Image Quality Analysis of Limited Angle Tomography Using the Shift-Variant Data Loss Model ¹Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nuremberg ²Siemens Healthcare GmbH, Forchheim ³Institute for Signal Processing, University of Luebeck

Yixing Huang¹, Guenter Lauritsch², Mario Amrehn¹, Oliver Taubmann¹, Viktor Haase³, Daniel Stromer¹, Xiaolin Huang¹, Andreas Maier¹

FACULTY OF ENGINEERING

SIEMENS

Introduction

Limited angle tomography

- Definition: scan angle $< \pi + 2\gamma_{max}$
- Challenge: data incompleteness, thus streak artefacts
- Reconstruction: iterative reconstruction with total variation regularization
- Our task: Analyze the reconstructed image quality

Results and Discussions

Shape and Position Dependency

The line structure at the top position is missing while all other structures are reconstructed very well.

Materials and Methods

The Shift-Variant Data Loss Model [1] (SVDL)

• SVDL describes data loss in frequency domain using local Fourier transform

$$\eta_1 = \arctan\left(\frac{y + D\sin\beta_{\min}}{D\cos\beta_{\min} - x}\right), \eta_2 = \arctan\left(\frac{x - D\cos\beta_{\max}}{y + D\sin\beta_{\max}}\right) + \frac{\pi}{2}$$
(1)

• Double wedge data loss area in frequency domain (Fig. 1)

Iterative Reweighted Total Variation Algorithm [2] (wTV)

• Optimization model (Fig 2):

$$\min_{\mathbf{f}} ||\mathbf{f}||_{wTV} \text{ subject to } \mathbf{A}\mathbf{f} = \mathbf{p}$$

$$\begin{aligned} \|\boldsymbol{f}\|_{wTV} &= \sum_{x,y} \boldsymbol{W}_{x,y} \| (\mathcal{D}\boldsymbol{f})_{x,y} \|_{2} \quad \text{where } \boldsymbol{W}_{x,y} = \frac{1}{\| (\mathcal{D}\boldsymbol{f})_{x,y} \|_{2} + \epsilon} \\ \boldsymbol{g}_{x,y} &= \frac{\partial \| \boldsymbol{f} \|_{wTV}}{\partial \boldsymbol{f}_{x,y}} \end{aligned}$$

Simulated Phantom Design

- Phantom 1: circular areas and lines at different positions
- Phantom 2: rectangles with different sizes

Fig. 3: Top left to right: phantom, top circular area, top line; bottom left to right: reconstruction, Fourier transform of top circular area, Fourier transform of top line. The yellow, red and green lines correspond to the double wedge boundaries of points x_1 , x_2 and x_3 , respectively.

Size Dependency

(2)

(3)

(4)

• Phantom 3: rectangles with different orientation relative to scan trajectory

Fig. 2: wTV algorithm

Fig. 1: SVDL model

Conclusion

Reconstructed image quality depends on:

- Relationship of trajectory and object structure
 - Position
 - Shape
 - Size
 - Orientation
- Acquired frequency components

Fig. 4: Left to right: phantom, reconstruction, one rectangle, Fourier transform of the rectangle. The yellow and red lines correspond to the data loss double wedge boundaries of points x_4 and x_5 .

Orientation Dependency

References

[1] Bartolac S. et al., A local shift- variant Fourier model and experimental validation of circular cone-beam computed tomography artifacts. Med Phys. 2009;36(2):500-512.

[2] Candés E. J. et al., Enhangeing Sparsity by Reweighted I₁ Minimization. J Fourier Anal Appl. 2008;14:877-905.
[3] Maier A. et al., CONRAD - A software framework for cone-beam imaging in radiology. Med Phys.2013;40(11):111914.

Fig. 5: Top: phantom and its reconstructions in trajectories (β_{min}, β_{max}) = $(-10^{\circ}, 150^{\circ})$, ($0^{\circ}, 160^{\circ}$) and ($10^{\circ}, 170^{\circ}$), respectively. Bottom: one rectangle and the data loss double wedges in different trajectories.

Disclaimer:

The concepts and information presented in this paper are based on research and are not commercially available.

Contact:

yixing.yh.huang@fau.de www5.cs.fau.de/~yixing