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Highlights

• LS-SVM with an indefinite kernel is proposed;
• kPCA with an indefinite kernel is proposed;
• feature space interpretation for both indefinite LS-SVM and indefinite kPCA is given;
• LS-SVM with indefinite kernels for classification and kPCA shows good performance on numerical experiments.
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Abstract

Because of several successful applications, indefinite kernels have attracted many research
interests in recent years. This paper addresses indefinite learning in the framework
of least squares support vector machines (LS-SVM). Unlike existing indefinite kernel
learning methods, which usually involve non-convex problems, the indefinite LS-SVM is
still easy to solve, but the kernel trick and primal-dual relationship for LS-SVM with a
Mercer kernel is no longer valid. In this paper, we give a feature space interpretation for
indefinite LS-SVM. In the same framework, kernel principal component analysis with an
infinite kernel is discussed as well. In numerical experiments, LS-SVM with indefinite
kernels for classification and kernel principal component analysis is evaluated. Its good
performance together with the feature space interpretation given in this paper imply the
potential use of indefinite LS-SVM in real applications.

Keywords: least squares support vector machine, indefinite kernel,

classification, kernel principal component analysis

1. Introduction

Mercer’s condition is the traditional requirement on the kernel applied in classical
kernel learning methods, such as support vector machine with the hinge loss (C-SVM, [1]),
least squares support vector machines (LS-SVM, [2][3]), and kernel principal components
analysis (kPCA, [4]). However, in practice, one may meet sophisticated similarity or5

dissimilarity measures which lead to kernels violating Mercer’s condition. Since the kernel
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matrices induced by such kernels are real, symmetric, but not positive semi-definite,
they are called indefinite kernels and the corresponding learning methodology is called
indefinite learning [5]–[15].

Two important problems arise for indefinite learning. First, it lacks the classical10

feature space interpretation for a Mercer kernel, i.e., we cannot find a nonlinear feature
mapping such that its inner-dot gives the value of an indefinite kernel function. Sec-
ond, lack of positive definitiveness makes many learning models become non-convex if
an indefinite kernel is used. In the last decades, there has been continuous progress
aiming at these issues. In theory, indefinite learning in C-SVM has been discussed in the15

Reproducing Kernel Krĕın Spaces (RKKS), cf. [5]–[8]. The kernel Fisher discriminant
analysis with an indefinite kernel can be found in [9]–[11], which is also discussed on
RKKS. In algorithm design, the current mainstream is to find an approximate positive
semi-definite (PSD) kernel and then apply classical kernel learning algorithm based on
that PSD kernel. These methods can be found in [12]–[14] and they have been reviewed20

and compared in [15]. That review also discusses directly applying indefinite kernels in
some classical kernel learning methods which are not sensitive to metric violations. As
suggested by [16], one can use an indefinite kernel to replace the PSD kernel in the dual
formulation of C-SVM and solve it by sequential minimization optimization [17] [18].
This kind of methods enjoy a similar computational efficiency as the classical learning25

methods and hence is more attractive in practice.
Following the way of introducing indefinite kernels to C-SVM, we consider indefinite

learning based on LS-SVM. Notice that using an indefinite kernel in C-SVM results in
a non-convex problem but indefinite learning based on LS-SVM is still easy to solve.
However, Mercer’s theorem is no longer valid. We have to find a new feature space30

interpretation and to give a characterization in terms of primal and dual problems, which
are the theoretical targets of this paper. Since kPCA can be conducted in the framework
of LS-SVM [19], we will discuss kPCA with an indefinite kernel as well.

This paper is organized as follows. Section II briefly reviews indefinite learning.
Section III addresses LS-SVM with indefinite kernels and provides its feature space in-35

terpretation. Similar discussion on kPCA is given in Section IV. Then the performance
of indefinite learning based on LS-SVM is evaluated by numerical experiments in Section
V. Finally, Section VI gives a short conclusion.

2. Indefinite Kernels

We start the discussion from C-SVMwith a Mercer kernel. Given a set of training data40

{xi, yi}mi=1 with xi ∈ R
n and yi ∈ {−1,+1}, we are trying to construct a discriminant

function f(x) : Rn → R and use its sign for classification. Except of linearly separable
problems, a nonlinear feature mapping φ(x) is needed and the discriminant function is
usually formulated as f(x) = w�φ(x) + b. C-SVM trains w and b by the following
optimization problem:45

min
w,b,ξ

1

2
w�w + C

∑m

i=1
ξi

s.t. yi(w
�φ(xi) + b) ≥ 1− ξi, ∀i ∈ {1, . . . ,m} (1)

ξi ≥ 0, ∀i ∈ {1, . . . ,m}.
2



It is well known that the dual problem of (1) takes the formulation as below,

max
α

m∑
i=1

αi − 1

2

m∑
i=1

m∑
j=1

yiαiKijαjyj

s.t.
∑m

i=1
yiαi = 0 (2)

0 ≤ αi ≤ C, ∀i ∈ {1, . . . ,m},

where Kij = K(xi,xj) = φ(xi)
�φ(xj) is the kernel matrix. For any kernel K which

satisfies Mercer’s condition, there is always a feature map φ such that K(xi,xj) =
φ(xi)

�φ(xj). This allows us to construct a classifier to maximize the margin in the
feature space without explicitly knowing φ.50

Traditionally, in (2), we require the positiveness on K. But in some applications,
especially in computer version, there are many distances or dissimilarities, for which
the corresponding matrices are not PSD [20]–[22]. It is also possible that though a
kernel is PSD but is very hard to verify [5]. Even for a PSD kernel, noise may make
the dissimilarity matrix non-PSD [23][24]. All these facts motivated the researchers to55

think about indefinite kernels in C-SVM. Notice that “indefinite kernels” literally cover
many kernels, including asymmetric ones induced by asymmetric distances. But as all
indefinite learning literature, we in this paper restrict “indefinite kernel” to the kernels
that correspond to real symmetric indefinite matrices.

In theory, using indefinite kernels in C-SVM makes Mercer’s theorem not applicable,60

which means that (1) and (2) are not a pair of primal-dual problems and then the solution
of (2) cannot be explained as margin maximization in a feature space. Moreover, the
learning theory and approximation theory about C-SVM with PSD is not valid, since
the functional space spanned by indefinite kernels does not belong to any Reproducing
Kernel Hilbert Space (RKHS). To link the indefinite kernel to RKHS, we need a positive65

decomposition. Its definition is given by [5] as follows: an indefinite kernel K has a
positive decomposition if there are two PSD kernels K+,K− such that

K(u,v) = K+(u,v)−K−(u,v), ∀u,v. (3)

For an indefinite kernel K that has a positive decomposition, there exist Reproducing
Kernel Krĕın Spaces (RKKS). Conditions for the existence of positive decomposition are
given by [5]. However, for a specific kernel, those conditions are usually hard to verify70

in practice. But at least, when the training data are given, the kernel matrix K has
a decomposition which is the difference of two PSD matrices. Whether any indefinite
kernel has a positive decomposition is still an open question. Fortunately, (3) is always
valid for u,v ∈ {xi}mi=1. Thus, indefinite learning can be theoretically analyzed in RKKS
and be implemented based on matrix decomposition in practice.75

The feature space interpretation for indefinite learning is given by [24] for a finite-
dimensional Krĕın space, which is also called a pseudo-Euclidean (pE) space. A pE
space is denoted as R

(p,q) with non-negative integers p and q. This space is a product
of two Euclidean vector spaces Rp × iRq. An element in R

(p,q) can be represented by its
coordinate vector and the coordinate vector gives the inner product: 〈u,v〉pE = u�Mv,80

where M is a diagonal matrix with the first p components equal 1 and others equal to
−1. If we link the components of M with the signs of eigenvalues of the indefinite kernel

3



matrix K, solving (2) for K is interpreted in [24] as distance minimization in R
(p,q). For

learning behavior in RKKS, one can find the discussion on the space size in [5], error
bound in [25], and asymptotic convergence in [26] [27].85

When an indefinite kernel is used in C-SVM, (2) becomes a non-convex quadratic
problem, since K is not positive semi-definite. For a non-convex problem, many algo-
rithms based on global optimality are invalid. An alternative way is to find an approxi-
mate PSD matrix K̃ for an indefinite one K, and then solve (2) for K̃. To obtain K̃, one
can adjust the eigenvalues of K by: i) setting all negative values as zero [12]; ii) flipping90

signs of negative values [13]; iii) squaring the eigenvalues [26] [27]. It also can be imple-
mented by minimizing the Frobenius distance between K and K̃, as introduced by [14].
Since training and classification are based on two different kernels, the above methods are
efficient only when K and K̃ are similar. Also those methods are time-consuming since
they additionally involve an eigenvalue problems. To pursue computational effectiveness,95

we can use descent algorithms, e.g., sequential minimization optimization (SMO) devel-
oped by [17] [18], to directly solve (2) for an indefinite kernel matrix. Though only local
optima are guaranteed, the performance is still promising, as reported by [15] and [16].

3. LS-SVM with Real Symmetric Indefinite Kernels

The current indefinite learning discussions are mainly for C-SVM. In this paper,100

we propose to use indefinite kernels in the framework of least squares support vector
machines. In the dual space, LS-SVM is to solve the following linear system [2]:

[
0 y�

y H+ 1
γ I

]
[b, α1, . . . , αm]

�
=

[
0
1

]
, (4)

where I is an identity matrix, 1 is an all ones vector with the proper dimension, and H
is given by

Hij = yiyjKij = yiyjK(xi,xj).

We assume that the matrix in (4) is full rank. Then its solution can be effectively105

obtained and the corresponding discriminant function is

f(x) =

m∑
i=1

yiαiK(x,xi) + b.

The existing discussion about LS-SVM usually requires K to be positive semi-definite
such that Mercer’s theorem is applicable and the solution of (4) is related to Fisher
discriminant analysis in feature space [28].

Now let us investigate indefinite kernels in LS-SVM (4). One good property is that110

even when K is indefinite, (4) is still easy to solve, which differs from C-SVM, where
an indefinite kernel makes (2) non-convex. Though (4) with an indefinite kernel is easy
to solve, the solution looses many properties of PSD kernels and its feature space in-
terpretations have to be analyzed also in a pE space. This is based on the following
proposition:115

4



Proposition 1. Let α∗, b∗ be the solution of (4) for a symmetric but indefinite kernel
matrix K.
i) There exist two feature maps φ+ and φ− such that

w∗
+ =

m∑
i=1

α∗
i φ+(xi), w∗

− =

m∑
i=1

α∗
i φ−(xi),

which is a stationary point of the following primal problem:

min
w+,w−,b,ξ

1

2

(
w�

+w+ −w�
−w−

)
+

γ

2

m∑
i=1

ξ2i (5)

s.t. yi
(
w�

+φ+(xi) +w�
−φ−(xi) + b

)
= 1− ξi, ∀i ∈ {1, 2, . . . ,m}.

ii) The dual problem of (5) is given by (4), where120

Kij = K(xi,xj) = K+(xi,xj)−K−(xi,xj) (6)

with two PSD kernels K+ and K−:

K+(xi,xj) = φ+(xi)
�φ+(xj), (7)

and
K−(xi,xj) = φ−(xi)

�φ−(xj). (8)

Proof. For an indefinite kernel K, we can always find two PSD kernels K+,K− and
the corresponding feature maps φ+, φ− to satisfy (6)–(8). Using φ+ and φ− in (5), its
Lagrangian of (5) can be written as125

L(w+,w−, b, ξ;α) =
1

2

(
w�

+w+ −w�
−w−

)
+

γ

2

m∑
i=1

ξ2i

−
m∑
i=1

αi

(
yi(w

�
+φ+(xi) +w�

−φ−(xi) + b)− 1 + ξi
)
.

Then the condition of a stationary point yields

∂L
∂w+

= w+ −
∑m

i=1
αiyiφ+(xi) = 0,

∂L
∂w−

= −w− −
∑m

i=1
αiyiφ−(xi) = 0,

∂L
∂b

=
∑m

i=1
αi = 0,

∂L
∂ξi

= γξi − αi = 0,

∂L
∂αi

= yi(w
�
+φ+(xi) +w�

−φ−(xi) + b)− 1 + ξi = 0.

5



Eliminating the primal variables w+,w−, ξ, we get the optimality conditions:
m∑
i=1

αi = 0

and

yi

(∑m

j=1
αjφ+(xi)

�φ+(xj)−
∑m

j=1
αjφ−(xi)

�φ−(xj)
)
− b− αi

γ
= 0.

Substituting (6)–(8) into the above condition leads to (4). Therefore, (4) is the dual
problem of (5). If α∗, b∗ is the solution of (4), then b∗ and130

w∗
+ =

∑m

i=1
α∗
i φ+(xi), w∗

− =
∑m

i=1
α∗
i φ−(xi)

satisfy the first-order optimality condition of (5), i.e., w∗
+, w

∗
−, b

∗ is a stationary point
of (5).

Proposition 1 gives the primal problem and a feature space interpretation for LS-
SVM with an indefinite kernel. Its proof relies on the positive decomposition (6) on K,
which exists for all real symmetric kernel matrices. But it does not mean that we can135

find a positive decomposition for K, i.e., (3) is not necessarily valid. The verification
is usually hard for a specific kernel. If such kernel decomposition exists, Proposition
1 further shows that (4) is pursuing a small within-class scatter in a pE space R

(p,q).
If not, the within-class scatter is minimized in a space associated with an approximate
kernel K̃ = K+ − K− which is equal to K on all the training data. In (7) and (8), the140

dimension of the feature map could be indefinite and then the conclusion is extended to
the corresponding RKKS.

4. Real Symmetric Indefinite Kernel in PCA

In the last section, we considered LS-SVM with an indefinite kernel for binary classifi-
cation. The analysis is applicable to other tasks which can be solved in the framework of145

LS-SVM. In [19], the link between kernel principal component analysis and LS-SVM has
been investigated. Accordingly, we can give the feature space interpretation for kernel
PCA with an indefinite kernel.

For given data {xi}mi=1, the kernel PCA is to solve an eigenvalue problem:

Ωα = λα, (9)

where the centered kernel matrix Ω is induced from a kernel K as follows,150

Ωij = K(xi,xj)− 1

m

m∑
r=1

K(xi, xr)− 1

m

m∑
r=1

K(xj , xr) +
1

m2

m∑
r=1

m∑
s=1

K(xr, xs).

Traditionally, K is limited to be a PSD kernel. Then a Mercer kernel is employed and
(9) maximizes the variance in the related feature space.

Following the same way of introducing an indefinite kernel in C-SVM or LS-SVM,
we can directly use an indefinite kernel for kPCA (9). Notice that for an indefinite
kernel, the eigenvalues will be positive and negative. All these eigenvalues will be still155

real for the use of a symmetric kernel. There is no difference on the problem itself
and the projected variables can be calculated as the same. However, the feature space
interpretation fundamentally changes, which is discussed in the following proposition.

6



Proposition 2. Let α∗ be the solution of (9) for an indefinite kernel K.
i) There are two feature maps φ+ and φ− such that160

w∗
+ =

m∑
i=1

α∗
i (φ+(xi)− μ̂φ+),

w∗
− =

m∑
i=1

α∗
i (φ−(xi)− μ̂φ−),

which is a stationary point of the following primal problem:

max
w+,w−,ξ

γ

2

m∑
i=1

ξ2i − 1

2

(
w�

+w+ −w�
−w−

)
(10)

s.t. ξi = w�
+(φ+(xi)− μ̂φ+) +w�

−(φ−(xi)− μ̂φ−), ∀i ∈ {1, . . . ,m}.
Here, μ̂φ+ , μ̂φ− are the centering terms, i.e.,

μ̂φ+ =
1

m

m∑
i=1

φ+(xi) and μ̂φ− =
1

m

m∑
i=1

φ−(xi).

ii) If we choose γ as γ = 1
λ and decompose K as in (6)–(8), then the dual problem of

(10) is given by (9).

Proof. Again, for an indefinite kernel K, we can find two PSD kernels K+,K−, and the165

corresponding nonlinear feature maps φ+, φ− to satisfy (6)–(8).
The Lagrangian of (10) can be written as

L(w+,w−, ξ;α) =
1

2

(
w�

+w+ −w�
−w−

)− γ

2

m∑
i=1

ξ2i

−
m∑
i=1

αi

(
w�

+(φ+(xi)− μ̂φ+) +w�
−(φ−(xi)− μ̂φ−)− ξi

)
.

Then from the conditions of a stationary point, we have

∂L
∂w+

= w+ −
∑m

i=1
αi(φ+(xi)− μ̂φ+) = 0,

∂L
∂w−

= −w− −
∑m

i=1
αi(φ−(xi)− μ̂φ−) = 0,

∂L
∂ξi

= −γξi + αi = 0,

∂L
∂αi

= w�
+(φ+(xi)− μ̂φ+) +w�

−(φ−(xi)− μ̂φ−)− ξi = 0.

Elimination of the primal variables results in the following optimality condition,

1

γ
αi −

∑m

j=1
αj(φ+(xj)− μ̂φ+)

�(φ+(xi)− μ̂φ+) (11)

−
∑m

j=1
αj(φ−(xj)− μ̂φ−)

�(φ+(xi)− μ̂φ−) = 0, ∀i ∈ {1, 2, . . . ,m}.
7



Applying the kernel trick (7) and (8), we know that170

(φ±(xi)− μ̂φ+)
�(φ±(xj)− μ̂φ±)

= K±(xi,xj)− 1

m

m∑
r=1

K±(xi,xr)−
m∑
r=1

K±(xj , xr) +
1

m2

m∑
r=1

m∑
s=1

K±(xr, xs).

Additionally with (6), the optimality condition (11) can be formulated as the eigenvalue
problem (9). Therefore, (9) is the dual problem of (10) and gives a stationary solution
for (10), which aims at having maximal variance as the same as kPCA with PSD kernels.

5. Numerical Experiments

In the preceding sections, we discussed the use of indefinite kernels in the framework175

of LS-SVM for classification and kernel principal component analysis, respectively. The
general conclusions are: i) indefinite LS-SVM shares the same optimization model as
the PSD ones and hence the same toolbox, namely LS-SVMlab [35], is applicable; ii) on
the computational load of LS-SVM, there is no difference between a PSD kernel and an
indefinite kernel, i.e., using an indefinite kernel in LS-SVM will not additionally bring180

computational burden; iii) the feature space interpretation of LS-SVM for an indefinite
kernel is extended to a pE space and only a stationary point can be obtained.

In theory, indefinite kernels are the generalization of PSD ones, which are constrained
to have zero-negative parts in (6). In practice, there are indefinite kernels successfully
applied in specific applications [29]-[31]. Now with the feature space interpretation given185

in this paper, one can use LS-SVM and its modifications to learn from an indefinite
kernel. In general, algorithmic properties holding for LS-SVM with PSD kernels are still
valid when an indefinite kernel is used.

In this section, we will test the performance of LS-SVM with indefinite kernels on
some benchmark problems. It should be noticed that the performance heavily relies on190

the choice of kernel. Though there are already some indefinite kernels designed to specific
tasks, it is still hard to find an indefinite kernel for a wide range of problems. Therefore,
PSD kernels, especially the radial basis function (RBF) kernel and the polynomial kernel,
are currently dominant in kernel learning. One challenger from indefinite kernels is the
tanh kernel, which has been evaluated in the framework of C-SVM [8] [16]. Another195

possible indefinite kernel is a truncated �1 distance (TL1) kernel, which has been recently
proposed in [32]. The mentioned kernels are listed below:

• PSD kernels:

– linear kernel: K(u,v) = u�v,
– RBF kernel with parameter σ: K(u,v) = exp

(−‖u− v‖2�2
/
σ2

)
,200

– polynomial kernel with parameters c ≥ 0, d ∈ N+: K(u,v) = (u�v + c)d.

• indefinite kernels:

– tanh kernel with parameters c, d 1: K(u,v) = tanh(cu�v + d),

1The tanh kernel is conditionally positive definite (CPD) when c ≥ 0 and is indefinite otherwise; see,
e.g., [33] [34]. In our experiments, we consider both positive and negative c, and hence the tanh kernel
is regarded as an indefinite kernel.

8



– TL1 kernel with parameter ρ: K(u,v) = max{ρ− ‖u− v‖�1 , 0}.
These kernels will be compared in the framework of LS-SVM for both classification205

and principal component analysis. First, consider binary classification problems, for
which the data are downloaded from UCI Repository of Machine Learning Datasets [36].
For some datasets, there are both training and test data. Otherwise, we randomly pick
half of the data for training and the rest for test. All training data are normalized
to [0, 1]n in advance. In training procedure, there are a regularization coefficient and210

kernel parameters, which are tuned by 10-fold cross validation. Specifically, we randomly
partition the training data into 10 subsets. One of these subsets is used for validation in
turn and the remaining ones for training. As discussed in [32], the performance of the
TL1 kernel is not very sensitive to the value of ρ and ρ = 0.7n was suggested. We thus
also evaluate the TL1 kernel with ρ = 0.7n. With one parameter less, the training time215

can be largely saved.
The above procedure is repeated 10 times, and then the average classification accuracy

on test data are reported in Table 1, where the number of training set m and the problem
dimension n are given as well. The best one for each dataset in the sense of average
accuracy is underlined. The results confirm the potential use of indefinite kernels in220

LS-SVM: an indefinite kernel can achieve similar accuracy as a PSD kernel in most of
the problems and can have better performance in some specific problems. This does
not mean that indefinite kernel surely improves the performance from PSD ones but
for some datasets, e.g., Monk1, Monk3, and Splice, it is worthy to consider indefinite
learning with LS-SVM which may have better accuracy within almost the same training225

time. Moreover, this experiment, for which the performance of the TL1 kernel with
ρ = 0.7n being satisfactory for many datasets, illustrates the good parameter stability
of the TL1 kernel.

Table 1: Test Accuracy of LS-SVM with PSD and Indefinite Kernels

RBF poly tanh TL1 TL1
dataset m n (CV) (CV) (CV) ρ = 0.7n (CV)

DBWords 32 242 84.3% 85.6% 75.0% 85.2% 84.4%
Fertility 50 9 86.7% 80.4% 83.8% 86.7% 87.8%
Planning 91 12 70.2% 67.9% 71.6% 70.6% 73.6%
Sonar 104 60 84.5% 83.1% 72.9% 84.3% 83.6%
Statlog 135 13 81.4% 75.2% 82.7% 83.8% 83.5%
Monk1 124 6 79.1% 78.3% 76.6% 73.4% 85.2%
Monk2 169 6 84.1% 75.6% 69.9% 53.4% 83.7%
Monk3 122 6 93.5% 93.5% 88.0% 97.2% 97.2%
Climate 270 20 93.2% 91.7% 92.6% 91.9% 92.0%
Liver 292 10 69.0% 67.9% 67.2% 69.7% 71.8%
Austr. 345 14 85.0% 85.1% 86.6% 86.0% 86.7%
Breast 349 10 96.4% 95.7% 96.6% 97.0% 97.1%
Trans. 374 4 78.3% 78.5% 78.9% 78.4% 78.4%
Splice 1000 121 89.4% 87.3% 90.1% 93.6% 94.9%
Spamb. 2300 57 93.1% 92.4% 91.7% 94.1% 94.2%
ML-prove 3059 51 72.5% 74.6% 71.8% 79.1% 79.3%

In the following, we use indefinite kernels for principal component analysis. As an
9



intuitive example, we consider a 3-dimensional sphere problem that distinguishs data230

from the sphere with radius equal to 1 and 3. The data are shown in Fig.1(a). To reduce
the dimension, we apply PCA, kPCA with the RBF kernel, and kPCA with the TL1
kernel, respectively. The obtained two dimensional data are displayed in Fig.1(b)–(f),
which roughly imply that a suitable indefinite kernel can be used for kernel principal
component analysis.235
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Figure 1: (a) Data points of one class come from the unit sphere and are marked by red circles. The
other data points, shown by blue stars, come from a sphere with radius 3. (b) This dataset is not linearly
separable and thus linear PCA is not helpful for distinguishing the two classes. Instead, kernel PCA is
needed and if the parameter is suitably chosen, the reduced data can be correctly classified by a linear
classifier. (c) the RBF kernel with σ = 0.05; (d) the TL1 kernel with ρ = 0.1n; (e) the TL1 kernel with
ρ = 0.2n; (f) the TL1 kernel with ρ = 0.5n, which is similar to linear PCA.

To quantitatively evaluate kPCA with indefinite kernels, we choose the problems of
which the dimension is higher than 20 from Table 1 and then apply kPCA to reduce
the data into nr dimension. For the reduced data, linear classifiers, trained from linear
C-SVM with libsvm [37], are used to classify the test data. The parameters, including
kernel parameters and the regularization constant in linear C-SVM, are tuned based on240

10-fold cross-validation. In Table 2, the average classification accuracy of 10 trials for
different reduction ratios nr/n is listed. The results illustrate that indefinite kernels can
be used for kPCA. Its performance in general is comparable to PSD kernels and for some
datasets the performance is significantly improved.

Summarizing all the experiments above, we observe the potential use of indefinite245

kernels in LS-SVM for classification and kPCA. For example, the TL1 kernel has similar
performance as the RBF kernel in many problems and has much better results for several
datasets. Our aim in this experiment is not to claim which kernel is the best, which
actually depends on the specific problem. Instead, we show that for some problems, a
proper indefinite kernel can significantly improve the performance from PSD ones, which250

may motivate the researchers to design indefinite kernels and use them in LS-SVMs.
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Table 2: Test Accuracy based on kPCA with Different Reduction Ratios

dataset m n ratio Linear RBF poly tanh TL1

Sonar 104 60 10% 72.6% 75.6% 75.2% 63.8% 77.9%
30% 73.1% 79.1% 78.2% 71.0% 80.4%
50% 75.9% 80.7% 79.0% 71.9% 81.9%

Climate 270 21 10% 90.4% 90.5% 91.4% 91.5% 90.5%
30% 90.9% 90.8% 91.4% 91.6% 90.9%
50% 91.6% 91.4% 93.9% 91.6% 91.9%

Qsar 528 41 10% 74.4% 77.8% 75.5% 77.5% 78.8%
30% 85.4% 86.4% 84.1% 84.5% 85.9%
50% 85.9% 86.7% 85.4% 86.0% 86.2%

Splice 1000 60 10% 83.7% 86.6% 85.5% 83.7 % 91.9%
30% 83.9% 87.7% 85.3% 83.0 % 91.1%
50% 84.1% 87.8% 86.5% 85.2 % 91.3%

Spamb. 2300 57 10% 84.7% 86.5% 84.9% 86.4% 88.4%
30% 87.7% 89.9% 88.3% 89.9% 91.8%
50% 90.7% 91.0% 91.5% 92.8% 92.8%

ML-prove 3059 51 10% 59.2% 69.7% 64.0% 63.3% 70.1%
30% 67.9% 70.3% 72.8% 69.3% 71.3%
50% 70.2% 71.0% 73.1% 68.9% 75.5%

6. Conclusion

In this paper, we proposed to use indefinite kernels in the framework of least squares
support vector machines. In the training problem itself, there is no difference between
definite kernels and indefinite kernels. Thus, one can easily use an indefinite kernel in255

LS-SVM by simply changing the kernel evaluation function. Numerically, the indefinite
kernels achieve good performance compared with commonly used PSD kernels for both
classification and kernel principal component analysis. The good performance motivates
us to investigate the feature space interpretation for an indefinite kernel in LS-SVM,
which is the main theoretical contribution of this paper. We hope that the theoretical260

analysis and good performance shown in this paper can attract research and application
interests on indefinite LS-SVM and indefinite kPCA in the future.
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