofvitieed segments and the
whole recordingRelDur+Voiced/Sig) loses influence with rising reverberation. So does
also the word correctness (WR). The reason is obviously tisenatch between the
acoustic properties of training and test environment ofrwgnizer. For théy, and
jitter features, also the worse acoustic quality and heheaitreliable detection dfy
is the most probable reason. However, the weighiSiandDevF0/Sig is at about the
same level in all experiments, and theandDevF0, which is not related to the overall
duration, but only to the voiced segments, does not occinarest feature sets at alll.

In general, the feature set, which was best for the closéatatase, can also basi-
cally be considered suitable for reverberated environnieainother experiment, a fea-
ture set has been determined, which is best for the acoustiago most deviant from
the close-talking case (impulse respohd23075, Ts, =400 ms, microphone distance
240cm, angle 165°; see Table 3). Here, forti®2data the best feature set is a super-
set of the one for the close-talking case. It contains aoitfitly the mean of jitter, the
number of voiced sections in the recordiwg\oiced), and the ratio of the numbers of
voiced and unvoiced sectionBdINum+/—Voiced). This lifts the human-machine cor-
relation from 0.74 to 0.80. For the close-talking recordinigowever, the correlation
drops from 0.80 to 0.73 with this set, and the additionalfesg show very low regres-
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sion weights. The results on tt&5 data set (Table 2 and 3) confirm the suitability of the
selected features for intelligibility assessment bothdodjand bad acoustic conditions.

Table 2. Feature weights (columns 5 to 9) and human machine cowalafor artificially rever-
berated and close-talking2 data (last linet85); reverberation tim&so, microphone distance
(‘dist.”) and recording angle for the impulse responsesgaren on the left side

impulse Tso |dist.Jangle|Pause—|StandDev|RelDur+ | WR |StandDev|| r
response ||(ms)(cm) () ||before |Jitter Voiced/Sig FO/Sig
h411000 250| 60 0|| 0.207 0.074 —0.542-0.419 0.524|0.78
h411090 250| 60 90|| 0.253 0.151 —0.676-0.354 0.52%|0.79
h412060 250| 120 60|| 0.313 0.136 —0.699-0.377 0.468|0.78
h412150 |[250| 120 150| 0.25 -0.06 —0.593-0.323 0.560Q|0.80
h413030 |[[250| 240 30/ 0.260 —0.234 —-0.436-0.374 0.573|0.77
h413120 250| 240 12Q| 0.238 —0.194 —0.451-0.304 0.51%|0.75
h421045 400 60 45| 0.284 0.179 —0.700-0.382 0.47%|0.77
h421135 |[[400| 60 135| 0.24§ 0.225 —0.782-0.362 0.544|0.80
h422015 400( 120 15| 0.232 —0.265 —0.414-0.154 0.524|0.74
h422105 400( 120 105 0.327 -0.174 —0.471-0.267 0.549|0.74

h423075 400( 240 75|| 0.387% —0.227 —0.328-0.116 0.472(0.72
h423165 400( 240 165| 0.292 —0.325 —0.364-0.237 0.57Q|0.74
| —(close-talk) [ — [3-5 90] 0.19] 022§  -0.881-0.41% 0.511]0.80

[(close-t, 85 — | 35 90| 0483 0013 05510313  0.5540.73

Table 3. Feature weights and human-machine correlatidor the set optimal for reverberated
(impulse responsk423165) t82 data, tested on reverberated and close-talt82gndt85 data

impulse ||Pause—|Mean|StandDev#+Voiced|RelNum |RelDur+ [StandDev|| r
response ||before |Jitter Jitter +/—Voiced|Voiced/Sig|F0/Sig
h423165 (t82)| 0.290 0.895 -0.970 -0.422 —0.206 —-0.200 0.608/0.80
h423165 (185 0.504 0.640 -0.553 -0.121 —0.349 -0.292 0.452|0.75
— (close-t.182)|| 0.432 0.027 0.1479 -0.072 0.056 —0.847 0.508|0.73
— (close-t., t85) 0.3770.65§ —0.65 -0.215 —-0.288§ —-0.403 0.493|0.74

The inter-rater correlation between a single rater’s ligfigllity scores and the av-
erage of the 4 other raters was 0.84 for thet82 recordings (for details, see [2]) and
r=0.81 for thet85 data [16]. These are the reference values that an autornyatens
should reach to be regarded as reliable as an average huteariltee current results
are almost at this level. Due to slight differences in catiehs and regression weights
for different features that occurred in this study, the eipents have to be continued
with larger data sets in order to reassure the relevanceecddlected features and to
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add other features where applicable. Nevertheless, thelugion of this study is that
automatic evaluation of intelligibility can be done on rewerated speech samples as
reliable as for close-talking samples.
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