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Abstract

Out-of-vocabulary words (OOVs) are often the main reason for
the failure of tasks like automated voice searches or human-
machine dialogs. This is especially true if rare but task-relevant
content words, e.g. person or location names, are not in the rec-
ognizer’s vocabulary. Since applications like spoken dialog sys-
tems use the result of the speech recognizer to extract a semantic
representation of a user utterance, the detection of OOV as well
as their (semantic) word class can support to manage a dialog
successfully. In this paper we suggest to combine two well-
known approaches in the context of OOV detection: semantic
word classes and OOV models based on sub-word units. With
our system, which builds upon the widely used Kaldi speech
recognition toolkit, we show on two different data sets that
— compared to other methods — such a combination improves
OOV detection performance for open word classes at a given
false alarm rate. Another result of our approach is a reduction
of the word error rate (WER).

Index Terms: OOV detection and classification, semantic word
classes, sub-word unit speech recognition, Kaldi

1. Introduction

The out-of-vocabulary word (OOV) problem has always been
a serious issue for speech recognition systems and downstream
applications. Not only are OOVs the source of recognition er-
rors, but they are also often the main reason for the failure of
automated voice searches or human-machine dialogs. Espe-
cially content words like person or location names, which are
likely to be out-of-vocabulary if they occur rarely, can be of cru-
cial importance. For instance just recently the question “Give
me information about the Argentinian soccer player Jorge Bur-
ruchaga!” was perfectly recognized by a state-of-the-art voice-
search system — except for the name of the person in question'.
The inquiry, which was carried out several times, was never
(and probably could not be) recognized correctly by the system;
most of the times the result was portable charger. A similar
question in human-to-human communication could of course
also lead to a misrecognition. But the result portable charger
could be ruled out by a human being because it is not the name
of a person and, given the context (Argentinian, soccer player)
and the acoustic information, it would be relatively easy for the
listener to get a perfect transliteration of the unfamiliar name in
a short clarification dialog.

In the ideal case an automatic system would also make use
of the additional information which is contained in such in-
quiries to come to a better recognition result. In the paper at
hand an approach is suggested which is a step in that direc-
tion: we describe a way how to configure a speech recognizer

IThe Argentinian soccer player Jorge Burruchaga played a major
role in the 1986 World-Cup that took place in Mexico scoring the win-
ning goal against Germany in the final.

which, for correctly hypothesized unknown words, preserves
the acoustic information by producing suitable sub-word units
and provides the semantic context by assigning a word class.

The rest of this paper will be structured in the following
way: in section 2 we will give an overview over the work that
has been published in the context of OOV word detection and
recovery. Our approach and the implementation based on the
Kaldi speech recognition toolkit will be introduced in section 3.
After a description of the two speech corpora in section 4 we
present the results of our experiments in section 5 and close the
paper with a conclusion. (section 6).

2. The OOV Problem — An Overview

The OOV problem still exists in spite of the fact that it has
been a very important research topic in the field of automatic
speech recognition for a long time and a large number of dif-
ferent approaches have been proposed throughout the years.
A good overview can be obtained by studying the following
books: [1, 2, 3] and [4].

In this paper we will focus on the use of sub-word units
(SWUs) and (semantic) word classes to tackle the OOV prob-
lem by creating a one-stage speech recognizer that can be used
for a spoken dialog system. We think this is an intuitive solu-
tion for the dialog scenario, also because humans seem to apply
such strategies in similar situations. For other (off-line) tasks it
makes sense of course to include more semantic context when
retrieving out-of-vocabulary words like proper names [5].

2.1. Sub-Word Units for OOV Detection

One fundamental concept which emerged relatively early to
deal with out-of-vocabulary words was to make use of the sim-
ple fact that it takes less sub-word units (SWUs) than words to
cover the (virtually unlimited) vocabulary of a language. Tables
3 and 5 provide examples of how the OOV rate goes down if
smaller-sized sub-word units are used. Of course this comes at
the cost of losing context which is provided by words or larger-
size SWUs and which tends to make speech recognition more
robust. Apart from linguistically motivated candidates like syl-
lables or phones, a lot of work has gone into finding other units,
e.g. data-driven phonetic SWUs (see e.g. [6, 7, 8]) or graphones
(see [9, 10, 11]). To use SWUs for OOV detection they are usu-
ally added to the vocabulary of the speech recognizer. Regard-
ing the integration of sub-word units into the language model
(LM) there are two main approaches (see [3] and [4]):

1. Flat hybrid language models
2. Hierarchical hybrid language models

In the case of flat hybrid language models, there is a single lan-
guage model which includes words and sub-word units. Train-
ing text data is usually created by substituting rare words in
conventional training data with the corresponding SWUs. This



has a number of advantages, e.g. the dependencies of words
and SWUs are modeled automatically. On the other hand it is
harder to determine the beginning and the end of an OOV word,
especially if the system is limited to one-stage recognition and
no complex post-processing is possible.

If hierarchical hybrid language models are employed for
OOV detection, it means that out-of-vocabulary words get a
separate sub-language model which is embedded into the word-
level LM. This has the disadvantage that extra training data
is needed to train the OOV sub-language model and often an
SWU-specific penalty has to be introduced to balance false
alarm rate (FAR) and OOV detection rate. For one-stage decod-
ing, however, hierarchical modeling can be useful to get a seg-
mentation of OOV regions, for example if there is an enumer-
ation of unknown names like we observed in the SMARTWEB
corpus (see section 4). Also, if there is specific knowledge re-
garding OOV words to be expected, it can be incorporated when
creating the sub-language models. For example if the word
class PERSON_NAME is of relevance for a task and there is a-
priori knowledge about the ethnic affiliation of the names which
have to be recognized, the sub-language models can be trained
accordingly (e.g. with language-specific SWU sequences).

2.2. Semantic Word Classes

It is a well-known fact that class-based n-gram language mod-
els can help reduce test set perplexity as well as the word er-
ror rate (WER) in automatic speech recognition [12, 13]. But
word classes can also be used to support the detection of out-
of-vocabulary words by embedding OOV models to create hi-
erarchical LMs. For example in [14] Part-of-Speech (POS) and
automatically derived OOV classes are introduced. The authors
of [15] and [16] focus on semantically motivated word classes
which are combined with generic or more generalized word
models. The idea is to focus on open word classes like person or
location names for which OOVs are very common. Approaches
which are similar to the one described in this paper — a sub-word
unit language model embedded within a word-based language
model for covering out-of-vocabulary words combined with a
word class for named entities — have been suggested in [17] and
recently in [18]. Unfortunately these publications do not focus
on the aspect of OOV detection, e.g. no detection and false
alarm rates are provided and the number of OOV word classes
is limited to one in both cases.

3. Word Class-Based Hierarchical OOV
Detection

The motivation for the solution described in this paper was that
the out-of-vocabulary problem for both of the data sets we ex-
perimented with (see section 4) was a major source of errors for
speech recognition. While in many cases the class or category
of the unknown words was obvious from the sentence structure
(“I want to go to ...”, “Did ... play the title role in the movie
...) the speech recognition systems we used produced typical
OOV errors, e.g. “Montag erst” (only Monday) instead of “Bu-
dapest” or “Hamburg okay” instead of “Jean-Paul Gaultier”.
However, in both cases we had — apart from the resources
usually needed to train a speech recognition system (speech
recordings, transcribed texts, pronunciation dictionary) — ex-
tra knowledge regarding the corpora: manually annotated word
classes. The categorized words mostly belonged to semanti-
cally relevant classes for the task, e.g. city names for the train
information system EVAR [19] and the names of celebrities,
movie titles etc. for the open domain question-answering sys-
tem SMARTWEB [20]. To make use of this knowledge, we in-
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Figure 1: Hierarchical OOV modeling in Kaldi: For each word
class embedded into the language model transducer G an SWU-
based OOV model can be created; the OOV model itself is also
embedded into the word class using fstreplace.

tegrated word classes into the speech recognizer.

Formally, non-overlapping word classes can be defined as
a mapping C' : W — C which determines a sequence of word
classes c given a sequence of words w (definition taken from

[21]):

W=wi...wp~ Cwi)...Clwp) =c1...cn =c (1)

When using word classes the probabilities of the language
model for word sequences w have to be adjusted. In the case of
bigram modeling, the formula

P(w) = Plun) [] Plushi) @

needs to be rewritten as

n

P(W) :P(wl\cl)P(cl)HP(wz\cl)P(cz\c%l) (3)

=2

Following the maximum likelihood principle, the class-
related probability of a word P(w;|c;) can simply be estimated
by counting the number of occurrences of the word divided by
the number of all words in the word class (unigram modeling).
The (conditional) class probabilities P(c;|...) can be deter-
mined in the same way normal n-gram probabilities are com-
puted. The only difference is that the word sequences used for
training must be converted to word class sequences.

For our experiments, we had to integrate our word classes
as well as the OOV model into the WFST-based (Weighted Fi-
nite State Transducers [22]) architecture of the speech recogni-
tion toolkit Kaldi [23]. Because Kaldi does not support word
classes out of the box, we created all necessary (sub-)language
models (see Figure 1) with the SRI language modeling toolkit
[24], converted them to WFSTs and used fstreplace from
the OpenFST library [25] to create a hierarchically structured
language model transducer G. The only other change we had
to make to the Kaldi recipes was to add self-loops in the lexi-
con transducer L for the class- and OOV-model-specific disam-
biguation symbols. The disambiguation symbols are needed to
keep the WFSTs determinizable and they have to be added to
the L transducer so the word classes and OOV models are not
eliminated when composing L and G.
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Figure 2: A simple SWU-based OOV model to be embedded into
a word class.

As indicated in formula 3 we used unigrams for the word
class sub-language models but in general any n-gram language
model can be incorporated into the word-level LM. To train the
SWU-based OOV models embedded in the word classes, we
did not introduce any additional data — e.g. other pronuncia-
tion lexica — but reused the sub-word units which were already
available from the lexica of each corpus. Based on these SWUs
(phones, syllables, variable-length phone sequences), we mod-
eled the OOVs by creating simple sub-word unit zerograms with
a self-loop (see Figure 2). Again, it is possible to integrate other
SWU n-gram language models, but they require additional data
and make the overall system more complex.

4. Data Sets
4.1. EVAR train information system

The first data set we studied for this paper was collected dur-
ing the development of the automatic spoken dialog telephone
system EVAR [19]. Just as in [26] we use the subset of 12,500
utterances (10,000 for training and 2,500 for testing) which are
the recordings of users talking to the live system over a phone
line as opposed to read data which was initially acquired to train
the speech recognition module.

Words Syllables
Types | Tokens | Types [ Tokens
Training | 10,000 | 1,423 | 34,934 | 1,118 | 55,874
Test 2,500 712 8,286 669 | 13,154
All 12,500 | 1,603 | 43,220 | 1,221 | 69,028

Set Utt.

Table 1: Statistics regarding words and syllables in the training
and test set of the EVAR corpus

Table 1 shows that the vocabulary of the EVAR corpus is
limited to 1,603 words or 1,118 syllables; it also indicates the
low number of words per utterance on average (less than 3.5).
But even though the data set is small, it is interesting for our
approach because it contains the open word class CITYNAME.
Given the functionality of the overall system — providing callers
with the schedule of express trains within Germany — it is not
surprising that CITYNAME is the dominating word class and
that the 7.05% OOV rate® is way above the average rate of
2.98% for the whole corpus (see Table 3).

2The definition of out-of-vocabulary word for our experiments is
simply “a word in the test set which is not in the training set”. But for
the real EVAR system OOV occurred very often too, because originally
the system’s vocabulary only included the names of German cities with
express train stations.

Data-Driven Phones
Types | Tokens | Types [ Tokens
Training | 10,000 502 | 63,468 45 | 158,671
Test 2,500 400 | 15,264 43 37,610
All 12,500 502 | 78,732 45 | 196,281

Set Utt.

Table 2: Statistics regarding data-driven sub-word units and
phones in the training and test set of the EVAR corpus

Apart from syllables and phones, we also created a set of
variable phone sequences (labeled “data-driven” in Tables 2
and 3) as sub-word units for OOV detection. These data-driven
units are based on a mutual-information (MI) measure which is
iteratively applied to a set of phones/phone sequences to find the
next pair to be merged until a certain number of units has been
formed. It has been reported in [2] that such MI units are better
suited for OOV detection than smaller-sized units like phones.

SwWu/ Types Tokens
Word Class | #O0Vs | #all || #0O0Vs #all %
Words 180 | 712 247 8,286 | 2.98
Syllables 103 | 669 156 | 13,160 | 1.19
Data-driven 0 | 400 0 | 15,264 | 0.00
Phones 0 43 0 | 37,610 | 0.00
CITYNAME 41 | 115 78 1,106 | 7.05

Table 3: OOV statistics regarding words, syllables, data-driven
SWUs, phones as well as entries of the word class CI TYNAME
in the test set of the EVAR corpus.

4.2. SMARTWEB Handheld Corpus

The SmartWeb Handheld Corpus, the second data set we used
for our experiments, was collected during the SMARTWEB
project. It lasted from 2004 to 2007 and was carried out by a
consortium of academic an industrial partners [20]. The record-
ings of the handheld corpus were made using cell phones and
the signals underwent a complex chain of speech transmissions
including Bluetooth and UMTS [27]. The resulting data was
given one of three labels: normal, bad or unusable. For the ex-
periments in this paper only the normal recordings were used.

Words Syllables
Task utt. Types | Tokens | Types | Tokens
Training | 8,760 | 5,464 | 83,7776 | 2,679 | 151,375
Test 983 | 1,311 8,887 | 1,157 17,225
All 9,743 | 5187 | 92,663 | 2,754 | 168,600

Table 4: Statistics regarding words and syllables in the training
and test set of the SMARTWEB corpus.

This corpus is interesting because SMARTWEB was de-
signed to be an open-domain question-answering system. As
a consequence there are many more open word classes than in
EVAR and the vocabulary is much larger as well (5,787 word
types, see also Table 4). The out-of-vocabulary rates for the test
set for words, SWUs and selected word classes are shown in Ta-
ble 5: overall the OOV rate on the word level is 4,86% (432 out
of 8,887 test tokens); on the syllable level, however, it is only
0,60% (104 out of 17,225 test tokens). The word class for which
most out-of-vocabulary words are encountered is CELEBRITY
(59 tokens). Due to data sparsity there is the effect that more
MOVIETITLES are unknown (15 out of 18 test tokens) than
CITYNAMES (8 out of 197 tokens).



SWU/ Test Tokens Tr. Tokens
Word Class #0OOVs #all % #all
Words 432 8,887 4.86 83,776
Syllables 104 | 17,225 0.60 151,375
Phones 0 | 46,124 0.00 405,332
CITYNAME 8 197 4.06 1,569
CELEBRITY 59 197 | 29.95 1,383
MOVIETITLE 15 18 83.33 141

Table 5: OOV statistics regarding words, syllables, phones as
well as entries of the categories CITYNAME, CELEBRITY and
MOVIETITLE in the test set of the SMARTWEB corpus.

5. Experimental Results

To compare our approach using hierarchical hybrid language
models in combination with word classes, we made experiments
using two other methods to hypothesize OOV words:

1. A flat hybrid language model (words and SWUs)
2. Comparing the results of a word and an SWU recognizer

For the flat hybrid language model (1.) we simply tagged the
sub-word units in the training text and the vocabulary. If there
were SWUs in the recognition result, they were classified as
out-of-vocabulary words. Sequences of adjacent sub-word units
were interpreted as one single OOV.

For 2. we combined the output of a word and an SWU
recognizer and compared the recognition results (on the SWU
level): If the lexical sequence of SWUs for a hypothesized word
differed from the sequence of the corresponding hypothesized
SWUs, an OOV was assumed. Another way to look at this ap-
proach is to think of the combined result as a confusion network.

To asses the performance of our system, we used the stan-
dard measures word error rate (WER), detection rate / recall
(RCL), precision (PRC), and false alarm rate (FAR) as they are
defined for example in [4].

Tables 6 and 7 show that, compared to a baseline speech
recognizer, our hierarchical approach with data-driven MI units
or syllables improves the word error rate on both data sets. At
the same time the method is well-suited to robustly detect out-
of-vocabulary words (low false alarm rates ranging from 0.22
to 0.34). Since the hierarchical approach only generates OOV
for certain word classes, the overall recall is relatively low. But
if the focus is on OOVs from a specific word class, the detec-
tion rates are quite high (see for example the detection rates for
CITYNAME on the EVAR corpus in figure 3).

As outlined earlier, we introduced more than one word

OOV Results
Model WER | ReC T PRC [ AR
Baseline 14.7 0.0 0.0 | 0.00

Baseline + word class
CITYNAME 14.5 0.0 | 0.0 | 0.00

Flat hybr. OOV syllables 15.5 27.0 | 50.0 | 0.83
Combined word / 168 | 640 | 270 | 524
syllable recognition

Hier. OOV: data-driven +
word class CITYNAME
Hier. OOV: syllables +
word class CITYNAME

14.0 || 21.0 | 65.0 | 0.34

14.1 21.0 | 75.0 | 0.22

Table 6: Word error rates and OOV detection results (recall,
precision, false alarm rate) for all OOVs in the test set of the
EVAR corpus.

Word Class CITYNAME
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Figure 3: Comparing OOV detection results for the word class
CITYNAME and word error rates for different approaches on
the Evar test set.

class with embedded OOV models in the speech recognizer for
SMARTWEB. But even though this led to correctly detected
OOVs with the wrong class label, we were still able to get good
results for each word class:

* CELEBRITY: 34 (recall), 63 (precision)

e CITYNAME: 50 (recall), 13 (precision)

e MOVIETITLE: 47 (recall), 54 (precision)

Only the precision for CITYNAMEs was lower than ex-

pected. The main reason for this were non-categorized out-of-
vocabulary words which were often hypothesized as city names.

OOV Results
Model WER | RcC TPRC | FAR
Baseline 19.7 0.0 0.0 | 0.00

Baseline + multiple 18.8 0.0 00 | 0.00
word classes

Flat hybr. OOV syllables 21.0 || 42.0 | 56.0 | 1.67

Combined word / 213 | 690 | 340 | 698
syllable recognition
Hier. OOV: syllables +

multiple word classes

184 || 26.0 | 80.0 | 0.34

Table 7: Word error rates and OOV detection results (recall,
precision, false alarm rate) for all OOVs in the test set of the
SMARTWEB corpus.

6. Conclusion

In this paper we presented a one-stage speech recognition sys-
tem with a hierarchical hybrid OOV model that is based on
a combination of word classes and sub-word units. With this
system, which is an extension of the well-known Kaldi speech
recognition toolkit, we showed that out-of-vocabulary words
from multiple word classes can be detected with good preci-
sion and that the resulting word error rate is reduced compared
to a baseline recognizer. The classification of out-of-vocabulary
words makes it possible for a spoken dialog system to react in
a more appropriate way, especially when an OOV is detected
which belongs to a word class that is essential for the success
of the dialog. Highlighting an OOV by allowing the user to
clarify, for example, can reduce misunderstandings and prevent
frustration in spoken human-machine interaction.
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