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For augmented fluoroscopy during cardiac ablation, a preoperatively acquired 3D model of a patient’s left atrium (LA) can be
registered to X-ray images recorded during a contrast agent (CA) injection. An automatic registration method that works also
for small amounts of CA is desired. We propose two similarity measures: The first focuses on edges of the patient anatomy. The
second computes a contrast agent distribution estimate (CADE) inside the 3D model and rates its consistency with the CA as seen
in biplane fluoroscopic images. Moreover, temporal filtering on the obtained registration results of a sequence is applied using
a Markov chain framework. Evaluation was performed on 11 well-contrasted clinical angiographic sequences and 10 additional
sequences with less CA. For well-contrasted sequences, the error for all 73 frames was 7.9 ± 6.3mm and it dropped to 4.6 ± 4.0mm
when registering to an automatically selected, well enhanced frame in each sequence. Temporal filtering reduced the error for all
frames from 7.9 ± 6.3mm to 5.7 ± 4.6mm. The error was typically higher if less CA was used. A combination of both similarity
measures outperforms a previously proposed similarity measure. The mean accuracy for well contrasted sequences is in the range
of other proposed manual registration methods.

1. Introduction

Atrial fibrillation is the most common heart arrhythmia
affecting around 2.2 million people in the USA. A possible
treatment option is catheter ablation, which is a minimally
invasive procedure. Depending on the ablation device used, it
is carried out using either electroanatomic mapping systems,
an X-ray guided approach, or a combination of both. X-ray
guidance is, for example, required if a cryoballoon is used for
ablation as current cryoballoons cannot be directly located by
electroanatomic mapping systems. In this paper, we focus on
X-ray guided approaches. One weakness of X-ray imaging is
poor soft-tissue contrast. As a consequence, the left atrium
(LA) can only be seen if contrast agent (CA) is injected.
However, to reduce the risk of contrast-induced nephropathy,
physicians try to keep the use of CA to a minimum often

highlighting only a part of the left atrium. To provide
orientation to the physician when no CA is present, a model
of the patient’s LA, for example, generated by a preoperative
CT or MRI scan of the patient can be overlaid [1]. The use
of such an overlay was found to reduce procedure time and
fluoroscopy time significantly [2]. Since a preprocedural 3D
scan is often acquired to obtain prior knowledge about a
patient’s anatomy of the left atrium and to rule out unusual
pulmonary vein configurations, it is readily available for
augmented fluoroscopy applications. In general, however, the
coordinate systems of the preprocedurally acquired 3D heart
model and the patient during the intervention differ, and a
registration step is usually needed. Today, this registration
is usually carried out manually. If the 3D heart model was
acquired using CT, several authors proposed to use further
landmarks in addition to the LA for registration having
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Figure 1: Three different contrast agent injections. The left column shows an uncontrasted frame, the middle column shows a contrasted
frame of the sequence, and the rightmost column shows a subtraction of both images.Themanually established ground-truth position of the
left atrium is overlaid with red.The LA in image (c) appears only faintly contrasted and the CA just flows into the ventricle. On the other hand,
image (f) shows disturbing motion artifacts caused by leads and wires associated with an implanted device. In image (i), the contrast agent
is injected into a pulmonary vein and catheter motion artifacts are visible. While the spine in the center of this image vanishes, soft-tissue
motion artifacts related to the lungs are visible at the left and right border, respectively.

obtained associated 3D models by segmentation. Examples
are the carina [3], the coronary sinus (CS) [4, 5], the spine
[6], or a combination of spine and heart anatomy [7]. For 3D
volumes acquired by MRI, for example, MRI angiographies
(MRAs), however, a segmentation of the CS or the carina
can be very challenging or has not yet been adopted for
routine clinical procedures. Fortunately, registration based on
contrast injection has been shown to be a fast and accurate
alternative [8]. A good moment to obtain contrast-enhanced
X-ray images is after the transseptal puncture, in particular if

physicians use contrast injections to verify puncture success
[9]. Example images of such injections are shown in Figure 1
to illustrate the images available. Since manual registration
either needs the attention of the treating physician or requires
a trained assistant, more automatic registration methods are
desirable.

(1) Related Work. There is a significant body of research on
registration of 3D objects to 2D fluoroscopic images, for
example, for bones [10–12], implants, joints [13], or vessels
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[14]. An overview is given by Markelj et al. [15]. Compared
to implants, a registration of the LA is more complicated for
at least two reasons: First, for implants and bones, all parts
of the object are visible. During a contrast injection, however,
only a part of the left atrium may appear under X-ray.

Second, depending on the amount of CA injected, the
overall LA visibility may be poor. For example, in our case
EP physicians use contrast at the beginning of the procedure
to verify the success of the transseptal puncture. It may also
be used later to enhance the anatomy, for example, to make
sure that a catheter, for example, a circumferential mapping
catheter or a cryoballoon catheter, was placed correctly. This
is different to vessel angiography. In this case, higher amounts
of contrast are injected to derive diagnostic information, for
example, about a stenosis. For ablation procedures in the LA,
the CA density and so the visibility of the LA under X-ray
may be poorer as the small amount of contrast is injected into
the high blood volume of the LA. As a consequence, further
effort is needed to develop robust registration methods that
can also be applied if CA is used sparingly.

Currently, very few publications deal with registration
based on contrast agent: In a first approach towards automatic
LA registration, Thivierge-Gaulin et al. [16] tried to find a
3D pose of a model such that its projected shadow matches
the contrasted area in a selected image, enhanced by digital
subtraction angiography (DSA), best.However, if only a small
amount of contrast agent is injected into a somewhat large
chamber such as the left atrium, this approach will not lead
to a distinct optimum, because the anatomy may not be fully
opacified.

Based on CT images, a second approach by Zhao et al.
[17] relied on digitally rendered radiographies (DRRs) of the
segmented left atrium. The rendered image was compared
to a DSA image using normalized gradient correlation. This
approach uses a weighting scheme that puts the focus on the
roof of the LA. How well this method performs for injections
into other areas of the LA is still unclear.

Besides contrast-based registration, 3D data and 2D data
can also be aligned using devices. A feature-based method
by Sra et al. [4] uses a segmentation of the coronary sinus
(CS) in a CT volume to register a 3D LA model to a single
2D fluoroscopic image. A further approach by Brost et al.
[5] uses a segmentation of the CS in an MRI volume and a
3D reconstruction of the CS catheter from two fluoroscopic
images. Unfortunately, howwell the CS can be extracted from
a 3D MRI data set depends very much on the MRI scan
protocol. Furthermore, due to the strong motion of the CS,
it is difficult to relate the position of the CS catheter to the
position of the LA, especially for patients having no sinus
rhythm but heart arrhythmia [18, 19].

(2) Contributions and Outline of This Work. At the beginning
of Section 2, we discuss the use of the normalized cross-
correlation for registration of a 3D object to 2D X-ray
projections based on extracted contrast agent. Afterwards, we
propose two new registration techniques for contrast agent-
based registration. They require a segmented left atrium as
input and can, in contrast to [17], accommodate both CT
and MRI data. The first method is described in Section 2.2.

Here, we take explicitly apparent edges extracted from a
3D model and compare them to LA edges present in the
fluoroscopic images as proposed by [10, 11] for automatic
registration of bones and by [20] for manual registration of
the LA, respectively. Although our method is conceptually
similar to a DRR generation followed by gradient correlation,
this calculation can be carried out on a GPU much more
quickly than a DRR.

The second contribution described in Section 2.3 is the
introduction of a novel similarity measure for biplane X-ray
that is tailored to cases in which only parts of an object are
visible. Based on a 3D model of the LA, our second method
estimates the contrast agent distribution inside the 3D object
from a simultaneously acquired pair of fluoroscopic images
taken under two different view angles. Then we evaluate how
consistent the contrast agent distribution estimate (CADE)
is with the acquired fluoroscopic images. As the CADE
depends on the transformation used for registration, the
transformation leading to themost plausible CADE is used as
final position estimate. A brief description of both methods
was previously published by us [21].

In Section 2.4 we propose to treat the registration results
for each frame of the sequence no longer as independent.
Based on our previous publication [22], we use a Markov
chain approach to exploit the temporal dependency between
successive frames instead.

In Section 3, we evaluate a similarity measure based on
the projected shadow which is close to the approach by
Thivierge-Gaulin et al. [16] and the two new methods as
well as combinations of them. The results are discussed in
Section 4.

2. Registration Method

For registration, two X-ray sequences showing a CA injection
are used. These sequences are acquired simultaneously from
two different angles using a biplane system. For each plane,
the projection matrix that describes the X-ray camera setup
is known. We denote the associated projection operator by
𝑃A and 𝑃B for the A-plane and the B-plane of the system,
respectively. We also assume that a 3D model of the patient’s
LA is available, either as a trianglemesh or as a binary volume,
as they can be converted into each other.

2.1. Contrast Agent Extraction. The contrasted area is found
based on a difference image (DSA) IDSA = I

𝑢
− I
𝑐
, I ∈

R𝑚×𝑛 involving a frame I
𝑐
that contains contrast agent and

an uncontrasted frame I
𝑢
. To distinguish between contrasted

and uncontrasted frames, either manual annotation or a
learning based method can be used, for example, the method
described in [23]. Depending on the chosen contrasted frame
I
𝑐
, IDSA may contain artifacts, for example, due to motion

of the diaphragm or from catheters, if they are at different
positions in I

𝑢
and I
𝑐
. Such motion artifacts depend, unlike

the information about contrast agent, to a large degree on the
choice of I

𝑢
. For example, if the catheters in I

𝑢
are at the same

position as in I
𝑐
, their intensities cancel out. Otherwise, IDSA

has high positive values at the position of the catheter in I
𝑐
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and high negative values at the position of the catheter in I
𝑢
.

To keep motion artifacts to a minimum, we propose a best
reference selection, which chooses an appropriate reference
frame Î

𝑢
thatmatches the chosen contrasted frame I

𝑐
asmuch

as possible. Out of all uncontrasted frames, that frame Î
𝑢
is

selected which minimizes the 𝐿
1
-norm of the resulting DSA

image:

Î
𝑢
= arg min

I
𝑢

𝑛

∑

𝑥=0

𝑚

∑

𝑦=0


I
𝑢
(𝑥, 𝑦) − I

𝑐
(𝑥, 𝑦)


. (1)

By following (1), we get frames for which the catheters and
the diaphragm cancel out asmuch as possible. See Figure 3(b)
for an example. In IDSA, only pixels with positive values
contain contrast agent. To extract them, we set the intensity
of pixels with negative value to 0. Afterwards, we compute
a filtered image I

𝑓
by applying a median filter with a large

kernel size. Smaller structures, for example, caused bymotion
artifacts that remained despite the optimized choice of I

𝑢
,

do not pass this filter, and the noise in the contrasted area
is reduced as well. Finally, a binary image Ithr of the filtered
image I

𝑓
is computed using a threshold at 𝜇

𝑓
+ 𝜎
𝑓
, where

𝜇
𝑓
and 𝜎

𝑓
denote the mean and standard deviation of I

𝑓
,

respectively. Thus, a contrasted pixel p ∈ R2 is indicated by
Ithr(p) = 1.

A previous approach [16] tried to find a transformation
𝑇 of the 3D model such that the projected shadows SA

𝑇
, SB
𝑇

of the model into the A-plane and the B-plane of a biplane
C-arm system fit best to the contrasted region. Using the
normalized cross-correlation (NCC), denoted as 𝜌

𝑛
, of two

images I
1
, I
2
with corresponding mean values 𝜇

1
, 𝜇
2
and

standard deviations 𝜎
1
, 𝜎
2

𝜌
𝑛
(I
1
, I
2
) =

𝑛

∑

𝑥=0

𝑚

∑

𝑦=0

(I
1
(𝑥, 𝑦) − 𝜇

1
) ⋅ (I
2
(𝑥, 𝑦) − 𝜇

2
)

𝜎
1
⋅ 𝜎
2

, (2)

the similarity of the projected shadow and IDSA can be
measured. Instead of IDSA, one can also use the binary version
of it, that is, Ithr. Then a registration transformation can be
estimated by maximizing either one of the two functions

𝜌
DSA
shad (I

A
DSA, I

B
DSA, 𝑇) = 𝜌𝑛 (I

A
DSA, S

A
𝑇
) ⋅ 𝜌
𝑛
(IBDSA, S

B
𝑇
) ,

𝜌
thr
shad (I

A
thr, I

B
thr, 𝑇) = 𝜌𝑛 (I

A
thr, S

A
𝑇
) ⋅ 𝜌
𝑛
(IBthr, S

B
𝑇
) .

(3)

2.2. Edge Feature. Unfortunately, a registration approach
only based on contrasted area has multiple solutions if the
amount of CA is so little that it does not completely fill the LA;
see Figure 2. Fortunately, CA is often injected against the roof
or into the pulmonary veins.This results in perceivable edges
of the contrasted area which can then be used as registration
features. Edge-based registration can be carried out using
only the silhouette boundary of the projected object [13] (see
Figure 2) or all apparent edges [10, 11] (see Figure 3(f)).

We decided to consider all apparent edges to improve
robustness against injections of small amounts of CA, as the
silhouette-based approach requires that the LA is contrasted
in its entirety. For a partially contrasted left atrium, internal

Figure 2: A correct (red) and wrong (cyan) registration result. In
both cases, the contrasted area is fully inside the projection shadow
represented by the colored outlines. Both registration results lead to
a similar NCC value when using an area-based feature for automatic
registration. Note that motion artifacts could be kept to a minimum
thanks to the best reference frame selection. Only some residual
artifacts remained in the vicinity of the moving coronary sinus (CS)
catheter and the diaphragm; see white arrows.

contours may, however, also appear in the fluoroscopic
images. This was already found to be beneficial for manual
LA registration [20]. Instead of considering edges implicitly
by comparing the DSA image to a DRR using gradient
correlation [17], we computed them explicitly. To extract
edges in the fluoroscopic images, we used the filtered image
I
𝑓
. After applying a median filter, edge-like variations inside

the contrasted areas may remain. They, however, correspond
rarely to anatomical structures and would trigger a response,
if an edge filter was applied. To obtain an edge response only
at the boundaries of the contrasted area, the image needs to
be homogenized before applying an edge filter. Using a simple
threshold method would result in a loss of the intensity drop-
off at the boundary which provides important information
about the edge intensity. Therefore, we weigh all image pixels
by a sigmoid function

Isig (𝑥, 𝑦) =
1

1 + 𝑒
−(I
𝑓
(𝑥,𝑦)+𝑡)⋅𝑠

. (4)

The value of 𝑡 is set to 𝜇
𝑓
− 𝜎
𝑓
, and the parameter 𝑠 depends

on the pixel intensity range of the input image. An example
of Isig is given in Figure 3(d). Finally, Isig is filtered using a
derivative of Gaussian (DOG) filter to obtain the edge image
IDOG. The kernel size of the DOG filter is set to a large value
to get a smooth similarity measure; see Figure 3(e).

The projection of the 3D triangle mesh edges into 2D
is done differently than in [10, 20]. We rendered the whole
surface mesh and, depending on the viewing direction d
and the surface normal n at a point, we set the opacity 𝑜 of
projected triangles to 𝑜 = 1 − |(d ∘ n)|; see Figure 3(f) for an
example. By doing so, areas that are parallel to the imaging
plane are rendered transparent while areas with a normal
vector orthogonal to the viewing direction are rendered
opaque. The similarity between edges extracted from the
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Figure 3: Using the original image (a), a DSA image (b) is computed. After median filtering (c), the remaining motion artifacts from the
catheter have vanished. Only the boundary at the diaphragm remained. Afterwards, all pixels are weighted by a sigmoid function (d) to get
a more homogeneous value distribution inside the contrasted area. Edges are extracted using derivatives of Gaussian with a large kernel size
(e). Finally, the similarity to the rendered edges (f) is evaluated.

fluoroscopic images and the edge images EA
𝑇
,EB
𝑇
rendered

from the 3D model transformed by 𝑇 is measured by

𝜌edge (I
A
DOG, I

B
DOG, 𝑇) = 𝜌𝑛 (I

A
DOG,E

A
𝑇
) ⋅ 𝜌
𝑛
(IBDOG,E

B
𝑇
) . (5)

2.3. Contrast Agent Distribution Estimation (CADE). Previ-
ous approaches [16, 17] for LA registration searched for a
rigid transformation of the LA such that either its projected
shadow or its DRR fit to the contrasted area in both fluoro-
scopic images. 3D informationwas taken into account insofar
as the resulting projections came from the same 3D position
of themodel. However, such an approach does not necessarily
guarantee that corresponding objects in both fluoroscopic
images are matched to the same 3D structure of the LA.More
precisely, the registration result could be such that, in plane
A, the contrast agent is located in a left pulmonary vein (PV)
whereas, in plane B, the contrasted area corresponds to a
right PV.This is possible as for a given 2D registration in one
plane the 2D registration in the other plane has one degree
of freedom, which corresponds to an out-of-plane motion in
the first plane. An illustration of this problem can be found in
Figure 4.

To solve this problem, we compute for a given transfor-
mation𝑇 a CADE inside the LA using binary reconstruction.
Then,𝑇 is optimized such that the contrast agent distribution

estimate is most consistent with the projection images. More
precisely, a voxel k is estimated as contrasted if it satisfies all of
the following conditions: (a) the voxel k transformed by 𝑇 is
projected on a contrasted pixel in plane A, (b) k is projected
on a contrasted pixel in plane B, and (c) k is part of the left
atrium (as contrast agent can only be found inside the LA).
To compute the CADE, we define the indicator function

𝜒 (k) = 1 ⇐⇒ k ∈ R
3 is inside the left atrium. (6)

Given the binary images IAthr and I
B
thr with corresponding pro-

jection operators 𝑃A, 𝑃B and the indicator function 𝜒(k), the
CADE 𝐶3D

𝑇
for a transformed voxel, 𝑇(k), can be computed

as

𝐶
3D
𝑇
(k) = IAthr (𝑃A (𝑇 (k))) ⋅ I

B
thr (𝑃B (𝑇 (k))) ⋅ 𝜒 (k) (7)

for a given rigid transformation 𝑇. This product is the
mathematical equivalent of the three conditions introduced
above.

If 𝑇 is chosen suboptimally, the resulting 3D CADE will
be inconsistent with the CA observed in the 2D images. That
is, a pixel in the 2D image is contrasted but no corresponding
voxel along its projection ray is estimated as contrasted. This
can be due to the following reasons as shown in Figure 5: (a)
the projection ray from a contrasted pixel does not intersect
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Figure 4: Top-down view on a left atrium and associated contrast-enhanced projections showing a correct registration (a) and two
misregistrations (b) and (c). When looking at the contrasted pixels on each detector independently, all LA positions seem to be feasible.
Considering the LA position in (b), the area, which can contain contrast agent according to the combination of both detectors, is partially
outside the LA. For the CADE, however, only contrast agent inside the LA is considered. So the registration in (b) gives rise to contrasted
pixels on the A-plane detector that cannot be explained by the CADE.This will result in a lowCADE value and indicate misregistration.There
exist, however, also misregistrations that can lead to a consistent CADE as shown in (c). This is why a combination of CADE and edge-based
methods yields improved results.

Plane A
Plane B

A

B

C

Figure 5: For the transformation shown, only voxel B is estimated as containing CA as it is inside the LA and contrasted in both planes.
Voxel C is only contrasted in plane A but not in plane B. Voxel A is filled with contrast in both planes, but it is outside of the LA and therefore
considered as uncontrasted. If the LA is moved such that its projections in A and B cover the contrasted area, this voxel will also be considered
as contrasted, hence, increasing the consistency with the CADE.

the left atrium as the LA has not been placed at the proper
position yet; (b) the projection ray hits the LA, but all voxels
intersected by this ray cannot contain CA because their
corresponding pixels in the other plane are uncontrasted.
Additional inconsistencies are introduced by pixels which are
erroneously labeled as contrasted, for example, due tomotion
artifacts. To verify the validity of the CADE, we compute
binary 2D imagesCA

𝑇
,CB
𝑇
by forward projecting all contrasted

voxels in 𝐶3D
𝑇

using 𝑃A, 𝑃B. We assess the consistency of the
CADE for the given transformation 𝑇 by computing the
similarity between the fluoroscopic images and the projected
CADE by

𝜌CADE (I
A
thr, I

B
thr, 𝑇) = 𝜌𝑛 (I

A
thr,C

A
𝑇
) ⋅ 𝜌
𝑛
(IBthr,C

B
𝑇
) . (8)

Alternatively, the number of contrasted voxels inside the
volume could bemaximized.The set of potentially contrasted
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Source

Contrasted PV

Detector

Potentially
contrasted

region

Contrasted pixels
on detector

Figure 6: Top-down view on a left atrium with a contrasted
pulmonary vein. The gray region denotes the area which may
contain contrast agent based on the contrast agent observed in the
2D images. If the number of contrasted voxels in the volume was to
be optimized, the optimization process would find a transformation
such that asmuchof the potentially contrasted region as possiblewas
included within the LA causing a registration bias towards larger LA
regions.

voxels is defined by the intersection of the projection ray
bundles of all contrasted pixels from views A and B, respec-
tively. Maximizing the number of contrasted voxels would
lead to a transformation such that as much as possible of this
set is contained inside the LA. If, for example, a pulmonary
vein was filled with CA, the transformation would be chosen
such that the set of possible contrasted pixels was located
in the main body of the LA which provides the most space
to include most possibly contrasted voxels; see Figure 6. To
avoid this registration bias towards large structures inside the
LA, we decided to optimize the consistency to the 2D images.

2.4. Confidence-Based Temporal Markov Filtering. To exploit
dependencies between successive frames of a sequence, we
model the position of the LA model in 3D as a time-
dependent continuous Markov chain of the first order as
proposed by us previously [22]. The states are transforma-
tions, that is, a translation and a rotation of the model. The
parameter 𝜏

𝑖
denotes the actual transformation of the LA

in the 𝑖th contrasted frame, 𝑇
𝑖
refers to the estimate of the

transformation for the 𝑖th frame, and 𝑃(𝜏
𝑖
= 𝑇
𝑖
) is the

probability that for frame 𝑖 the transformation 𝑇
𝑖
is observed.

For convenience, we define 𝑃(𝑇
𝑖
) = 𝑃(𝜏

𝑖
= 𝑇
𝑖
). The transition

probability from one state into another is independent of the
frame number 𝑖. It is denoted as 𝑃(𝑇

𝑖
→ 𝑇
𝑖+1
). Finally, a

sequence of transformations 𝑇
1
, . . . , 𝑇

𝑛
is to be determined

such that the term

𝑃 (𝑇
1
, . . . , 𝑇

𝑛
) = 𝑃 (𝑇

1
) ⋅

𝑛

∏

𝑡=2

(𝑃 (𝑇
𝑡−1

→ 𝑇
𝑡
) ⋅ 𝑃 (𝑇

𝑡
)) (9)

is maximized.

Transition probabilities and state probabilities control the
filtering differently: Due to the transition probabilities, small
motions of the LA from a frame to its next frame are pre-
ferred. This results in an averaging of the LA transformation
over time. The state probability determines the impact of the
averaging, that is, howmuch the registration result is changed
by the filtering. We will model the state probability based on
a confidence measure such that frames with high-confidence
registration results are less subject to temporal filtering. If
the confidence value is low, that is, the estimated error of
the registration result is higher, we want to rely more on the
results of the previous and next frame. Thus, high temporal
averaging is performed for frames with a low confidence
value.The state probabilities and the transition probability are
determined as follows.

2.4.1. State Probability. The contrast agent visible in frame 𝑖
determines the probability of the LA for being transformed by
𝑇
𝑖
in this frame. If the dependency on other frames is ignored,

the most probable transformation 𝑇
𝑖
is the transformation

obtained by optimizing the similarity measures 𝜌 defined in
(3), (5), and (8) or a combination of them.

The similarity measure 𝜌(IA,𝑖, IB,𝑖, 𝑇
𝑖
) depends on the

contents of images IA,𝑖, IB,𝑖. Zhao et al. suggested using
the value 𝜌(IA,𝑖, IB,𝑖, 𝑇

𝑖
) as a confidence measure: from all

𝑁 registration results the frame 𝑖 where 𝜌(IA,𝑖, IB,𝑖, 𝑇
𝑖
) is

maximum should be selected as registration result for the
complete sequence. We confirmed a correlation of 𝜌 and
the registration error. The value of 𝜌 can therefore be used
as a confidence measure. By linear regression, a function
𝑒(𝜌(IA,𝑖, IB,𝑖, 𝑇

𝑖
)) can be determined to estimate the error

based on the value of 𝜌. With the transformation𝑇
𝑖
of the LA

found during optimization for frame 𝑖, the probability 𝑃(𝑇
𝑖
)

can be modelled as normal distribution
𝑃 (𝑇
𝑖
) =N (𝑇

𝑖
; 𝑇


𝑖
,Σ
𝑖
) . (10)

The confidence range is incorporated by setting the covari-
ance matrix Σ

𝑖
to 1 ⋅ 𝑒(𝜌(IA,𝑖, IB,𝑖, 𝑇

𝑖
)).

2.4.2. Transition Probability. The transition probability
𝑃(𝑇
𝑡−1

→ 𝑇
𝑡
) states how likely a movement of the LA is

from frame 𝑡 − 1 to 𝑡. Over multiple breathing cycles, the LA
moves about a mean position. So the mean transformation
is the identity. The likelihood of a transformation change
depends on the magnitude of the change. The larger the
change in translation and rotation is, the less likely the
transformation transition is. To account for different frame
rates, we consider the translational and rotational velocity
k ∈ R6 which comprises three translational velocities and
three rotational velocities. In a training step, velocity vectors
are computed for annotated data. The covariance matrix Σk
of the velocities gives an estimate for how likely a transition
from one transformation to the next is. We model the
probability of a transition 𝑇

𝑡−1
→ 𝑇
𝑡
as a normal distribution

𝑃 (𝑇
𝑡−1

→ 𝑇
𝑡
) =N ((𝑇

𝑡
− 𝑇
𝑡−1
) ⋅ 𝑟; 0,Σk) . (11)

Besides the frame rate 𝑟, the transition probability depends
also on the current breathing phase. Compared to breathing
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motion, cardiac motion can be neglected as it rather de-
forms the LA. If information on the breathing phase can
be estimated [24], superior motion should be, for example,
more likely during the inhale phase. During exhalation phase,
inferior motion should have a higher probability. To account
for breathing motion, for example, the mean value and the
covariance matrix could be estimated separately for each
stage of the breathing cycle.

2.4.3. Most Probable State Sequence. The most likely state
sequence,

𝑇
∗

1
, . . . , 𝑇

∗

𝑛
= arg max
𝑇
𝑖
,...,𝑇
𝑛

𝑃 (𝑇
𝑖
, . . . , 𝑇

𝑛
) , (12)

can be found using a log-likelihood method: By applying the
logarithm to (9), we get

𝑇
∗

1
, . . . , 𝑇

∗

𝑛

= arg max
𝑇
1
⋅⋅⋅𝑇
𝑛

−
1

2

((𝑇
1
− 𝑇


1
)

𝑇

Σ
−1

1
(𝑇
1
− 𝑇


1
) +

𝑛

∑

𝑖=2

((𝑇
𝑖
− 𝑇


𝑖
)

𝑇

Σ
−1

𝑖
(𝑇
𝑖
− 𝑇


𝑖
) + 𝑟 ⋅ (𝑇

𝑖
− 𝑇𝑥
𝑖−1
)
𝑇

Σ
−1

k (𝑇
𝑖
− 𝑇
𝑖−1
) ⋅ 𝑟)) .

(13)

This convex optimization problem can be solved using the
BFGS method.

3. Experiments and Results

We retrospectively evaluated our method on 21 clinical
biplane X-ray sequences from 10 different patients. All of the
patients provided their informed consent for the analysis of
their clinical data. For all patients, a segmentation of their left
atrium fromapreoperatively acquiredMRI scanwas available
as a trianglemesh.When using the CADEmeasure, thismesh
was converted into a binary volume. The data set comprised
11 sequences showing an initial contrast agent injectionwhere
15mL CA was injected into the LA center through a sheath
to verify the success of the transseptal puncture. Besides the
sheath, only a coronary sinus catheter was present. There
were 10 more sequences showing subsequent injections to
verify catheter placement. In these cases, about 10mL CA
was injected and additional catheters were present. All X-
ray angiography sequences were acquired during normal
breathing using a standard acquisition protocol.This resulted
in a total number of 133 contrasted frames. For our experi-
ments, the first contrasted frame was determined manually.
For 129 frames, reference registrations performed by three
clinical experts were available; for the remaining four frames
registrations performedby two clinical expertswere available.
Reference 3D registrations were established by manually
shifting the mesh in each of two orthogonal views. The
resulting 3D translation was refined this way until a good
match to the associated contrast distributions as seen in the
two 2D X-ray projections had been found. These reference
registrations covered only 3D translation for the following
reasons: First, patients were positioned head first, supine,
during both preoperative and intraoperative imaging. This
patient positioning rules out large degrees of rotation a priori.
Furthermore, given the small amounts of contrast injected in
our cases, the remaining small rotations were very difficult
to detect. This made it practically impossible for our clinical
experts to reliably correct them. This is why we decided to
evaluate our approach without rotation.

As initialization for optimization, the 3D model was
placed at that 3D position which corresponded to the centers
of both 2D images. In some cases, the initialization was
more than 30mm away from the correct solution and beyond
the capture range for gradient-based methods. Therefore
we applied an octree-like coarse-to-fine scheme where we
evaluated several positions at a coarse resolution. At positions
in space that yielded a good similarity value, we performed
subsequent evaluations at an increasingly finer resolution.
The 3D translation t̂ = arg maxt𝜌(t) found by the opti-
mization process of the respective objective function 𝜌 was
compared to the mean translation vector t∗ of the three
manual registration results.The distance ‖̂t− t∗‖

2
was used as

error measure. The significance of the results was measured
using a Wilcoxon signed-rank test [25] and a significance
level of 𝑝 = 0.05.

All sequences contained 12-bit images of size 1024× 1024
pixels; all image processing, including rendering from the 3D
model, was performed on the full image size. The kernel size
for median filter was 30 pixels; the value 𝑠 of (4) was 0.1. The
standard deviation of the DOG filter was 24 pixels.

In the evaluation, we compared the similarity measures
𝜌
thr
shad, 𝜌

DSA
shad , 𝜌CADE, and 𝜌edge and the combined similarity

measures 𝜌thrshad + 𝛼𝜌edge, 𝜌
DSA
shad + 𝛼𝜌edge, and 𝜌CADE + 𝛼𝜌edge.

We investigated differentweightings. Giving both terms equal
weights, that is, setting 𝛼 = 1, turned out to be a good choice.
We did two types of evaluation: an evaluation on all frames
and an evaluation using only a single frame of each sequence,
namely, the one which provides the best similarity measure.

3.1. Evaluation onAll Frames. We computed a registration for
each contrasted frame and compared the result to themanual
registration of the physicians. These results are clinically
relevant if the physician requires a registration for a desired
frame of his choice, for example, depending on the breathing
phase. As potentially every frame could be selected by the
physician, the overall registration accuracy should be high.
The overall accuracy is also of importance if the results are
postprocessed by temporal filtering.
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(a) (b)

(c) (d)

Figure 7: Uncontrasted (a) and contrasted (b) frame of an X-ray angiography. The registration result when using 𝜌DSAshad (c) had an error of
6.7mm. By using 𝜌CADE + 𝜌edge (d), the left border of the LA model fits better to the left edge of the CA and the error reduced to 3.1mm.

Table 1: Translation errors for all frames.

Objective function Initial injection Subsequent injections
Thivierge-Gaulin 11.4 ± 8.8mm 10.4 ± 5.4mm
𝜌
DSA
shad 9.3 ± 6.9mm 9.8 ± 4.8mm
𝜌
thr
shad 9.9 ± 7.9mm 12.1 ± 9.1mm
𝜌edge 12.0 ± 8.9mm 14.6 ± 8.7mm
𝜌CADE 8.7 ± 6.4mm 9.0 ± 5.9mm
𝜌
DSA
shad + 𝜌edge 8.3 ± 6.6mm 9.6 ± 5.4mm
𝜌
thr
shad + 𝜌edge 8.3 ± 6.7mm 10.5 ± 7.6mm
𝜌CADE + 𝜌edge 7.9 ± 6.3mm 8.8 ± 6.7mm
Clinical experts 3.3 ± 2.7mm 3.1 ± 1.7mm

The evaluation results are presented in Table 1.The overall
interuser variability observed in themanual registrations was
3.2 ± 2.3mm. Considering all sequences, 𝜌CADE performed
significantly better than 𝜌

thr
shad, 𝜌

DSA
shad , and the state-of-the-

art method by Thivierge-Gaulin et al. [16]. Although 𝜌edge
gave significantly worse results than all other measures, a
combination with 𝜌edge could improve the results of 𝜌thrshad
and 𝜌DSAshad significantly. For subsequent injections, 𝜌CADE +
𝜌edge performed significantly better than 𝜌

thr
shad, 𝜌

DSA
shad , their

respective combinations with 𝜌edge, and the method by
Thivierge-Gaulin et al. [16].

For 𝜌thrshad + 𝜌edge and 𝜌CADE + 𝜌edge, the error distribution
for each sequence is shown in Figure 8, first for all initial
injections and then for subsequent injections. In Figure 9, the
error distribution is given for each frame number as counted
after the CA injection. An example for a result is shown in
Figure 7.

3.2. Evaluation on a Single Frame. Figure 8 indicates that
many sequences have at least one frame with a registration
error of less than 5mm. In fact, there exists such a frame for
over 75% of all sequences when using 𝜌DSAshad or 𝜌thrshad and for
over 85% of the sequences when using 𝜌CADE, 𝜌

DSA
shad + 𝜌edge,

𝜌
thr
shad + 𝜌edge, or 𝜌CADE + 𝜌edge. Zhao et al. [17] proposed
to automatically find a good frame in each sequence and
consider only these single good frames for evaluation. In
other words, from all frames of a sequence, a single framewas
automatically chosen for registration. From a clinical point of
view, this would, however, only make sense if the physician
accepted an automatically selected frame for registration or if
further motion compensation steps for the other frames were
done, for example, using device tracking [26].

Zhao et al. suggested selecting this single frame as follows:
For each frame 𝑖 ∈ [1, 𝑚] out of the𝑚 contrasted frames, the
transform t

𝑖
that maximizes the similarity measure 𝜌 for this

frame is computed. In a second step, going through all frames
of a sequence, the frame with the highest overall similarity
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Figure 8: Distribution of the errors within each sequence. While there is no significant difference for initial injections (a), 𝜌CADE + 𝜌edge
performs significantly better than 𝜌thrshad + 𝜌edge for subsequent injections (b). Subsequent contrast injections are characterized by a smaller
amount of contrast and the presence of more catheters making registrationmore difficult. Example images of sequence 1 are shown in Figures
2 and 3; example images of sequence 2 are shown in Figure 1(a). Here, contrast agent is very faint and in some frames contrasted is already
ejected into the left ventricle. Sequence 5 is shown in Figure 1(d). In this case, 𝜌thrshad + 𝜌edge got confused by edges caused by motion artifacts.

measure is picked. The associated transform is denoted by t̂
𝑖
.

The error to the average manual registration result t∗
𝑖
is then

computed as

t̂
𝑖
− t∗
𝑖

2

with t̂
𝑖
= arg max

𝑖

𝜌 (IA,𝑖, IB,𝑖, t
𝑖
) , t
𝑖
= arg max

t
𝜌 (IA,𝑖, IB,𝑖, t) .

(14)

The evaluation results are presented in Table 2. Recalling
Section 3.1, where we found that the CADE method yielded

good results for all frames, the CADE performance for
a single frame was, however, not that good. This is why
we investigated if a different single-frame selection strategy
would lead to better results. Instead of using 𝜌CADE both for
translation estimation and for best-frame selection, we used
𝜌CADE only for estimating the translation t

𝑖
for each frame

𝑖. Among the obtained translations t
𝑖
, we selected the frame

𝑖 with the corresponding translation t̂
𝑖
such that 𝜌thrshad was

maximized. So (14) was modified to


t̂
𝑖
− t∗
𝑖

2
with t̂

𝑖
= arg max

𝑖

𝜌
thr
shad (I

A,𝑖
thr, I

B,𝑖
thr, t𝑖) , t𝑖 = arg max

t
𝜌CADE (I

A,𝑖
thr, I

B,𝑖
thr, t) . (15)

The results of this frame selection method are denoted by
𝜌CADE ⊳ 𝜌

thr
shad. We did the same also for the combination with

𝜌edge. Although only 10 sequences were available for initial
contrast injections, 𝜌DSAshad , 𝜌

thr
shad + 𝜌edge, and (𝜌CADE + 𝜌edge) ⊳

(𝜌
thr
shad+𝜌edge) gave significant better results when compared to

𝜌
thr
shad. Also the performance of 𝜌edge was significantly less. For
subsequent injections, our proposed method 𝜌CADE ⊳ 𝜌

thr
shad

and the corresponding combination with 𝜌edge outperformed
the method byThivierge-Gaulin et al.

3.3. Temporal Filtering. The error estimate function 𝑒(𝜌(⋅))
and the transition probability covariance matrix Σk were
trained in a leave-one-patient-out cross-validation. The
results for the temporal filtered frames are given in Table 3.
For a combination of the CADE and edge similarity measure,
Markov filtering reduced the mean error to 5.7 ± 4.6mm for
initial injections and 6.6 ± 3.6mm for subsequent injections.
The respective median errors were 4.0mm and 5.7mm.

The results obtained by the Markov filtering were in all cases
significantly better than the results without filtering.

3.4. Runtime Performance. The image preprocessing took
0.5 s on an Intel Xeon E3 with 3.4GHz and 16GBRAM.
The evaluations of the similarity measures were performed
completely on the GPU. On an NVIDIA GeForce GTX 660
the evaluation of 𝜌DSAshad , 𝜌

thr
shad, or 𝜌edge took 1.8ms for a given

translation and 13.4±3.7ms for 𝜌CADE.Thewhole registration
for a single frame took 2.9 s for 𝜌DSAshad or 𝜌thrshad and 21.5 ± 5.9 s
for 𝜌CADE. For a combination with 𝜌edge it took 5.8 s and
27.1 ± 5.9 s, respectively. The runtime of the Markov filtering
was 173 ± 124ms per sequence.

4. Discussion and Conclusions

4.1. Similarity Measures. Our novel CADE-based method
outperformed the shadow based similarity measures 𝜌DSAshad
and 𝜌thrshad, especially for reregistration sequences where only
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Figure 9: Average registration errors of 𝜌CADE + 𝜌edge depending on
the position of the frame after start of the contrast agent injection
calculated over all sequences. Frame 1 denotes the first frame which
contained contrast agent.The average error at the second frame after
the CA injection was 11.8mm ± 9.5mm; the average error at the
fifth frame was 5.5mm ± 3.0mm. The frame rate of all sequences
was 7.5 fps. Assuming a heart rate of 60 bpm, one heart cycle takes
approximately 7 frames. So a first portion of CA is ejected into
the ventricle not later than at the 7th frame. Note that the number
of sequences used for calculation was not constant for each frame
number as several sequences had fewer than nine contrasted frames.

Table 2: Translation errors for a single automatically chosen frame
as described in (14) and (15).

Objective function Initial injection Subsequent injections
Thivierge-Gaulin 8.3 ± 8.2mm 10.6 ± 4.4mm
𝜌
DSA
shad 5.1 ± 3.8mm 9.6 ± 5.1mm
𝜌
thr
shad 7.1 ± 4.3mm 8.1 ± 6.6mm
𝜌edge 14.1 ± 10.0mm 12.1 ± 9.1mm
𝜌CADE 6.0 ± 5.0mm 7.0 ± 3.8mm
𝜌CADE ⊳ 𝜌

thr
shad 5.0 ± 5.0mm 7.7 ± 4.9mm

𝜌
DSA
shad + 𝜌edge 5.1 ± 4.2mm 8.5 ± 4.7mm
𝜌
thr
shad + 𝜌edge 4.8 ± 4.6mm 7.8 ± 5.7mm
𝜌CADE + 𝜌edge 6.1 ± 5.8mm 7.6 ± 5.5mm
(𝜌CADE + 𝜌edge) ⊳

(𝜌
thr
shad + 𝜌edge)

4.6 ± 4.0mm 7.3 ± 5.2mm

a small amount of contrast agent was used. The problem
with nondistinct optima for shadow based similarity mea-
sures which was already sketched in Figure 2 becomes also
apparent in the sections of the optimization function in
Figure 10 for 𝜌thrshad: for a small amount of contrast agent like in
Figure 10(a), the optimum is not at the position of the ground
truth, but about 15mm off. Also for secondary injections into
small structures such as the pulmonary veins, the objective
function for 𝜌thrshad in Figure 10(c) has a large plateau. In
both cases, 𝜌CADE is more distinct, although clear extrema
as for bones [12] are not obtained. Especially for secondary
injections where CA was often injected into pulmonary
veins, registration errors leading to inconsistent results could
be avoided by 𝜌CADE. For well-contrasted sequences, the
improvement by𝜌CADE was less as inconsistencies played only
a minor role and the shape of the contrasted region in the
image was more similar to the projected shadow of the left

Table 3: Translation errors for temporal filtered frames.

Objective function Initial injection Subsequent injections
Thivierge-Gaulin 9.5 ± 6.2mm 7.2 ± 3.0mm
𝜌
DSA
shad 7.5 ± 4.1mm 7.7 ± 3.5mm
𝜌
thr
shad 7.5 ± 4.8mm 9.1 ± 5.6mm
𝜌edge 9.7 ± 7.1mm 12.9 ± 7.6mm
𝜌CADE 6.1 ± 4.1mm 6.2 ± 3.1mm
𝜌
DSA
shad + 𝜌edge 6.5 ± 4.3mm 7.4 ± 3.3mm
𝜌
thr
shad + 𝜌edge 6.1 ± 4.4mm 8.1 ± 3.7mm
𝜌CADE + 𝜌edge 5.7 ± 4.6mm 6.6 ± 3.6mm

atrium.This becomes also apparent in Figure 10(b) where the
shapes of the objective function of 𝜌thrshad and 𝜌CADE look very
similar.

We found that the similarity measure using explicit
apparent edges, 𝜌edge, yielded poor results when used on
its own. A possible reason is that the objective function of
𝜌edge has several local optima and also the global optimum
does not necessarily correspond to the ground-truth posi-
tion. However, 𝜌edge can improve results significantly when
combined with other similarity measures. It often has a more
distinct local optimum at the position of the ground truth
that facilitates fine registration.This is important as the other
similarity measures define a rather plateau-shaped optimal
region.

4.2. Time-Dependency. Figure 9 shows that the accuracy of
the registration depends on when the frame was recorded
after contrast agent injection. The best results were achieved
at the 5th frame.This was in many cases the frame before the
ejection into the ventricle; that is, it contains themost contrast
agent. Especially for the first frames, where only little CA was
present, registration accuracy was lower. The first frame is
an exception, as it has a lower mean error than the second
frame. This is probably because the previous frame, that is,
the last uncontrasted frame, is used as mask frame for DSA
computation which leads to lowmotion artifacts and a better
extraction of the contrasted region.

4.3. Best-Frame Selection. We found that, for our registration
to work best, a well opacified frame should be selected from
the sequence. This strategy was evaluated in the context of
the single-frame evaluation by selecting the frame which had
the best objective function value. For methods like 𝜌DSAshad and
𝜌
thr
shad, which are based on the projection shadow, the best
frame usually corresponded to the most contrasted frame.
The measure 𝜌CADE, however, is not related to the amount
of contrast agent, but it depends on consistency. When
relying on 𝜌CADE for best-frame selection, we get the frame
yielding the most consistent registration. This is, however,
not necessarily the frame with the most contrast agent. And
it is usually the frame with the most contrast agent which
provides the most information for registration. We believe
that this is the reason why the errors in Table 2 for 𝜌CADE are
higher. If, however, from the translations estimated by𝜌CADE+
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Figure 10: Optimization function values along sections through the ground-truth position. The sections were done along the viewing
direction of the detector in plane A, the corresponding orthogonal direction in the transverse plane, and the 𝑧-axis of the patient coordinate
system which corresponds to the cranial-caudal axis. The intersections are shown for three different frames: (a) one of the first frames of an
initial injection (see Figure 3), (b) a frame of the same injection but with large parts of the left atrium contrasted, and (c) a secondary injection
into a pulmonary vein (see Figure 1(g)). The plots for 𝜌DSAshad were left out as they look very similar to those for 𝜌thrshad.

𝜌edge, the single frame was selected based on 𝜌thrshad + 𝜌edge,
better results were achieved as now again the frames with the
most contrast agent were selected.

Sometimes, the automatic best-frame selection does not
provide a frame with a satisfactory result. Still, 85% of
all sequences contain at least one frame that is below a
clinical relevant threshold of 5mm [27, 28]. To benefit from

the fact that at least one frame with a good registration
result is likely to be found, the frame selection could be
performed manually by stepping through the frames and
the associated registration results. The user can then quickly
select the frame with the best registration result. Although
this implementation still involves user input, the required
user interaction is less than for fully manual registration.
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For the remaining 15% of the cases or if higher accuracy
level, for example, 3mm [29], is required, small manual
adjustment may be necessary in these cases.

4.4. Temporal Filtering. Temporal filtering based on the
Markov chain could reduce the error significantly. Particu-
larly high errors for frames at the beginning or at the end
of the contrast injection were reduced. If a registration is
not desired for an arbitrary frame but rather for a frame
determined by the physician, for example, based on the
breathing phase, temporal filtering should be applied.

4.5. Runtime Performance. It is notable that the runtime for
𝜌CADE was considerably higher compared to, for example,
𝜌
thr
shad. This is because the contrast agent distribution needs to
be updated in each iteration before projecting it. Moreover,
this part of the implementation has not yet been optimized.
Although the fast runtime of, for example, 𝜌thrshad will remain
out of reach, we are confident that the runtime for 𝜌CADE
could be reduced to a clinically acceptable level.

4.6. Impact of Clinical Issues. In general, the performance
for initial registration was better, as the amount of contrast
agent was higher and fewer catheter artifacts were present.
We found by visual inspection that also the amount of
breathing motion had an impact on the registration accuracy
as it caused motion artifacts in the DSA computation. As a
consequence, if the patient was not anesthetized, acquisition
of the CA injection should be performed under breath-
hold or shallow breathing. For cases with intubation, also jet
ventilation [30] or a small period of apnea could be applied
to reduce breathing motion. Since our data was not acquired
using a dedicated DSA program, the different brightness
levels within a sequence changed. This interfered with the
subtraction image computation. Although intuitively appeal-
ing, our data did not allow us to make a statement if the
registration accuracy depends on the part of the LA in which
CA was injected.

For initial contrast injections, an average accuracy of 4.6±
4.0mmand amedian error of 3.7mmcould be achieved using
𝜌CADE+𝜌edge together with the best-frame selection approach.
This error is in the range of the interuser variability of 3.2 ±
2.3mm. The faster registration method using 𝜌thrshad + 𝜌edge
reached an accuracy of 4.8 ± 4.6mm.These numbers are also
similar to the accuracy reported when performing manual
registration based on segmentations of the CS, the whole
heart, and the spine [7] or a segmentation of the CS when
3D and 2D data are in the same breathing and cardiac phase
[31] which was achieved by ventilation and rapid pacing of
anesthetized patients. However, our method does not require
structures other than the LA to be segmented and requires no
anesthesia. Compared to a registration based on the CS alone
[32], the error was reduced by over 50%.

The average accuracy for all frames after applying tem-
poral filtering is 5.7mm for 𝜌CADE + 𝜌edge and 6.1mm for
𝜌
thr
shad+𝜌edge.Though the results of 𝜌CADE+𝜌edge are close to the
5mm threshold [27, 28], it remains open if this is sufficient for

a clinical application, but we believe that these results should
at least provide users with an acceptable initial estimate for
further manual adjustments.

4.7. FutureWork. By now, the registrationmethodwas evalu-
ated only for left atria. In a next step, the performance of this
approach to contrast-based registration of the right atrium
should be evaluated. A registration based on the right atrium
would also provide a registration for the LAwhich is available
for transseptal puncture or one of the ventricles could be
assessed. Due to the lack of pulmonary veins and arteries, the
ventricles have a more simple anatomical structure but are
subject to stronger cardiac motion. How strongly this affects
the registration accuracy is open.

5. Conclusions

Compared to the approach by Zhao et al. [17], the use of
special weights for different heart regions is not needed for
any of the proposed approaches. In addition, for 𝜌thrshad + 𝜌edge,
a time-consuming DRR generation can be avoided. As a
result, a registration approach based on a combination of
shadow and edge features can be computed fast. If sufficient
computational power was available, the novel CADE-based
measure, which takes consistency into account, should be
used as it improves results significantly, especially when very
small amounts of contrast agent are injected.
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