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ABSTRACT
This paper addresses streak reduction in limited angle tomog-
raphy. The weighted total variation (wTV) algorithm is able
to remove most Poisson noise and small streaks for clinical
limited angle data. However, it is still not sufficient to remove
larger streaks whose orientations are mostly dependent on the
scan trajectory. We propose a new weighted anisotropic to-
tal variation (waTV) algorithm, which uses four neighboring
pixels to calculate the gradient along the streaks’ normal di-
rection and is able to reduce large streaks well.

Index Terms— Total variation, limited angle tomogra-
phy, streak artifacts

1. INTRODUCTION

In imaging systems used for computed tomography (CT), the
limited angle problem arises when the gantry rotation is re-
stricted by other system parts or scanning time, such that
only limited angle data can be acquired. Due to data incom-
pleteness, streak artifacts will occur. Recently, researchers
have made efforts on suppressing streak artifacts in insuffi-
cient data reconstruction. In this context, compressed sensing
technologies attract tremendous attention since they can use
relatively few data to obtain a good reconstruction result by
exploiting sparsity in a specific domain [1–4]. Particularly,
iterative reconstruction algorithms regularized by total varia-
tion (TV) minimization were demonstrated to be effective in
reducing streak artifacts in limited angle tomography [5].

In limited angle tomography, the shape and orientation of
streak artifacts is closely related to the angles missing in the
acquisition. Based on this property, Chen et al. [6] devel-
oped the anisotropic TV (aTV) by assigning different weight-
ing factors to different directions. The aTV algorithm shows
a better performance than isotropic TV in terms of streak arti-
facts reduction and edge recovery. However, some structures
in the clinical reconstructed image may be blurred because of
the staircasing effect.

In 2008, Candès et al. [7] proposed the weighted TV
(wTV) algorithm to more effectively enhance sparsity in the

gradient domain, which can avoid the staircasing effect. In
this paper, we investigate the application of wTV on lim-
ited angle tomography. Additionally, based on the property
of limited angle tomography that the orientations of streak
artifacts are mostly dependent on the scan trajectory, a new
weighted anisotropic TV (waTV) is proposed, which uses
four neighboring pixels instead of two pixels to compute the
gradient along the streaks’ normal direction.

2. METHODS

The optimization model of the wTV algorithm can be

min
f
||f ||wTV subject to Af = p, (1)

where f is the image, A is the system matrix and p is the
acquired projection data. ||f ||wTV is defined as [7]

||f ||wTV =
∑
x,y,z

W x,y,z|| (Df)x,y,z ||,

W x,y,z =
1

||(Df)x,y,z||+ ε
,

(2)

where W is the weight matrix, x, y and z are pixel indices
and ε is a parameter influencing the reconstructed image res-
olution. Df is the gradient of the image f defined as

(Df)x,y,z = (Dxfx,y,z,Dyfx,y,z,Dzfx,y,z), (3)

where Dx, Dy and Dz are the discrete gradient operators
along the X , Y and Z axes, which are

Dxfx,y,z = fx,y,z − fx−1,y,z,

Dyfx,y,z = fx,y,z − fx,y−1,z,

Dzfx,y,z = fx,y,z − fx,y,z−1.

(4)

The flow chart of the whole algorithm is shown in Fig. 1.
The main loop iterates at most N times and each iteration
contains a simultaneous algebraic reconstruction technique
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Fig. 1. The wTV algorithm iterates SART and wTV mini-
mization steps alternatively N times in the outer loop and re-
peats the gradient descent process M times in the inner loop.

(SART) [3] step to increase data fidelity and a wTV mini-
mization step for regularization. In each wTV minimization
step, we regard the weight matrix W as constant for comput-
ing the gradient of ||f ||wTV to retain a convex problem [7],

gx,y,z =
∂||f ||wTV

∂fx,y,z

, (5)

and repeat the gradient descent process M times with back-
tracking line search algorithm [8]. After that W is updated.

Since the regular wTV algorithm only uses two neighbor-
ing pixels to compute the gradient in each direction, these gra-
dient operators are hardly able to detect variations on a larger
scale (Figs. 4(a) and 6(c)). In limited angle reconstruction,
orientations of streaks can be aligned with a coordinate axis,
e.g. the X-axis, if we choose a proper corresponding scan an-
gle range 10◦ − 170◦, which means more variations along Y
direction than X and Z directions. Therefore, we want to en-
force homogeneity more strongly in the Y direction. Aiming
at this, we propose the waTV algorithm by replacingDf with
an anisotropic variant. Specifically, while Dxf and Dzf are
kept the same as those in Eqn. 4, we use four neighboring
pixels to compute a modified Y -gradient estimate D̃yf ,

D̃yfx,y,z = afx,y+1,z + bfx,y,z − bfx,y−1,z − afx,y−2,z,
(6)

where a and b are weighting coefficients. The waTV algo-
rithm also follows the framework shown in Fig. 1.

3. EXPERIMENTS

3.1. Numerical phantom

In order to validate the advantage of our proposed waTV al-
gorithm in reducing large horizontal streaks, a 2-D numeri-
cal phantom is designed (Fig. 3). The phantom contains two
columns of circular areas. The attenuation coefficient for the
circular areas is 1200 HU while it is 0 HU for the background.
Regarding the acquisition parameters, the scan angle ranges
from 10◦ to 170◦ and the angular increment is 1◦. The detec-
tor size is 768 pixels and the pixel size is 1 mm. The source
to detector distance is d = 2175 mm, and the fan angle is
γmax = 20◦. The whole experimental setup, including gener-
ation of the phantoms, is implemented in CONRAD [9].
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Fig. 2. Scan trajectory.
Fig. 3. Numerical phantom,
window: [-400 1400] HU.

The wTV algorithm and the waTV algorithm are em-
ployed to reconstruct this phantom from limited angle data.
The coefficients a = b = 1 as well as a = 1, b = 2 are
evaluated in Eqn. 6 for the waTV algorithm. All images are
reconstructed with ε = 0.001 in Eqn. 2 and M = 10 cho-
sen heuristically. The reconstruction algorithms stop when
they reach the termination criteria σ < 8.0 · 10−3 HU or
n = 500, where σ is the root-mean-square difference of two
consecutive iteration results and n is the iteration number.

3.2. Clinical data

The wTV algorithm and the waTV algorithm are also com-
pared in a 3-D clinical head dataset acquired with a Siemens
Artis zee angiographic C-arm system (Siemens Health-
care GmbH, Forchheim, Germany). The detector size is
1240×960, and the detector pixel size is 0.308 mm. The
complete data contains 496 projections obtained in a 200◦

short scan. We simulate a limited angle acquisition with a
scan angle from 10◦ to 170◦ where only the projections 25
through 422 are used. The reconstruction image grid size is
512× 512× 256, and the pixel sizes are 0.4 mm, 0.4 mm and
0.8 mm in X, Y and Z direction, respectively.

We first use SART and wTV to reconstruct the complete
data as an image quality reference. The fine bony structures
and soft brain tissues can be used to test the reconstruction
resolution and contrast. Then wTV and waTV are applied to
the limited angle data. During the experiments, we found that
it is beneficial to perform 30 SART iterations without regular-
ization first as initialization and then 50 additional iterations
of wTV or waTV are carried out.

4. RESULTS AND DISCUSSION

The reconstruction results of the numerical phantom are
shown in Fig. 4. Comparing Fig. 4(b) with Fig. 4(a), streaks
are reduced faster with waTV than with wTV and the plot of
the root-mean-square error (RMSE) over iterations (Fig. 4(g))
demonstrates this as well. After around 500 iterations, al-
most no streaks exist in the image reconstructed by waTV
(Fig. 4(d)) while there are still pronounced large streaks in
the image reconstructed by wTV (Fig. 4(c)).



(a) wTV, 250th iteration

RMSE = 24.40 HU

(b) waTV, 250th iteration

a = b = 1, RMSE = 4.96 HU

(c) wTV, 500th iteration

RMSE = 3.75 HU

(d) waTV, 497th (final) iteration

a = b = 1, RMSE = 4.16 HU

(e) waTV, ROI, a = b = 1

RMSE = 4.16 HU

(f) waTV, ROI, a = 1, b = 2

RMSE = 2.56 HU
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Fig. 4. Comparison of wTV and waTV, 500th iteration for (e)
and (f), windowing: [-400 1400] HU for (a) and (b), [-24 24]
HU for (c) and (d), [-8 8] HU for (e) and (f).

(a) SART, 65th slice (b) SART, 140th slice

(c) wTV, 65th slice (d) wTV, 140th slice

Fig. 5. Reference images reconstructed from the complete
clinical dataset with the SART algorithm and the wTV algo-
rithm. Windowing: [-1000 1730] HU for (a) and (c), [-220
365] HU for (b) and (d).

However, if we choose a narrow intensity window [-24
24] HU, we can see some “zebra crossing”-like artifacts in
Fig. 4(d), especially at the top and bottom boundaries. It is be-
cause D̃yfx,y,z regards such patterns as homogeneous along
Y direction in the case of a = b = 1. For instance, con-
sidering a sequence of intensity value l = [0 1 0 1 0 1 0 1],
D̃yl = [0 0 0 0 0]. Hence, if we choose e.g. a = 1 and b = 2
instead, the artifacts can be reduced though the reconstructed
circular areas still slightly lose resolution (Fig. 4(f)). Due to
their better performance, we use these weights (a = 1, b = 2)
for reconstruction of the clinical dataset.

Reconstructions from the complete clinical dataset are
shown in Fig. 5. Fig. 5(c) demonstrates that wTV can
preserve the fine bone structures almost as well as SART
(Fig. 5(a)). In addition, the brain texture is shown well in the
wTV result (Fig. 5(d)) while it is almost totally lost in the
noise in the SART result (Fig. 5(c)). This indicates that wTV
is an effective denoising tool.

Image results of SART, wTV and waTV for limited an-
gle tomography are shown in Fig. 6. Compared to SART
(Figs. 6(a) and 6(b)), wTV (Figs. 6(c) and 6(d)) can remove
small streaks well and the bone structures and the brain tex-
ture look better than the SART results. However, it is still not
able to remove the large scale streaks which are almost along
the horizontal direction and some anatomical structures are



(a) SART as initialization (b) SART as initialization

(c) wTV with initialization (d) wTV with initialization

(e) waTV with initialization (f) waTV with initialization

Fig. 6. Comparison of SART, wTV and waTV (a = 1, b = 2)
in limited angle tomography. Windowing: [-1000 1730] HU
for (a), (c) and (e), [-220 365] HU for (b), (d) and (f).

obscured by them. In contrast, waTV removes small as well
as large streaks while preserving both the fine bone structures
and the brain texture well. This clinical experiment suggests
that waTV is a better choice than wTV w. r. t. streak reduction
in limited angle tomography. Still, Fig. 6(f) shows the image
reconstructed with waTV may lose some resolution compared
to the reference image (Fig. 5(d)).

5. CONCLUSION AND OUTLOOK

From the experiments, we can conclude that wTV is a good
denoising method since it can remove Poisson noise and small
streaks very well while preserving the image resolution and
contrast. However, it is still not sufficient to remove large

scale streaks. Our proposed waTV algorithm can reduce these
streaks better while similarly preserving the fine bone struc-
tures and the brain texture. However, it may produce new arti-
facts unless the weights are carefully selected and potentially
cause a slight loss of resolution. In future work, more quan-
titative experiments and assessments should be carried out to
explore the trade-off between resolution and artifacts reduc-
tion. Besides, the effects of various weights as well as various
pixel lengths for D̃y in Eqn. 6 should be further investigated.

Disclaimer: The concepts and information presented in this
paper are based on research and are not commercially avail-
able.
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