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Abstract. This paper investigates the application of the shift-variant
data loss (SVDL) model in image quality assessment for a state-of-
the-art reconstruction technique, the weighted total variation (wTV),
in limited angle tomography. The SVDL model is used to analyze the ac-
quired frequency information in 2-D fan-beam limited angle tomography.
The wTV algorithm is applied to reconstruct some specific mathematical
phantoms. The experiments show that the reconstructed image quality
depends on the relation of the source trajectory and geometric structure
of the imaged object, position, shape, size and orientation in particular.

1 Introduction

Constraints arising from the practical design of X-ray imaging devices used in
computed tomography (CT) reconstruction may sometimes limit their gantry
rotation such that not all required angles can be acquired. In limited angle
tomography, some information is lost and streak artifacts occur due to the data
loss. Steven et al. [1] proposed a shift-variant data loss (SVDL) model using local
Fourier transforms to analyze the data loss in cone-beam CT with a circular
trajectory. Similarly, it can also be applied to limited angle tomography.

The data loss makes compressed sensing (CS) technologies, especially total
variation (TV) algorithms, more attractive because CS can use relatively few
data retaining a good reconstruction result. Recently, a variety of TV algorithms
such as iTV [2], ASD-POCS+TV [3], anisotropic TV [4], and spatial-temporal
TV regularization (STTVR) [5] have been developed. Pan et al. [6] demonstrated
that iterative reconstruction methods with TV minimization can reduce streak
artifacts well in limited angle tomography. However, the staircasing effect may
blur the reconstructed image. In 2008, Candès et al. [7] proposed the weighted
total variation (wTV) algorithm to enhance sparsity, which can avoid staircasing
effects and preserve the sharp edges better than the non-weighted TV algorithm.

In this paper, we use the SVDL model to analyze the acquired frequency
information in fan-beam limited angle tomography and investigate the quality
of images reconstructed with the wTV algorithm.
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2 Materials and Methods

2.1 The Shift-variant Data Loss Model

In 2-D fan beam CT, a π + 2γmax short scan is sufficient and necessary for
reconstruction, where γmax is half a fan angle. However, in limited angle tomog-
raphy, the scan angle is less than that. Thus, some information of the object
is not acquired and streak artifacts occur due to the data loss. Here we use a
fan-beam geometry with βmin = 0◦, βmax = 160◦, γmax = 10◦ and d = 2175 mm
to describe the SVDL model, where βmin and βmax are the start and end source
rotation angle and d is the source to detector distance. The trajectory is shown
in Fig. 1.

The SVDL model describes the data loss in frequency domain. In Fig. 1,
only the local small neighborhood of the point x = (x, y) is considered. Rays
intersecting this neighborhood can be regarded as parallel rays since the X-
ray source is far away in comparison. Thus, the central slice theorem known
for parallel-beam geometry can be applied here to analyze the data loss in the
frequency domain. When the source is at the start position S0 (β = βmin),
according to the central slice theorem, the red line, which is perpendicular to
the ray from S0 to x and forms the angle η1 with the Y -axis, is measured
in the frequency domain. Similarly, when the source is at the end position S1

(β = βmax), the red line with the angle η2 is measured. Therefore, the sector
between the angles η1 and η2 is acquired and a double wedge area (shaded area)
is lost. The two boundary angles for the double wedge can be calculated as

η1 = atan

(
y +D sinβmin

D cosβmin − x

)
, η2 = atan

(
x−D cosβmax

y +D sinβmax

)
+

π

2
(1)

2.2 Iterative Reweighted Total Variation Algorithm

The objective function using wTV minimization for limited angle reconstruction
is

min
f

||f ||wTV subject to ||Af − p||22 ≤ ε (2)

Fig. 1. The scan trajectory and a
sketch of the shift-variant data loss
model. The X-ray source rotates from
S0 (β = 0◦) to S1 (β = 160◦).
The red lines with angles η1 and
η2 are the minimum and maximum
frequency components available in
frequency domain, respectively. The
shaded area shows the region where
data is missing (double wedge shape).



Image Quality Analysis of Limited Angle Tomography 3

where f is the image, A is the system projection matrix, p is the acquired
projection data and ε is a small value for the data consistency error. Based on
Candés’ wTV algorithm [7], ||f ||wTV is defined as:

||f ||wTV =
∑
i,j

W i,j || (Df)i,j ||2 where W i,j =
1

||(Df)i,j ||2 + ϵ
(3)

W is the weight matrix, i and j are pixel indices, Df is the gradient of the image
f and ϵ is a parameter that influences the reconstruction convergence speed and
reconstructed image resolution.

All images are reconstructed with ϵ = 0.001 in Eqn. (3) chosen heuristically
and the reconstruction results are obtained when the algorithm reaches the ter-
mination criterion r < 1.0−7, where r is the root-mean-square difference of two
iteration results.

2.3 Simulated Phantom Design

To investigate the relation between the SVDL model and the image quality
reconstructed with the wTV algorithm, three groups of phantoms are designed.
The detector size is 768 pixels and the pixel size is 1 mm. The angular increment
is 1◦, γmax = 10◦ and d = 2175 mm. The whole experimental setup, including
generation of the phantoms, was implemented in CONRAD [8].

The first phantom (Fig. 2(a)) is a mix of circular areas and lines. The image
size is 512× 512, the radii for the outer and inner boundary circles are 230 and
205 pixels respectively. The widths of the four lines and the radii of the eight
small circular areas are both 3 pixels. The lines and the small circles are located
at different positions. The attenuation coefficients for the white and black areas
are 1/pixel and 0 respectively. The attenuation coefficient for the small circular
areas and the lines is 0.7/pixel, and for the area between the two large circles it
is 0.4/pixel.

The second group consists of two phantoms, shown on the left of Fig. 3. The
rectangles in each phantom have the same width but different lengths. The sizes
are 50 × 5 and 150 × 5 respectively and the distance between two rectangles is
5 pixels. For the first phantom and second group of phantoms, (βmin, βmax) =
(0◦, 160◦).

The third phantom shown in Fig. 4(a) also consists of rectangles but with
the size 80 × 5. In order to get different phantom orientations relative to the
source trajectory, three scan trajectories are adopted. The scan trajectories are
(βmin, βmax) = (−10◦, 150◦), (0◦, 160◦) and (10◦, 170◦).

3 Results

3.1 Shape and Position Dependency

In Fig. 2, the wTV reconstruction result (Fig. 2(d)) shows that the line structure
at the top position is missing while all other structures are reconstructed very
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(a) (b) (c)

(d) (e) (f)

Fig. 2. (a) Phantom. (b) Top circular area. (c) Top line. (d) Reconstruction. (e) Fourier
transform of (b). (f) Fourier transform of (c). The yellow, red and green lines correspond
to the double wedge boundaries of points x1, x2 and x3, respectively.

well, which demonstrates that the image quality strongly depends on the shape
and location of the structure to be reconstructed. It indicates that in medical
applications, clinically important information may be obscured completely.

The SVDL model is based on the local Fourier transform. The Fourier trans-
form of the top circular area (Fig. 2(b)) and the double wedge boundaries of
its center point x1 is shown in Fig. 2(e). The Fourier transform of the top (Fig.
2(c)) or bottom line is shown in Fig. 2(f), and the double wedge boundaries of
their center points x2 and x3 are shown in red and green lines. Though some
frequency components are lost inside the double wedges for the top circle and
the bottom line, the major frequency components are available. For the left
and right vertical line structures, their frequency components are almost in the
horizontal direction and more information is available. Therefore, they can be
reconstructed very well. However, the line at the top position loses the major
frequency components and the wTV algorithm is not able to reconstruct it.

3.2 Size Dependency

Fig. 3 shows that wTV can reconstruct the shorter rectangles very well while it
fails to recover the upper part of the longer rectangles. We can take the points x4

and x5, which are the centers of top 6th and 16th rectangles, to analyze the data
loss double wedges drawn in black and red lines, respectively. Comparing Fig.
3(b) with Fig. 3(a), with increasing length the principal frequency components
are more focused around the 0◦ direction and less measured data are available
outside the double wedge area. Therefore, it becomes much harder to reconstruct.
As the black double wedges are narrower than the red ones, which means that at
lower parts of the phantom more frequency components are available, the lower
part can be reconstructed well even in the case of 150× 5 phantom.
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(a) 50× 5

(b) 150× 5

Fig. 3. Results for the second group of phantoms. From left to right: phantom, recon-
struction, top 16th rectangle, Fourier transform of the 16th rectangle. The yellow and
red lines correspond to the data loss double wedge boundaries of points x4 and x5.

3.3 Orientation Dependency

Fig. 4(a) shows that wTV can reconstruct all the rectangles very well in the
scan trajectory (βmin, βmax) = (−10◦, 150◦) while it fails to reconstruct most
rectangles in the trajectory (βmin, βmax) = (10◦, 170◦). We take the center points
at the top 6th and bottom 10th rectangles, x6 and x7, to analyze the data loss
double wedge in different scan trajectories. Fig. 4(f) shows that in trajectory
(βmin, βmax) = (−10◦, 150◦) most frequency components are outside both the red
and green double wedges, therefore all the rectangles can be reconstructed very
well. Fig. 4(g) shows that most frequency components are inside the red double
wedge but outside the green double wedge in trajectory (βmin, βmax) = (0◦, 160◦),
that is why wTV can reconstruct most lower rectangles but fails at the area
around point x6. Fig. 4(h) shows that more frequency components are inside
the red and green double wedges in trajectory (βmin, βmax) = (10◦, 170◦) and
thus most rectangles are blurred. However, since the green double wedge is much
narrower, the very bottom rectangles are still recovered.

4 Discussion

Based on the above experiments, we can conclude that the reconstructed image
quality depends on the relationship of source trajectory and geometric structure
of the imaged object, position, shape, size and orientation in particular. Fun-
damentally, whether the wTV algorithm or any type of reconstruction method
can reconstruct the object structure depends on the quantity of acquired data
according to the shift-variant data loss model.
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Fig. 4. (a) Phantom. (b) Reconstruction, (βmin, βmax) = (−10◦, 150◦). (c) Reconstruc-
tion, (βmin, βmax) = (0◦, 160◦). (d) Reconstruction, (βmin, βmax) = (10◦, 170◦). (e) 6th
rectangle in the phantom. (f), (g) and (h) are Fourier transforms of (e). The red and
green lines in (f), (g) and (h) correspond to the double wedge boundaries at points x6

and x7 in different trajectories as (b), (c) and (d), respectively.

Disclaimer : The concepts and information presented in this paper are based
on research and are not commercially available.
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