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Abstract 

 

Automatic voice assessment is often performed using sustained vowels. In contrast, speech 

analysis of read-out texts can be applied to voice and speech assessment. Automatic speech 

recognition and prosodic analysis were used to find regression formulae between automatic 

and perceptual assessment of four voice and four speech criteria. The regression was trained 

with 21 men and 62 women (average age: 49.2 years) and tested with another set of 24 men 

and 49 women (48.3 years), all suffering from chronic hoarseness. They read the text “Der 

Nordwind und die Sonne” (“The North Wind and the Sun”). 5 voice and speech therapists 

evaluated the data on 5-point Likert scales. 10 prosodic and recognition accuracy measures 

(features) were identified which describe all the examined criteria. Inter-rater correlation 

within the expert group was between r=0.63 for the criterion “match of breath and sense 

units” and r=0.87 for the overall voice quality. Human-machine correlation was between 

r=0.40 for the match of breath and sense units and r=0.82 for intelligibility. The perceptual 

ratings of different criteria were highly correlated with each other. Likewise, the feature sets 

modeling the criteria were very similar. The automatic method is suitable for assessing 

chronic hoarseness in general and for subgroups of functional and organic dysphonia. In its 

current version, it is almost as reliable as a randomly picked rater from a group of voice and 

speech therapists. 
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Introduction 

 

Subjective-perceptual voice and speech assessment cannot fulfill the requirements of 

evidence-based medicine (1). It is problematic with respect to different degrees of experience 

among the examiners (2). Objective, automated evaluation methods are often restricted to 

voice quality measures which are computed from sustained vowels or phones but not from 

longer segments of speech (3, 4, 5). Speech criteria cannot be processed in this way. They 

require more elaborate solutions and are usually evaluated perceptually. Especially 

intelligibility has been identified as one of the most important parameters for voice and 

speech assessment (6, 7).  

 

In this study, two types of automatic speech analysis were applied for objective evaluation of 

voice and speech parameters from continuous speech. The first method is automatic speech 

recognition which tries to identify the spoken words in an utterance. The second method is 

prosodic analysis. The word “prosody” usually refers to suprasegmental phenomena in 

speech, i.e. they are longer in effect than for one single phone which is regarded as the basic 

unit of speech. They comprise linguistic aspects, such as word and phrasal accent, phrase 

boundaries, sentence modality, and paralinguistic aspects, e.g. the speaker’s emotion. In the 

context of automatic speech analysis, “prosodic analysis” means the computation of measures 

from a speech sample, which help identify prosodic phenomena but also other aspects related 

to speech. 

 

In earlier studies, experimental diagnosis tools based on speech recognition were applied for 

speech of adult patients who suffered from neurological diseases (8), in persons after 

laryngectomy with tracheo-esophageal speech (9), and in children with cleft lip and palate 

(10, 11). Correlations of up to r=0.9 and above were measured between subjective ratings of 

intelligibility and automatic measures, e.g. word accuracy, word recognition rate, prosodic, or 

phonological features (9, 11, 12, 13). 

 

The aim of this study was modeling the average human perceptual rating of clinically relevant 

voice and speech criteria by a combination of automatic speech recognition and prosodic 

analysis. The study was performed in the frame of a project on the automatic evaluation of 

chronic hoarseness with benign causes. One important aspect of the experiments was also that 

no special hardware should be necessary in the clinics (14, 15). The following questions were 

examined: 

 

 Can perceptual voice and speech criteria be modeled by automatic speech analysis 

based on speech recordings? 

 Is a model that was designed for the entire group of chronically hoarse persons also 

valid for the subgroups of functional and organic dysphonia?  

 

Material 

 

Patients 

Two groups of persons with chronic hoarseness were used in this study. Speech samples of 

one group, further denoted as set 1, were used to determine automatic measures that can 

describe perceptual evaluation criteria. The second group – here called set 2 (16) – was used 

to test whether the findings on set 1 also hold for other data with the same type of voice 
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disorder. For both sets, the most frequent disorders were grouped to functional and organic 

dysphonia (table I). 

 

[Insert table I about here.] 

 

All persons were native German speakers who were asked to speak standard German while 

being recorded. None of them had speech disorders caused by medical problems others than 

hoarseness, none had psychological problems or any report of hearing impairment. Patients 

suffering from cancer were excluded from the study. The study respected the principles of the 

World Medical Association Declaration of Helsinki on ethical principles for medical research 

involving human subjects and has been approved by the ethics committee of the university 

clinics in Erlangen (approval no. 4223). 

 

Speech Recordings 

The data were assessed during regular out-patient examinations. Each person read the text 

“Der Nordwind und die Sonne”, known as “The North Wind and the Sun” in the Anglo-

American language area (17). The German version is a phonetically rich text with 108 words 

(71 disjunctive) and 172 syllables. It is widely used in medical speech evaluation. The texts 

were recorded as one passage digitally with standard desktop computer equipment. A 

sampling frequency of 16 kHz was used; the data were quantized with a resolution of 16 bit 

linear. For set 1, a handheld microphone Sony F-V310 (Cardioid IMP6000 Dynamic Mic.; 

Sony, Minato, Tokyo, Japan) was used, set 2 was recorded with an AKG C 420 (AKG 

Acoustics, Vienna, Austria) headset. The distance between mouth and microphone was about 

10 cm for set 1 and about 5 cm for set 2. 

 

Methods 

 

Subjective Evaluation 

In order to achieve results comparable to our former experiments (9, 13, 18), an evaluation 

sheet with four voice and four speech criteria was used (table II). It was based on literature 

about clinically relevant criteria (6, 7). The voice penetration criterion was defined by Pahn et 

al. as the voice capacity to penetrate background noise (19). The criteria were rated on a 5-

point Likert scale. For the purpose of automatic analysis, the scores were converted to integer 

numbers. These were not printed on the evaluation sheet. As in the CAPE-V (20), the overall 

quality score was not based on a Likert scale, but a 10 cm visual analog scale (VAS). The 

raters were asked to mark their impression without regarding their results for the single 

criteria before. The distance in centimeters from the left boundary to the drawn line was 

measured with a precision of 0.1 cm, so possible overall quality scores were between 0.0 and 

10.0.  

 

[Insert table II about here.] 

 

5 experienced voice and speech therapists evaluated each patient subjectively while listening 

to a play-back of the text samples. They were played to the raters once in randomized order 

via loudspeakers in a quiet seminar room without disturbing noise or echoes. Every sample 

was played in full, and all respective raters listened and evaluated at the same time. Sets 1 and 

2 were evaluated by two different rater groups. Two of the therapists were part of both 

groups; however, set 2 had already been evaluated three years before set 1. 
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Automatic Speech Recognition System and Prosodic Analysis 

A “prosody module” was used to find automatically computable counterparts for subjective 

ratings. It computes features based on frequency, duration, and speech energy (intensity) 

measures. Those are well-established in automatic speech analysis on normal voices (21, 22, 

23, 24). Prosodic information is inherent in speech segments, such as syllables, words, 

phrases, and whole utterances. To these segments, a human being assigns perceptual 

properties, e.g. as pitch, loudness, articulation rate, voice quality, duration, pause or rhythm. 

In general, there is no unique feature in the speech signal corresponding to them exactly, but 

there are features which highly correlate with them; examples are the fundamental 

frequency (F0), which correlates to pitch, and the signal energy correlating to loudness. The 

F0-based features including jitter, and the amplitude-based shimmer are widely used in 

automatic voice evaluation. In this study, however, they were obtained from speech instead of 

vowel samples only. An algorithm for voiced-unvoiced decision detects the voiced sections of 

the recording, and the perturbation-based measures are computed only on them.  

  

The prosody module for the analysis of the read-out standard text requires a “word hypotheses 

graph” (WHG) as input which contains the information where each word begins and ends in 

the respective recording. This time-alignment is done by a speech recognition module on a 

word-wise transliteration of the spoken text. For this study, the recordings were assumed to be 

free of reading errors, and the text reference was used as transliteration. Previous studies had 

shown that the reading errors that usually occur in such data do not on average deteriorate the 

result of the evaluation (25). 

 

The recognition system is based on semi-continuous Hidden Markov Models (HMMs) which 

define a statistical model for each phoneme to be recognized. The recordings are analyzed in 

segments (frames) of 16 ms length at a frame shift rate of 10 ms. The signal energy is 

summed up in frequency bands equally spaced on an auditory-based Mel scale. The final 

features are achieved by a discrete cosine transform; these measures are known as Mel-

Frequency Cepstrum Coefficients (26) or shortly MFCCs. Eleven MFCCs, an intensity 

measure (speech energy), and the first derivative of each of these 12 measures form a 24-

dimensional feature vector that is the basis for phoneme classification. The recognized 

phonemes are combined to words according to a given vocabulary list. The vocabulary of the 

recognition system for the generation of the WHGs consisted of the 71 different words of the 

text “Der Nordwind und die Sonne”. For more details, see (27). 

  

Two measures of the word recognition module were used for the analysis. They are computed 

from the comparison between the recognized word sequence and the reference text consisting 

of nall=108 words. With the number of words that were wrongly substituted (nsub), deleted 

(ndel) and inserted (nins) by the automatic speech recognizer, the word accuracy in percent is 

given as 

 

WA = [1 - (nsub + ndel + nins)/nall] ∙ 100   . 

 

The word recognition rate omits the wrongly inserted words: 

 

WR = [1 - (nsub + ndel)/nall] ∙ 100 

 

We used a so-called unigram language model to weight the probability of appearance of each 

word model. Hence, the frequency of occurrence for each single word in the text was known 

to the system. In order to give more weight to the results of the acoustic analysis, statistic 
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information about sequences of words (which is usually applied in automatic speech 

recognition) was not used. It would have corrected too many recognition errors and thus 

distorted the good relation of human and machine recognition (28). This would make WA and 

WR useless as measures for intelligibility and other criteria. The recognition module had been 

trained with 27 hours of undistorted German speech. In that way, normal voices were the 

reference for the acoustic evaluation. It was not adapted to the single speakers of the test set, 

but stayed the same for each particular analysis. 

 

For each word provided by the recognition module, the prosody module computes three basic 

groups of “local” prosodic features. Duration features represent word and pause durations. 

Energy features contain information about maximum and minimum energy, their respective 

positions in the word, the energy regression coefficient and mean-squared error. Similarly the 

F0 features, based on the detected fundamental frequency, comprise information about the 

extreme F0 values and their positions, voice onset and offset with their positions, and also the 

regression coefficient and mean-squared error of the F0 trajectory. Duration, energy, and F0 

values are stored as absolute and normalized values. The 24 basic prosodic features are 

computed in different contexts where applicable, i.e. in intervals containing the single word or 

pause only or a word-pause-word interval. In this way, 33 prosodic features are computed for 

each word (table III). In former studies, up to 95 features had been used. The findings of those 

experiments allowed the reduction of the original set to the more compact set in this study. 

Besides the local features, 15 “global” features (table IV) are computed for intervals of 15 

words length each. Details and further references of all features are given in (18, 22, 23). 

 

The features are computed at each word position of the spoken text. The speech experts, 

however, gave ratings not for each word but for the entire paragraph. In order to receive one 

single value for each feature that can be compared to the human ratings, the average of each 

word-based feature over the whole text served as the final feature value.  

 

[Insert table III about here.] 

[Insert table IV about here.] 

 

Support Vector Regression 

In order to find the best subset of word accuracy, word recognition rate, and the prosodic 

features to model the subjective ratings for each criterion, a correlation-based feature selection 

method was applied. Feature selection was performed for set 1 in a 10-fold cross-validation 

manner using the CfsSubsetEval algorithm (29) of the Weka toolbox (30). The features with 

the highest ranks were then used as input for a regression method based on Support Vector 

Machines (SVM). 

 

An SVM performs a binary classification based on a hyperplane separation. The separator is 

chosen in order to maximize the distances (margin) between the hyperplane that separates the 

two classes and the closest training vectors which are called support vectors. SVMs can also 

be used for Support Vector Regression (31). The general idea of regression is to use the 

vectors of the observed variables (training set) to approximate a function which predicts the 

target value of a given vector of the predicted variable (test set). Due to the fact that no binary 

classification has to be performed, the so-called ε-tube is defined where ε describes the 

deviation which is allowed between the training vectors and the regression line. Similar to 

SVM classification, not all training vectors are needed to select the most appropriate ε-tube, 

but only a subset of them, i.e. the support vectors. For this study, the sequential minimal 

optimization algorithm (31) of the Weka toolbox was applied. For the regression for a 
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respective rating criterion, the automatically computed measures (WA, WR, and all prosodic 

features) served as the training set for the regression. The test set consisted of the subjective, 

perceptual scores for the respective rating criterion.  

 

All statistical computations for rater agreement or human-machine agreement were also 

performed with the Weka toolbox (30). All correlations are given as Pearson’s correlation 

coefficient r. 

 

Results 

 

The perceptual evaluation (table V) shows mostly very similar results on sets 1 and 2. 

Hoarseness and speaking effort were regarded better among set 2, while the match of breath 

and sense units, the vocal tone, intelligibility, and overall quality were reported better in set 1. 

There were also some significant differences between the two dysphonia subgroups. Voice 

quality, voice penetration, use of prosody, match of breath and sense units, tone, and 

intelligibility are remarkably worse in the organic dysphonia group whereas hoarseness and 

effort are worse in the functional dysphonia group.  

 

[Insert table V about here.] 

 

Table VI shows the inter-rater correlation among the rater groups for set 1 and 2 and the 

subsets of set 2 with functional and organic dysphonia, respectively. Mostly, correlations 

above r=0.7 are reached.  

 

[Insert table VI about here.] 

 

Table VII shows the sets of features that were obtained by the regression for each of the rating 

criteria. Only 10 of the 33 local and 15 global features were found to describe all the 

examined criteria. Two of them are energy-based, namely the normalized energy values in a 

word (EnNormW) and a word-pause-word interval (EnNormWPW). MeanJitter and 

StandDevJitter are F0-based. Four of them are duration features: the normalized duration of a 

word-pause-word interval (DurNormWPW), the length of silent pause before a word (Pause-

before), the duration of the unvoiced sections (Dur−Voiced), and the ratio of the duration of 

the voiced sections and the duration of the sample (RelDur+Voiced/Sig). The two remaining 

features are the number of unvoiced sections determined in the sample (#−Voiced) and the 

word accuracy (WA) of the speech recognition system. 

 

MeanJitter is part of the best feature sets for every criterion. WA and EnNormWPW are also 

part of almost every best feature set. For speech effort and intelligibility, two sets each 

appeared to be best. The second set for effort contains EnNormWPW instead of 

DurNormWPW. The second set for intelligibility contains EnNormWPW instead of Pause-

before. 

 

[Insert table VII about here.] 

 

Table VIII contains the correlations between the automatic evaluation and the perceptual 

reference for set 1, for the complete set 2, and for its two subsets with different kinds of 

dysphonia. The best values reach r=0.8 for voice penetration, intelligibility, and overall 

quality for the entire set 2.  
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[Insert table VIII about here.] 

 

The correlations between the perceptual ratings of different criteria are larger than r=0.9 in 

some cases (table IX). Especially penetr, effort, and overall correlate with each other and 

some other criteria to a very high degree. The correlations between the single automatically 

computed features are given in table X. According to the definition of the features, high 

values could be expected e.g. for DurNormWPW and Pause-before (r=0.94) or Dur−Voiced 

and RelDur+Voiced/Sig (r=-0.95), but some other results were not that obvious in advance, 

e.g. for EnNormWPW and DurNormWPW (r=0.94). Replacing the respective features in the 

best feature sets by measures which were highly correlated did not improve human-machine 

correlation in any case, however. 

 

[Insert table IX about here.] 

[Insert table X about here.] 

 

Discussion 

 

The human-machine correlation was in most cases slightly smaller than the human-human 

agreement, but the general effectiveness of the automatic approach was clearly shown. Even 

more, the agreement was in some cases even better on the previously unseen set 2 data than 

on set 1, although the human-human correlation was not significantly different on both sets. A 

human-machine correlation being equal to the human-human correlation means that the 

machine evaluates voice and speech criteria as reliably as an average human rater. Hence, the 

first research question of this study can be answered positively: perceptual voice and speech 

criteria can be modeled by automatic speech analysis based on speech recordings. 

 

Also the answer for the second question of this study is positive in general: the approach is 

applicable to chronic hoarseness in general and also to further specific subclasses. However, 

for some rating criteria, the human-machine correlation was smaller on the organic dysphonia 

samples. On the other hand, this was also observable in the human-human correlation. One 

possible source of this effect may be the different size of the set 2 data subsets which was 

n=45 for the functional and n=24 for the organic dysphonia. This was caused by the 

acquisition process: the data collection was supposed to be representative, and no pre-

selection for equally sized subsets was made. Specific regressions for the subsets were not 

trained, because they are too small to create reliable models for the rating criteria. 

 

Both sets 1 and 2 are representative collections. They are almost equal in the distribution of 

gender, age, and subtypes of chronic hoarseness. The speech samples of both sets were 

recorded with different microphones. However, no negative influence of the recording media 

on the results was observed when dataset 2 was tested with the regression which was trained 

with set 1. Hence, the success of the approach is not dependent on the microphone type. 

Another aspect supporting the common usability of the method is that the perceptual 

evaluation was performed by different raters for the two groups. No large differences in the 

inter-rater correlation within the two groups were observed which also shows that, in general, 

an average perceptual rating is a reliable reference. However, in clinical practice this is not 

applicable since one patient is usually not evaluated by 5 therapists.  

 

The procedure of perceptive evaluation, which was used for this study, may raise the question 

whether the raters really evaluated intelligibility, for instance. The way of evaluation was 

supposed to depict the methods that are usually applied in therapy sessions. The raters were 
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clearly instructed to evaluate intelligibility instead of voice quality, because it is known that 

the degree of voice distortion influences the rating of intelligibility (32). It is very difficult, 

however, to exclude this effect in clinical practice where intelligibility is often not evaluated 

as a percentage of correctly understood words, because these exact tests are time-consuming. 

Additionally, a percentage scale is too detailed to be relevant for therapy suggestions. The 

percentage values would very likely be grouped into a small number of intervals with a 

certain decision for therapy for each of them. For this reason, we decided to instruct the 

therapists to rate intelligibility in five classes right from the beginning. It is obvious that these 

labeled classes may not be assigned uniformly by the raters due to certain bottom or floor 

effects, which actually makes the conversion to integer numbers a non-linear operation. 

However, in the same way we regard it as very likely that the effect on communication 

success by differences in percentage intelligibility is also not equally distributed. A 

comprehensive study on these effects is not the topic of this work, but we believe that the 

difference between 30% and 40% of understood words, for instance, will cause another 

degree of information loss than between 90% and 100%. The average value of the ratings of 

several raters was used in order to get a representative evaluation, not a single one with 

personal bias. Some researchers prefer the consensus method, where the raters agree on a 

common rating. But this does not reflect the average of independent ratings, since some of the 

involved persons may neglect their own impression and rather choose a label which is more 

consistent with the others. 

 

The same acoustic properties, which influence different perceptual rating criteria, can 

obviously also be found in their technical counterparts: the large similarity of the feature sets 

for the different rating criteria may have also been caused by the agreement of the perceptual 

ratings among different criteria (table IX); see also e.g. (33).  

 

The composition of the best feature subsets for the rating criteria confirms the importance of 

jitter for automatic voice assessment. Even more, also jitter extracted from all voiced 

segments in a speech sample, not only from sustained vowels, can give important information 

about voice and speech parameters. There is discussion whether jitter is reliable above 5% 

(34), but it has been shown that taking into account also higher values for the comparison 

between perceptual and automatic evaluation can improve human-machine correlation (16). 

Additionally, a study with four automatic tools for voice analysis revealed that even jitter of 

15% can be reliably detected by most of them. This was, however, measured on synthesized 

sustained vowels (35). 

 

It was also shown by the prosodic analysis that the normalized energy computed from words 

and from word-pause-word intervals contributes to many high human-machine correlations. It 

would be straightforward to assume that a louder speaker is more intelligible, for instance. 

However, in the best prosodic feature set, the energy values are normalized so that a 

continuously high energy level will have no effect. It is more likely that single phones or 

phone classes, which cannot be uttered properly due to the speech impairment, appear in the 

signal as more noisy and cause local changes in the energy distribution. Leinonen et al. have 

shown that this effect occurs mainly in the 1-2 and 7-9 kHz area (36). This has an influence 

on the vocal tone or the hoarseness, for instance. Durations of pauses, words, and word-pause-

word intervals contain information about the speaking rate or the duration of pauses for 

breathing. Hence, they are indicators for speaking effort, the match of breath and sense units, 

intelligibility, or the use of prosody. Features, like Dur−Voiced, #−Voiced, or 

RelDur+Voiced/Sig, give information about the stability of phonation. It is currently not 

clear, however, why for some criteria the unvoiced and for other criteria the voiced segments 
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are more important for the evaluation. Replacing them by their respective counterparts led to 

drastically worse human-machine correlations, although especially the correlation of 

Dur−Voiced and RelDur+Voiced/Sig is very high (r=-0.95). 

  

The word accuracy and word recognition rate provided by a speech recognition system had 

shown significantly high human-machine correlations for intelligibility in laryngectomees 

with tracheo-esophageal speech (9), in children with cleft lip and palate (11), and patients 

with oral squamous cell carcinoma (13). In this study, the WR was not part of the best feature 

sets. The WA, however, proved to be a non-neglectable measure for almost all examined 

voice and speech criteria. 

 

This study took into account representative groups of persons with chronic hoarseness. Hence, 

the results can currently be seen valid for this group of voice patients. In other kinds of 

dysphonia, there may be effects that could especially cause other correlations between the 

perceptual rating criteria and also between the human and machine evaluation. For example, 

there can be aphonic voices which are very well intelligible. It is also not intuitive, why 

features, such as DurNormWPW, can be related to voice or speech quality evaluation. 

Because of high speaking effort due to functional or organic dysphonia, the speaking rate may 

be lower. For other types of voice or speech problems, this may not necessarily hold. WA and 

WR could be influenced by dialect or foreign accent. The present study was restricted to 

native German speakers who were asked to speak standard German. The language spoken by 

the patients and raters may also have an influence of the perceptual ratings. In a study by Ghio 

et al. (37), there was a significant difference in the roughness evaluations of French and 

Italian speakers. On the technical side, the sampling rate of the audio data could have an 

influence on the accuracy of the automatic ratings. Due to conditions of some of the applied 

programs, a sampling frequency of 16 kHz was chosen in this study which is high enough for 

sufficient perturbation reliability (38). 

 

Several studies of other groups speak also in favor of voice analysis from connected speech 

(39, 40, 41, 42). Other groups state that sustained vowels are equally suitable (43), or they see 

individual advantages in both methods (44). A combination of both may be a promising 

solution. With the extension of the method by some additional features, which are known to 

be valid indicators for voice quality, the results of the automatic analysis can be further 

improved in the future. Among those features are the harmonicity-to-noise ratio HNR or the 

cepstral peak prominence CPP, which can also be obtained from running speech (16, 45, 46, 

47, 48). MFCCs have been used for speech recognition in this study, but they can also be used 

for voice quality assessment (49).  

 

Another important advantage of the presented method is that it does not just classify voices 

into one of the two categories “normal” and “pathologic”. For quantification of a 

communication disorder in clinical use, this is not sufficient. Instead, the experiments 

provided regression formulae which can be used to translate the obtained measures onto the 

whole range of perceptual ratings. 

  

As a conclusion, the presented methods can serve as the basis for an automatic, objective 

support for rehabilitation. The system is easily applicable, and it is able to evaluate a person’s 

voice and speech at the same time. The overall time needed for the analysis of about 50 

seconds of text read by one speaker is about one minute on a single-core machine with 2.4 

GHz clock frequency. Hence, the system does also not slow down the process of a therapy 

session.  
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Tables 

 

Table I. Age statistics for the patient groups and the most important subgroups 

 data set N n(men) n(women) mean(age) SD(age) min(age) max(age) 

set 1 83 21 62 49.2 17.3 15 86 

- functional 41 8 33 44.1 16.6 15 81 

- organic 27 8 19 53.9 17.9 18 86 

set 2 73 24 49 48.3 16.8 19 85 

- functional 45 13 32 47.1 16.3 20 85 

- organic 24 9 15 52.2 15.6 25 79 

Note: Ages are given in years. 

 

 

Table II. Schematic diagram of the voice and speech evaluation sheet; the criteria are listed in 

the order in which they were presented to the raters. 

criterion refers to abbrev. scale min. value max. value 

hoarseness voice hoarse Likert 1 (very high) 5 (none) 

speech effort speech effort Likert 1 (very high) 5 (none) 

voice penetration voice penetr Likert 1 (very high) 5 (extremely bad) 

use of prosody speech proso Likert 1 (very good) 5 (none) 

match of breath and sense units speech brsense Likert 1 (very good) 5 (none) 

vocal tone voice tone Likert 1 (very pleasant) 5 (very unpleasant) 

overall intelligibility speech intell Likert 1 (very high) 5 (none) 

overall quality score voice overall VAS 0.0 (very good) 10.0 (very bad) 

Note: VAS = visual analog scale 
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Table III. 33 local word-based prosodic features 

features context size 

WPW W 

Pause-before   • 

En: RegCoeff, MseReg, Mean, Abs, Norm • • 

En: Max, MaxPos  • 

Dur: Abs, Norm •  •  

F0: RegCoeff, MseReg • • 

F0: Mean, Max, MaxPos, Min, MinPos, On, OnPos, Off, OffPos  • 

DurTauLoc, EnTauLoc, F0MeanG   • 

Note: •: feature was computed in this context 

The context size denotes the interval on which the features are computed: W = word, WPW = 

word-pause-word. The features are abbreviated as follows:  

Length of pauses “Pause”: length of the silent pause before the respective word in context 

(Pause-before) 

Duration features “Dur”: absolute (Abs) and normalized (Norm) word duration 

Energy features “En”: regression coefficient (RegCoeff) and mean square error (MseReg) of 

the energy curve within a word with respect to the regression curve; mean (Mean) and 

maximum energy (Max) with its position on the time axis (MaxPos); absolute (Abs) and 

normalized (Norm) energy values 

F0 features “F0”: regression coefficient (RegCoeff) and the mean square error (MseReg) of 

the F0 curve with respect to its regression curve; mean (Mean), maximum (Max), minimum 

(Min), voice onset (On), and offset (Off) values as well as the position of Max (MaxPos), Min 

(MinPos), On (OnPos), and Off (OffPos) on the time axis 

Normalization factors: DurTauLoc for duration, EnTauLoc for energy, and F0MeanG for F0 

values 
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Table IV. Global prosodic features 

abbreviation description 

StandDevF0 standard deviation of F0 for entire file 

MeanJitter  mean jitter in all voiced sections 

StandDevJitter  standard deviation of jitter in all voiced sections 

MeanShimmer  mean shimmer in all sections 

StandDevShimmer  standard deviation of shimmer in all sections 

#+Voiced  number of voiced sections in file 

#−Voiced  number of unvoiced sections in file 

Dur+Voiced  duration of voiced sections in file (in frames) 

Dur−Voiced  duration of unvoiced sections in file (in frames) 

DurMax+Voiced  maximum duration of voiced section 

DurMax−Voiced  maximum duration of unvoiced section 

RelNum+/−Voiced  ratio of number of voiced and unvoiced sections 

RelDur+/−Voiced  ratio of duration of voiced and unvoiced sections 

RelDur+Voiced/Sig  ratio of duration of voiced sections and duration of signal 

RelDur−Voiced/Sig  ratio of duration of unvoiced sections and duration of signal 
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Table V. Perceptual evaluation results (on a 5-point scale; “overall” on a 10 cm VAS) 

 set 1 set 2 

 mean SD min max mean SD min max  

 hoarse  

total group 3.43 0.86 1.00 4.80 3.12 1.03 1.20 5.00  

functional 3.78 0.64 1.00 4.80 3.41 1.00 1.20 5.00  

organic 3.05 0.89 1.00 4.40 2.54 0.87 1.20 4.00  

 effort 

total group 3.55 1.07 1.00 5.00 3.33 1.15 1.00 5.00  

functional 3.81 0.96 1.20 5.00 3.64 1.05 1.00 5.00  

organic 3.26 1.07 1.00 4.80 2.65 1.07 1.00 4.20  

 penetr 

total group 2.98 0.86 1.20 5.00 2.87 1.00 1.20 5.00  

functional 2.74 0.80 1.20 4.80 2.60 0.97 1.20 5.00  

organic 3.27 0.81 2.00 5.00 3.44 0.88 2.00 5.00  

 proso  

total group 3.14 0.76 1.20 4.80 3.12 0.85 1.40 4.80  

functional 2.86 0.77 1.20 4.60 2.92 0.84 1.40 4.60  

organic 3.48 0.66 2.20 4.80 3.58 0.73 2.40 4.80  

 brsense 

total group 2.67 0.65 1.20 4.60 2.78 0.82 1.20 4.40  

functional 2.43 0.57 1.20 3.60 2.60 0.80 1.20 4.20  

organic 2.98 0.63 1.80 4.60 3.22 0.72 1.80 4.40  

 tone  

total group 3.08 0.88 1.20 5.00 3.15 0.97 1.00 5.00  

functional 2.78 0.81 1.20 5.00 2.92 0.99 1.00 5.00  

organic 3.39 0.78 2.00 5.00 3.65 0.76 2.40 5.00  

 intell 

total group 2.29 0.73 1.00 4.20 2.51 1.02 1.00 5.00  

functional 2.01 0.64 1.00 3.80 2.27 1.00 1.00 5.00  

organic 2.61 0.65 1.20 4.20 3.06 0.91 1.60 4.80  

 overall 

total group 4.02 2.32 0.38 9.32 4.74 2.51 0.32 9.50  

functional 3.13 2.01 0.38 8.58 4.05 2.49 0.32 9.50  

organic 4.89 2.11 1.24 9.10 6.23 1.98 3.30 9.12  
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Table VI. Inter-rater correlation r between each rater and the average of the four remaining 

raters for all rating criteria  

 set 1 (N=83) set 2 (N=73) set 2 (functional, n=45) set 2 (organic, n=24) 

hoarse 0.71 0.76 0.79 0.65 

effort 0.83 0.83 0.83 0.77 

penetr 0.81 0.82 0.83 0.81 

proso 0.75 0.75 0.73 0.74 

brsense 0.63 0.66 0.67 0.56 

tone 0.82 0.80 0.82 0.69 

intell 0.77 0.82 0.83 0.75 

overall 0.87 0.86 0.85 0.81 

Note: All correlations are significant with p<0.01. 

 

 

Table VII. Best feature sets for describing different rating criteria; the given weights and the 

additive constant value in the last row form the respective regression formulae. 

feature hoarse effort1 effort2 penetr proso brsense tone intell1 intell2 overall 

Pause-before      0.408  0.356   

EnNormWPW -0.288  -0.729 0.571   0.273  0.418  

EnNormW       0.243    

DurNormWPW  -0.618   0.243      

MeanJitter -0.800 -0.712 -0.728 0.595 0.440 0.527 0.757 0.551 0.645 0.841 

StandDevJitter  0.107 0.115        

#−Voiced -0.434     -0.133     

Dur−Voiced      0.378 0.388    

RelDur+Voiced/Sig          -0.533 

WA  0.517 0.368 -0.331 -0.544 -0.440 -0.408 -0.621 -0.503 -0.723 

constant 1.237 0.730 0.852 0.257 0.635 0.396 0.145 0.472 0.293 0.958 
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Table VIII. Human-machine correlations r for the selected feature sets applied to speaker sets 

 set 1 (N=83) set 2 (N=73) set 2 (functional, n=45) set 2 (organic, n=24) 

hoarse 0.76 0.69 0.67 0.78 

effort1 0.78 0.77 0.70 0.69 

effort2 0.74 0.79 0.77 0.65 

penetr 0.73 0.80 0.77 0.75 

proso 0.63 0.71 0.66 0.55 

brsense 0.56 0.63 0.56 *0.40 

tone 0.72 0.75 0.74 0.67 

intell1 0.69 0.81 0.79 0.81 

intell2 0.72 0.82 0.79 0.75 

overall 0.79 0.80 0.80 0.69 

Note: *: significant with p<0.05; all other results are significant with p<0.01. 

 

Table IX. Correlations r between the perceptual evaluation results of different rating criteria 

(upper right triangle: set 1, lower left triangle: set 2) 

 hoarse effort penetr proso brsense tone intell overall 

hoarse 1.00 0.66 -0.64 -0.58 -0.52 -0.78 -0.65 -0.79 

effort 0.66 1.00 -0.92 -0.80 -0.77 -0.89 -0.90 -0.92 

penetr -0.59 -0.92 1.00 0.83 0.78 0.89 0.89 0.92 

proso -0.55 -0.83 0.88 1.00 0.85 0.84 0.88 0.84 

brsense -0.54 -0.78 0.80 0.91 1.00 0.74 0.82 0.76 

tone -0.73 -0.91 0.90 0.88 0.82 1.00 0.91 0.95 

intell -0.62 -0.93 0.95 0.90 0.85 0.93 1.00 0.93 

overall -0.74 -0.95 0.90 0.86 0.82 0.95 0.95 1.00 

Note: All correlations are significant with p<0.01. 
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Table X. Correlations r between selected prosodic features on dataset 1 

 En 

Norm 

WPW 

En 

Norm 

W 

Dur 

Norm 

WPW 

Mean 

Jitter 

Stand 

Dev 

Jitter 

# 

−Voiced 

Dur 

−Voiced 

RelDur 

+Voiced/ 

Sig 

WA 

Pause-before 0.82** 0.13 0.94** 0.08 -0.03 0.01 0.24* -0.22* -0.45** 

EnNormWPW   0.08 0.94** 0.01 -0.14 0.01 0.39** -0.43** -0.58** 

EnNormW   0.06 -0.09 -0.02 0.03 -0.04 0.09 -0.01 

DurNormWPW    0.07 -0.07 -0.01  0.35** -0.36** -0.53** 

MeanJitter     0.91** 0.33** -0.11  0.22* 0.06 

StandDevJitter      0.15 -0.28** 0.40** 0.21* 

#−Voiced       0.61 -0.45** 0.04 

Dur−Voiced        -0.95** -0.26** 

RelDur+Voiced/Sig         0.34** 

Note: *: significant with p<0.05; **: significant with p<0.01. 

 


