A New Scale Space Total Variation Algorithm for Limited Angle Tomography

Yixing Huang¹, Oliver Taubmann¹,², Xiaolin Huang¹, Viktor Haase³, Guenter Lauritsch³, Andreas Maier¹,³

¹ Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
² Siemens Healthcare GmbH, Farchnheim, Germany
³ Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany

Introduction

Limited angle tomography

- **Definition:** Scan angle \(\beta_{\text{max}} < \pi + 2 \gamma_{\text{max}} \), here \(\beta = [10^\circ, 170^\circ] \)
- **Challenge:** Data incompleteness causing artifacts
- **Technique:** Iterative reweighted total variation (wTV) [1,2]
- **Limitation:** Low frequency streaks remain
- **Proposed:** Scale space total variation (ssTV)

Materials and Methods

- **Iterative reweighted total variation (wTV):**
 \[
 \min ||f||_{wTV} \quad \text{subject to} \quad Af = P.
 \]
 Define \(||f||_{wTV} = \sum_{x,y,z} W_{x,y,z} ||\partial f||_{L_2} \) ,
 where \(W_{x,y,z} = \frac{1}{||\partial f||_{L_2} + \epsilon} \) is the gradient image, \(\epsilon = 0.001 \).
 Define the gradient of wTV as \(g_{x,y,z} = \frac{\partial ||f||_{wTV}}{\partial f_{x,y,z}} \)

- **Scale space total variation (ssTV):**
 - **Idea:** Down-/upsampling with varying scaling factors \(s \) along direction perpendicular to streaks (anisotropy)
 - **Outer loop** (alternate data fidelity and ssTV minimization):
 - ssTV minimization factor \(s = 2 \) / ssTV minimization factor \(s = 2 \) / ssTV minimization factor \(s = 1 \)
 - **Inner loop** (gradient descent for ssTV minimization):
 - Downsample \(f \) to get \(f_s \)
 - wTV gradient \(g \)
 - Normalize \(g \)
 - Backtracking line search \(r \)
 - Update weight \(W \)

Discussion and Conclusion

- **Coarse scale** reduces low frequency streaks better
- **Fine scale** required to reduce noise and high frequency streaks
- **Scale space** successfully combines the benefits of both
- **Convenient** to implement (additional down-/upsampling only)

References

Contact
yixing.yh.huang@fau.de
www5.cs.fau.de/~yixing

Disclaimer
The concepts and information presented in this paper are based on research and are not commercially available.

Results

- **Phantom study:**
 - Phantom
 - wTV (\(s = 1 \))
 - ssTV, \(s = 2 \)
 - ROI
 - ssTV, \(s = 1,2 \)
 - ssTV, \(s = 1,2,3 \)

Fig. 1: Numerical phantom and reconstructions (ROIs) with different scaling factors.

Fig. 2: Comparison of different scaling factors.

Fig. 3: Two slices of the reconstructed 3-D head dataset with different algorithms.