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Abstract
Objective assessment of voice and speech properties via
telephone is desirable for rehabilitation purposes. 82 pa-
tients after partial laryngectomy read a standardized text
on the phone. Five experienced raters assessed speech ef-
fort, match of breath and sense units, vocal tone, intel-
ligibility, and overall voice quality perceptually based on
these recordings. Objective evaluation was performed by
the word accuracy and word correctness of a speech recog-
nition system, and a set of prosodic features. The speech
recognition system usedµ-law features, i. e. modified Mel-
Frequency Cepstrum Coefficients (MFCCs). The prosodic
features were computed based on word hypotheses graphs
produced by the speech recognizer. The human-machine
correlation between these features and the perceptual eval-
uation show slightly better results for the system based on
µ-law features than for the baseline MFCC system.

1 Introduction
Perceptual voice and speech evaluation for clinical and sci-
entific purposes is biased and time-consuming. Automat-
ically computed, objective measures help to reduce costs,
and the problem of inter- and intra-rater variability is elim-
inated. In this way, it can be used as objective assessment
method in voice and speech rehabilitation therapy. Avail-
able software usually evaluates isolated voice properties
but not speech aspects [1]. However, the necessity for the
analysis of more complex speech elements than vowels,
especially for criteria like speech intelligibility or prosodic
aspects, has been pointed out in the literature [2–4].

Prosodic analysis is widely used in automatic speech
analysis on normal voices [5–8]. It can be used to assess
voice and speech disorders as well [9, 10]. Prosodic mea-
sures were also applied to telephone speech of partially la-
ryngectomized persons [11]. The telephone is a crucial
part of social life. Voice and speech patients are often el-
derly persons who need a means of communication that
does not require them to leave their home. Due to the band-
limitation of the telephone channel, however, the voice is
deteriorated even more, and no support for communication
by facial or hand gestures is available. Hence, voice eval-
uation over a telephone reflects a situation of communica-
tion which is important for the patient. Objective rating of
telephone speech as a part of clinical voice rehabilitation
would be a step towards a global evaluation of deteriorated
voice and speech. This would also be very comfortable for
the affected persons, since they do not have to travel to the
clinics just for an evaluation of their vocal abilities.

In this study, we evaluated voice and speech of par-
tially laryngectomized persons via the telephone. We mod-
ified the prosodic analysis introduced for telephone speech
in [12]: another type of features was computed in the un-
derlying speech recognition system that has been proven
successful for speech recognition in low signal quality [13].
This paper is organized as follows: Section 2 introduces
the speech samples used for the experiments. The speech
recognition system and the features computed in the speech
recognizer will be described in Sect. 3. The prosody mod-
ule and the prosodic features will follow in Sect. 4. The
results will be discussed in Sect. 5.

2 Test Data and Subjective Evaluation
82 persons (68 men, 14 women) were recorded after par-
tial laryngectomy due to laryngeal cancer. Their average
age was 62.3 with a standard deviation of 8.8 years; the
youngest speaker was 41, the oldest one was 86 years old.
Informed consent had been obtained prior to the examina-
tion. The study respected the principles of the World Med-
ical Association (WMA) Declaration of Helsinki on ethi-
cal principles for medical research involving human sub-
jects, and it has been approved by the ethics committee of
our university. All persons read the German version of the
tale ‘The North Wind and the Sun’ [14], which is widely
used in medical speech evaluation in German-speaking and
other countries. It consists of 71 distinct words and 108
words in total (172 syllables). The patients were recorded
via a landline telephone, i. e. the frequency band was re-
duced to the interval between 300 and 3400 Hz. Other
degradations, e. g. due to ambient noise, were avoided.

The automation of clinical evaluation methods requires
a human evaluation reference. For this reason, four female
speech therapists and one male ear-nose-throat physician
listened to the samples in an evaluation session. An ex-
cerpt of an in-house evaluation sheet (Table 1) with clin-
ically relevant voice and speech criteria was used for this
purpose. The abbreviations for the voice criteria ‘speech
effort’ (effort), ‘vocal tone’(tone), and ‘overall voice qual-
ity score’(overall)as well as for the speech criteria ‘match
of breath and sense units’(brsense)and ‘overall intelli-
gibility’ (intell) will be used throughout this paper. The
former four criteria were rated on a 5-point Likert scale,
i. e. one out of 5 named alternatives had to be chosen. For
automatic analysis and the computation of an average per-
ceptual value among all raters, the scores had to be con-
verted to integer numbers. These were not printed on the
evaluation sheet. The overall voice quality score was not
Likert-based: A gray bar with a width of 10 cm was printed



(1) (2) (3) (4) (5)
speech effort(effort)

very high high moderate low none
match of breath and sense units(brsense)

very good good moderate low none
vocal tone(tone)

very
pleasant

pleasant moderate un-
pleasant

very un-
pleasant

overall intelligibility (intell)
very high high moderate low none
overall quality score (overall)

very good very bad

Table 1: Schematic diagram of the evaluation sheet; the
Likert scales for the rating criteria were transformed to in-
teger numbers (first line, not printed on the original sheet).
The overall quality score was marked graphically in a box
of width 10 cm and measured by hand. The abbreviations
of the criteria (in italics) were also not printed on the sheet.

on the sheet. The raters were asked to mark their impres-
sion of the overall voice quality by a vertical line on this
visual analog scale (VAS) without regarding their results
for the criteria before. The distance of the drawn line from
the left boundary was measured by hand with a precision
of 0.1 cm and used as the value of the quality score, so pos-
sible values for this criterion were between 0.0 and 10.0.

3 The Speech Recognition Systems
3.1 Recognizers
The speech recognition system used for this study is based
on semi-continuous Hidden Markov Models which define
a statistical model for each different phoneme to be rec-
ognized. The basic acoustic features for the recognition
are Mel-Frequency Cepstrum Coefficients (MFCCs) [15].
For each 16 ms frame, a 24-dimensional feature vector is
computed. It contains short-time energy, 11 MFCCs, and
the first-order derivatives of these 12 static features. The
phoneme models are context-dependent. They take into ac-
count coarticulation effects and train different models for
one core phone in different phone contexts. We use spe-
cial polyphone models [16] where the context can be cho-
sen arbitrarily large. The basic training set for the acoustic
phone models for this study were downsampled broadband
data recorded in the VERBMOBIL project [13, 17]. The
578 speakers (274 women, 304 men) were normal speakers
from all over Germany. In this way a normal voice was de-
fined as the reference for automatic evaluation. The aver-
age age of these persons was 27 years. About 80% of them
were between 20 and 29 years old, less than 10% were
over 40. This is significantly younger than the test speak-
ers. However, an equivalent amount of elderly speech for
training was not available. In order to be able to recognize
telephone speech, we resampled the original 16 kHz data
with 8 kHz and applied a band-pass filter (300 to 3400 Hz).
This simulates telephone speech quality. The recognition
vocabulary of the recognizer was changed to the 71 words
of the standard text ‘The North Wind and the Sun’.

The word accuracy (WA) between the recognized and
the reference word sequence is usually used as the basic
measure for the evaluation of a recognition system. If the

number of words in the reference is denoted bynall and the
number of substituted (nsub), inserted (nins), deleted (ndel),
and correctly recognized words (ncorr) are also known, then
the word accuracy in percent is computed as

WA = 100·

(

1−
nsub+ndel+nins

nall

)

. (1)

A related measure, the word correctness (WR), omits
nins. Although both measures are usually given in percent,
a highnins can cause the WA to become negative.

In order to reduce the computational complexity of rec-
ognition, a language model of possible speech input is usu-
ally added as another source of information. It contains
probabilities about word sequences in natural language and
can eliminate many errors from the pure acoustic recog-
nition phase. However, for automatic assessment of in-
telligibility, this is a disadvantage. The more errors are
corrected by using linguistic knowledge, the worse match
human and automatic evaluation [18]. This makes WA and
WR useless as measures for intelligibility, for instance. For
this reason, our recognizer used only a unigram language
model, i. e. the frequency of occurrence of single words in
the text reference was known to the recognizer.

The baseline recognizer using MFCC features will be
denoted asbase. Another recognizer employed modified
features. These will be introduced in the following section.

3.2 µ-Law Features
One step in the computation of MFCCs is applying a log-
arithm to compress the Mel-filtered spectrum coefficients.
This can be replaced by theµ-law (also ‘mu-law’ or ‘u-
law’) coding that is usually used for data compression in
telecommunications in order to achieve histogram equal-
ization and a better signal-to-noise ratio:

f(x) = signx ·
log(1+µ|x|/xmax)

log(1+µ)
(2)

When logarithmic compression is used, low values below 1
are set to a minimum threshold. Theµ-law coding atten-
uates this problem. It ‘compands’ the input, i. e. it raises
low values and compresses high values; the compression
is even stronger than by a logarithmic function. A simi-
lar idea has also been used within the RASTA methodol-
ogy [19, 20]. In our recognizer,xmax is set to 1 because an
energy normalization precedes the companding step.

For the features, the factorµ= 105 was chosen accord-
ing to findings in [13, p. 89]. The respective recognizer
will be denoted asmu5. Like thebaserecognizer, it was
trained with downsampled close-talking speech. It was
also polyphone-based and used a unigram language model.

4 Prosodic Features
In order to find automatically computable counterparts for
the perceptual rating criteria, also a ‘prosody module’ was
used to compute features based upon frequency, duration,
and speech energy (intensity) measures. This is common
in automatic speech analysis on normal voices [8, 21, 22].
The prosody module usually processes the speech signal
itself and the output of the word recognition module (base
andmu5). In this study, however, the boundaries between
words were obtained by forced alignment with the orig-
inal text as reference since the number of reading errors



features context
WPW W

Pause: before, Fill-before, after, Fill-after •
En: RegCoeff, MseReg, Abs, Norm, Mean • •
En: Max, MaxPos •
Dur: Abs, Norm • •
F0: RegCoeff, MseReg • •
F0: Mean, Max, MaxPos, Min, MinPos, •

Off, OffPos, On, OnPos •

Table 2: Local prosodic features; the context size denotes
the interval of words on which the features are computed
(W: one word,WPW: word-pause-word interval).

was negligible. ‘Local’ prosodic features are computed for
each word position. Originally, there were 95 of them. Af-
ter several studies on voice and speech assessment, how-
ever, a relevant core set of 33 features has been defined for
further processing [23]. The components of their abbrevi-
ated names are given in parentheses:
• Length of pauses (Pause): length of silent pause before

(–before) and after (–after), and filled pause before (Fill-
before) and after (Fill-after) the respective word

• Energy features (En): regression coefficient (RegCo-
eff) and the mean square error (MseReg) of the en-
ergy curve with respect to the regression curve; mean
(Mean) and maximum energy (Max) with its position
on the time axis (MaxPos); absolute (Abs) and normal-
ized (Norm) energy values

• Duration features (Dur): absolute (Abs) and normal-
ized (Norm) duration

• F0 features (F0): regression coefficient (RegCoeff) and
mean square error (MseReg) of theF0 curve with re-
spect to its regression curve; mean (Mean), maximum
(Max), minimum (Min), voice onset (On), and offset
(Off) values as well as the position ofMax (MaxPos),
Min (MinPos), On (OnPos), and Off (OffPos) on the
time axis; allF0 values are normalized.
The last part of the feature name denotes the context

size, i. e. the interval of words on which the features are
computed (see Table 2). They can be computed on the cur-
rent word (W) or in the interval that contains the second
and first word before the current word and the pause be-
tween them (WPW). A full description of the features used
is beyond the scope of this paper; for details see [6, 24].

Besides the 33 local features per word, 15 ‘global’ fea-
tures were computed for intervals of 15 words length each.
They were derived from jitter, shimmer, and the number of
detected voiced and unvoiced sections in the speech sig-
nal [6]. They are summarized in Table 3.

Since all patients read the same text, the range of pro-
sodic feature values among them was supposed to indicate
the degree of voice or speech pathology. The human listen-
ers gave ratings for the entire text. In order to receive also
one single value for each feature that could be compared
to the human ratings, the average of each prosodic feature
over the entire recording served as final feature value.

5 Results and Discussion
Table 4 shows the average human evaluation values for the
voice and speech criteria and the absolute WA and WR
values for both recognizersbaseandmu5. Formu5, these

feature description
StandDevF0 global standard deviation of

F0
MeanJitter mean jitter in all voiced sec-

tions
StandDevJitter standard deviation of jitter in

all voiced sections
MeanShimmer mean shimmer in all voiced

sections
StandDevShimmer standard deviation of shimmer

in all voiced sections
#+Voiced number of voiced sections
#–Voiced number of unvoiced sections
Dur+Voiced duration of voiced sections (in

frames)
Dur–Voiced duration of unvoiced sections

(in frames)
DurMax+Voiced maximum duration of voiced

section
DurMax–Voiced maximum duration of un-

voiced section
RelNum+/–Voiced ratio of number of voiced and

unvoiced sections
RelDur+/–Voiced ratio of duration of voiced and

unvoiced sections
RelDur+Voiced/Sig ratio of duration of voiced sec-

tions and duration of signal
RelDur–Voiced/Sig ratio of duration of unvoiced

sections and duration of signal

Table 3: The 15 global prosodic features

values are slightly worse, except for the minimal WR. For
the purpose of this study, however, not the recognition rates
are crucial but their correlation to the perceptual results.

The inter-rater agreement, measured for a rater as the
correlation of this person to the average of the other four
raters, wasr = 0.86 foreffort, r = 0.72 forbrsense, r = 0.85
for tone, r = 0.84 forintell, andr = 0.89 foroverall. An au-
tomatically obtained feature or combination of features can
be regarded as reliable as a human rater when its correla-
tion to the human average rating reaches this value. Espe-
cially brsenseis obviously not easy to judge for the human
raters. This has to be kept in mind when looking at the
human-machine correlations.

The results in Table 5 show the human-machine cor-
relation between perceptual and automatic evaluation for
WA, WR, and the single local and global prosodic features.

measure unit mean st.dev. min max
effort points 2.66 1.21 1.00 4.80
brsense points 3.28 0.86 1.40 4.80
tone points 4.30 0.61 2.20 5.00
intell points 3.25 1.10 1.20 5.00
overall VAS 6.39 2.30 1.90 9.54
WA (base) % 47.0 19.6 –2.7 79.6
WR (base) % 53.9 17.0 8.6 83.3
WA (mu5) % 46.7 19.2 –4.5 79.1
WR (mu5) % 53.1 16.6 12.1 81.8

Table 4: Subjective and objective evaluation results



criterion effort brsense tone intell overall
recognizer base mu5 base mu5 base mu5 base mu5 base mu5
WA 0.62 0.63 –0.66 –0.67 –0.58 –0.58 –0.69 –0.69 –0.63 –0.62
WR 0.65 0.65 –0.67 –0.66 –0.65 –0.66 –0.75 –0.75 –0.67 –0.67
Pause–beforeW –0.56 –0.57 0.63 0.64 0.46 0.47 0.57 0.59 0.52 0.54
DurNormWPW –0.60 –0.61 0.67 0.66 0.52 0.53 0.64 0.65 0.57 0.59
DurAbsWPW –0.49 –0.48 0.53 0.53 0.37 0.36 0.46 0.45 0.43 0.42
EnNormWPW –0.49 –0.51 0.57 0.58 0.40 0.42 0.50 0.53 0.44 0.46
EnMaxW 0.34 0.34 –0.21 –0.21 –0.37 –0.37 –0.42 –0.41 –0.40 –0.40
EnMeanWPW 0.33 0.33 –0.21 –0.20 –0.36 –0.36 –0.41 –0.40 –0.39 –0.39
EnMeanW 0.33 0.33 –0.20 –0.21 –0.35 –0.35 –0.40 –0.40 –0.39 –0.39
MeanShimmer 0.53 0.57 –0.46 –0.47 –0.47 –0.51 –0.60 –0.61 –0.51 –0.53
StandDevShimmer 0.51 0.53 –0.41 –0.41 –0.48 –0.49 –0.61 –0.61 –0.54 –0.55
#+Voiced 0.40 0.43 –0.33 –0.35 –0.37 –0.39 –0.50 –0.52 –0.41 –0.44
#–Voiced –0.55 –0.52 0.46 0.40 0.59 0.56 0.58 0.55 0.63 0.59
Dur+Voiced 0.41 0.43 –0.28 –0.30 –0.43 –0.45 –0.51 –0.53 –0.48 –0.50
Dur–Voiced –0.60 –0.59 0.49 0.47 0.55 0.55 0.66 0.65 0.61 0.60
DurMax+Voiced 0.42 0.44 –0.29 –0.31 –0.45 –0.46 –0.51 –0.53 –0.50 –0.51
DurMax–Voiced –0.59 –0.59 0.48 0.47 0.54 0.54 0.65 0.65 0.60 0.60
RelNum+/–Voiced 0.30 0.30 –0.26 –0.26 –0.27 –0.26 –0.40 –0.39 –0.32 –0.31
RelDur+Voiced/Sig 0.58 0.57 –0.47 –0.45 –0.57 –0.56 –0.66 –0.66 –0.62 –0.61
RelDur–Voiced/Sig –0.58 –0.57 0.47 0.45 0.57 0.56 0.66 0.66 0.62 0.61

Table 5: Human-machine correlation between automatically computed features (WA and WR, local and global prosodic
features) and the average perceptual rating; only featureswith |r| ≥0.4 for one of the rating criteria are depicted. Cases
where theµ-law features are better than MFCCs are indicated in bold face.

Only features reaching|r| ≥0.4 for at least one rating cri-
terion are mentioned in the table. A full discussion of all
results is beyond the scope of this paper, so we will dis-
cuss only selected results that are related to former studies
or show good results especially in this particular task.

While WA and WR are well-known good indicators for
all of the perceptual criteria, the usedµ-law features could
only marginally improve the human-machine correlation
when only the speech recognition results were considered.
After all, they show consistently good results on the same
level as MFCCs without any outliers.

For the prosodic features, it is apparent that the per-
formance is better on duration-based measures when the
underlying speech recognizer worked withµ-law features.
Certain noise in the speech signal or in pauses between
words might affect the speech recognizer but not a human
listener. The companding function may attenuate this ef-
fect for the automatic analysis which agrees better with the
perceptual results then. The improvements are small but
consistent among the rating criteria, and they can be no-
ticed both in the local and in the global features. Also
for the normalized energy in a word-pause-word interval
(EnNormWPW), it is an advantage to use theµ-law fea-
tures in the recognizer. Again, the reason may be the dif-
ferent weighting of noise or signal parts. Other prosodic
energy-based features do not benefit from this, but in gen-
eral the correlation values are on the same level as for the
MFCC-based system. WhenMeanShimmer is calculated
using word hypotheses graphs based onµ-law features for
speech recognition,effort (base: r = 0.53,mu5: r = 0.57)
andtone(base: r = –0.47,mu5: r = –0.51) show the largest
rise in correlation. However, this is also not significant.

The results might have been negatively influenced by
the signal quality of the telephone transmission and the fact
that the training data of the recognizers were just down-
sampled and not real telephone speech. The mismatch in

the age of training and test speakers [25] is an aspect that
must also be considered. However, this applies mainly to
WA and WR. The prosodic analysis was less affected since
it was not based on the recognition result but on forced
alignment with the reference text. We have shown on sim-
ilar data of partially laryngectomized persons that for the
average patient a transcription of the recorded sample is
not necessary because the reading errors have no signifi-
cant negative effect on the prosodic analysis, at least not
for the assessment of intelligibility [26].

Single features do not reach as high correlations to hu-
mans as humans among themselves, but the results clear-
ly identified the most promising measures for voice and
speech assessment. In the next step, all prosodic features,
WA, and WR will be combined as input for Support Vec-
tor Regression (SVR), and the best feature set based on
MFCC- andµ-law-based recognizers will be determined.
For the intelligibility of close-talking and telephone re-
cordings, this was proven successful for MFCC-based rec-
ognition [12]. The human-machine correlation for tele-
phone recordings rose from|r| = 0.75 for WR alone (see
also Table 5) tor = 0.86 for a set of four prosodic fea-
tures and WR. This set comprised a modified global stan-
dard deviation of theF0, the standard deviation of jitter in
all voiced sections (StandDevJitter), the ratio of the dura-
tion of all voiced sections and the duration of the signal
(RelDur+Voiced/Sig), and the silent pause before a word
(Pause–beforeW). The latter two also appeared among the
best single features in this study. We are optimistic that
significant improvement can also be reached forµ-law fea-
tures and the other rating criteria that have been examined.
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