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Abstract—Multiframe super-resolution algorithms reconstruct
high-resolution images by exploiting complementary information
in multiple low-resolution frames. However, despite their success
under ideal conditions, most existing methods rely on simplistic
approximations to the physics of image acquisition and show lim-
ited robustness in real-world applications. This paper proposes
spatially adaptive Bayesian modeling and an iterative algorithm
for robust super-resolution imaging. In particular, we introduce
a weighted Gaussian observation model to consider space variant
noise and weighted bilateral total variation to exploit sparsity of
natural images. Based on this model, we develop a majorization-
minimization algorithm implemented as iteratively re-weighted
minimization. The proposed method simultaneously estimates
model parameters and the super-resolved image in an iterative
coarse-to-fine scheme. Compared to prior work, our approach
combines the benefits of achieving robust and edge preserving
image reconstruction with small amount of parameter tuning,
while being flexible in terms of motion models, computationally
efficient and easy to implement. Our experimental evaluation con-
firms that our approach outperforms state-of-the-art algorithms
under various practical conditions, e. g. inaccurate geometric and
photometric registration or invalid measurements.

Index Terms—Super-resolution, sparse regularization, auto-
matic parameter selection, majorization-minimization

I. INTRODUCTION

THE spatial resolution of an imaging system is a crucial
parameter to characterize its ability to capture images with

a high level of detail. In many practical applications, this is one
of the major quality indicators. Super-resolution is a method
to increase the resolution of a camera by an enhancement of
its pixel sampling by means of image processing, i. e. without
the need to modify the sensor. One important paradigm is
the reconstruction of high-resolution images from a set of
low-resolution frames taken from the same scene [1]. Most
reconstruction-based algorithms exploit subpixel displacements
due to camera or object motion to combine complementary
information present in multiple frames.

Even if a variety of super-resolution algorithms have been
proposed over the past years for monochromatic [2]–[4] or
color images [5], [6], their success in practical applications is
often limited. In addition to theoretical limitations explained
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Fig. 1: Super-resolution reconstruction (5× magnification) provided by our
robust algorithm compared to a non-robust model using the algorithm in [2].

by the perturbation theory of linear systems [7], there are
several practical constraints, which make super-resolution
difficult. 1) If the subpixel motion is unknown, super-resolution
requires an accurate estimate. This is hard to obtain using
standard motion estimation techniques, especially if non-rigid
motion, independently moving objects or occlusion must be
taken into account. Some approaches are also limited to
simplistic parametric models, e. g. globally rigid or affine
transformations, which are inappropriate for many applications.
2) Reconstruction-based approaches usually approximate the
physics of image acquisition with a simplified imaging model
and are sensitive to deviations between assumed and true
model parameters. Some examples for aspects, which are
rarely included in such models are space variant noise, image
compression, camera white-balancing or invalid pixels. 3) As
super-resolution is known to be an ill-posed problem, many
approaches make use of regularization techniques derived from
prior knowledge regarding the appearance of images. This has
a crucial impact on the performance of super-resolution but
many commonly used general-purpose priors are inadequate
to model natural images. 4) Algorithms often rely on user-
defined hyperparameters, e. g. regularization parameters, that
must be selected a priori. However, parameter selection is often
cumbersome and limits the robustness of super-resolution if
not done appropriately.

In real-world applications, super-resolution needs to build
on robust estimation in order to achieve reliable results. The
influence of robustness is demonstrated in Fig. 1, where the
resolution chart in Fig. 1a is super-resolved in the presence of
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inaccurate motion estimation. Fig. 1b depicts the super-resolved
image obtained by a model that can be considered non-robust,
e. g. using the maximum a-posteriori (MAP) formulation in [2],
and is severely affected by the motion estimation uncertainty.
Our work aims at robust reconstruction as depicted in Fig. 1c.

A. Related Work

A large class of super-resolution algorithms is derived from
a Bayesian perspective due to the simplicity and flexibility to
integrate prior knowledge and different imaging models. Here,
the design of robust algorithms is focused on two aspects.

1) Robust Observation Models and Optimization: One
primary goal is the development of robust reconstruction
algorithms based on outlier-insensitive observation models. For
this purpose, a common approach is to use outlier detection
techniques prior to super-resolution reconstruction. These are
typically designed for specific types of outliers, e. g. in motion
estimation [8] or saturated pixels [9]. As a more general
approach, Zomet et al. [3] have proposed a robust gradient
descent scheme using outlier-insensitive update equations.
Similarly, Farsiu et al. [4] have introduced MAP estimation
based on the L1 norm as robust measure, which is statistically
optimal in case of Laplacian noise and tolerate model outliers.
However, this approach is limited by the fact that inliers
and outliers are uniformly weighted, which is not necessarily
optimal to describe inliers. For this purpose, re-descending M-
estimators [10], [11] or hybrid error norms [12], [13] have been
investigated. With a similar motivation, pixel-wise weighted
least-square optimization [14]–[16] has been proposed. One
common issue of these methods is that they require user
supervision to tune parameters or employ ad-hoc methods
to select them prior to super-resolution. In the work of He and
Kondi [17], an algorithm accounting for different noise levels
and adaptive regularization weight selection has been developed.
A similar method has been introduced by Vrigkas et al. [18],
which uses an outlier-insensitive M-estimator. However, these
derivations are based on Tikhonov regularization limiting edge
reconstruction as discussed below.

A complementary trend to the aforementioned techniques
is the use of joint methods to estimate model parameters
simultaneously to super-resolution, e. g. to improve the initial
motion estimation [19] or to estimate an unknown blur kernel
[20], [21]. A different approach is based on a variational
Bayesian formulation [22]. Even if these approaches are able
to improve accuracy of super-resolution and the utilized model
parameters substantially, they are either limited to simplified
models, computationally demanding or both. Typically such
methods are based on non-robust observation models to make
joint optimization or variational formulations tractable.

2) Regularization techniques: As super-resolution is an ill-
posed problem, another key aspect to achieve robustness is the
image prior that is used to regularize the image reconstruction.
Tikhonov regularization based on the L2 norm of the image
gradient or the curvature [2] is one of the most commonly used
techniques to alleviate the ill-posedness. While this often leads
to efficient algorithms as the prior can be treated analytically,
one inherent limitation of Tikhonov regularization is the ability

of edge reconstruction since discontinuities are over-penalized.
Alternatively, priors that exploit piecewise smoothness of
natural images [23] or sparse priors such as total variation
(TV) [24] or bilateral total variation (BTV) [4] have been
introduced to handle this issue. Yuan et al. [25] and Li et al.
[26] have presented spatially adaptive versions of these priors
to further enhance edge reconstruction. However, the successes
of these methods is highly dependent on additional feature
extraction algorithms. Regularization of ill-posed problems has
also been widely investigated for compressed sensing. Here,
sparse regularization is based on iterated L1 norm optimization
that has been studied for signal recovery [27], [28]. It has
been demonstrated that this approach leads to sparser solutions
compared to the conventional TV priors making it attractive
for regularization in super-resolution. Other fields, where this
concept has already been successfully applied include denoising,
blind deconvolution or range imaging [29], [30].

B. Contribution and Outline

In view of these findings, we propose a novel super-resolution
method to simultaneously address robustness in the observation
and the prior model as well as automatic parameter selection.
We introduce an optimization scheme as extension of [15] that
is flexible in terms of motion models and does not rely on
additional feature extraction as used, e. g. in [13], [25], [26].
In summary, our contributions are as follows:
• We formulate robust super-resolution from a Bayesian

perspective using a weighted Gaussian distribution to
consider mixed noise described by inliers and outliers.

• We propose weighted BTV as a novel image prior for
sparse and edge preserving regularization.

• We propose iterative noise and regularization parameter
estimation to avoid manual parameter tuning.

• We develop an iteratively re-weighted minimization al-
gorithm implemented in a coarse-to-fine scheme to solve
the underlying optimization problem efficiently.

To facilitate reproducible research, Matlab code of our method
is public available on our web page1.

The remainder of this paper is organized as follows. Section
II formulates the underlying mathematical framework for super-
resolution used in this work. Section III introduces the proposed
numerical optimization algorithm formulated as iteratively re-
weighted minimization scheme. Section IV gives an in-depth
theoretical analysis of our algorithm in terms of convergence.
Section V presents a comprehensive quantitative analysis, a
comparison to related methods and experimental evaluations
on real data. Finally, Section VI summarizes our work.

II. PROBLEM FORMULATION

A. Image Formation Model

Our method is based on a mathematical model that describes
the physical process of obtaining low-resolution frames from a
high-resolution image. We employ a generative image model [2]
that considers subpixel displacements between low-resolution
frames as well as linear, space invariant (LSI) blur due to

1www5.cs.fau.de/research/software/multi-frame-super-resolution-toolbox/
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the camera point spread function (PSF) and additive noise. A
single frame y(k) of size M = M1 ·M2 pixels acquired at
time step k out of a sequence y(1), . . . ,y(K) is related to the
unknown high-resolution image x of size N = N1 ·N2 pixels
in matrix-vector notation according to:

y(k) =DHM (k)x+ ε(k) =W (k)x+ ε(k), (1)

where D models subsampling, H models LSI blur and M (k)

encodes subpixel motion of y(k) with respect to the reference
coordinate frame defined by x. ε(k) models additive observation
noise. For convenience, the different transformations are
combined to the system matrix W (k) ∈ RM×N to describe
the formation of low-resolution frames from a high-resolution
image [23]. The joint model for all frames is given by:

y =Wx+ ε, (2)

where y = (y(1) >, . . . ,y(K) >)>, W =
(W (1) >, . . . ,W (K) >)> and ε = (ε(1) >, . . . , ε(K) >)>.

B. Observation Model

The proposed super-resolution method is derived from a
Bayesian perspective. For this purpose, the sequence of low-
resolution frames and the unknown high-resolution image
are modeled as random variables. Assuming statistically
independent observations, the posterior of the high-resolution
image x given the low-resolution frames y(1), . . . ,y(K) is:

p(x |y(1), . . . ,y(K)) ∝ p(x) ·
K∏
k=1

p(y(k) |x), (3)

where p(x) describes the prior probability for an image x and
p(y(k) |x) describes the conditional probability of observing
y(k) from x under the image formation model in (2).

The distribution p(y(k) |x) depends on the underlying
observation noise ε(k) for the low-resolution frames. A nor-
mal distribution can be used assuming that ε(k) represents
additive, white Gaussian noise (AWGN) as done in most
super-resolution algorithms [2], [17], [19]. Alternatively, in
order to be robust to outliers, e. g. due to invalid pixels or
the uncertainty of motion estimation, robust methods based
on the Laplacian distribution [4] or M-estimators [18] can
be employed. However, with these models the distribution
of ε(k) is implicitly assumed to be space invariant and may
not be optimal for all observations. In contrast to these space
invariant formulations, we follow the finding that image noise
in real-world applications typically follows mixed distributions
[13], [31]. For this purpose, we propose a spatially weighted
Gaussian distribution N (y−Wx | 0, σnoise,β) defined via the
confidence map β = (β1, . . . , βKM )> as:

p(y |x,β) ∝ exp

{
− (y −Wx)

>
B (y −Wx)

2σ2
noise

}
, (4)

with scale parameter σnoise, where B = diag (β1, . . . , βKM ) is
a diagonal matrix assembled from the confidence weights. The
influences of the individual observations are controlled by the
weights βm ∈ [0, 1] to model their confidence. Here, βm = 0
indicates an outlier under the weighted Gaussian distribution

while βm = 1 indicates an inlier. Assuming independent
observations, (4) can also be written as the Gaussian distribution
with spatially varying standard deviation:

p(y |x,β) ∝
KM∏
m=1

exp

{
− 1

2σ2
m

[
y −Wx

]2
m

}
, (5)

where σm is the standard deviation associated with the m-th
observation ym and [z]m is the m-th element of the vector z.
For σm = σnoise/

√
βm with βm 6= 0, (4) and (5) are equivalent

and the confidence weights locally define the noise standard
deviation. Our distribution in (4) shares some similarities
with related outlier detection techniques defined by means
of confidence weighting [8]. However, unlike outlier detection
that determines confidence weights on low-resolution data using
ad-hoc methods, our weights are treated as latent variables and
are inferred jointly with the super-resolved image.

C. Image Prior Model

The prior p(x) describes the appearance of x in a statistical
way. Despite priors introduced for specific applications, e. g.
recognition-based models [32], a wide class of algorithms
exploits sparsity of natural images in a transform domain. Here,
the TV prior has been successfully employed for denoising
and image restoration due to its ability of preserving sharp
edges. Our approach is based on BTV [4] as generalization of
the TV prior. This prior is given in the exponential form:

p(x) ∝ exp
{
− λR(x)

}
, (6)

where λ ≥ 0 is a hyperparameter referred to as regularization
weight and the BTV regularization term is given by:

R(x) =

P∑
m=−P

P∑
n=−P

α
|m|+|n|
0 ||x− Smv S

n
hx||1 , (7)

with P ≥ 1 and α0 ∈]0, 1]. This term exploits image derivatives
in a (2P + 1) × (2P + 1) window using Smv ∈ RN×N and
Snh ∈ RN×N , which denote a vertical and horizontal shift
of x by m and n pixels, respectively. For convenience, we
reformulate (7) to:

R(x) =

P∑
m=−P

P∑
n=−P

||Sm,nx||1 = ||Sx||1 , (8)

where the matrix S ∈ RN ′×N with N ′ = (2P +1)2N defines
a linear sparsifying transform and is assembled as:

S =
(
S−P,−P S−P+1,−P . . . SP,P

)>
,

where Sm,n = α
|m|+|n|
0 (IN×N − Smv S

n
h ).

(9)

Even if (7) is defined via a robust L1 norm assuming a
Laplacian distribution in the transform domain, the properties of
BTV in terms of edge preservation are limited. In particular, this
prior is not spatially adaptive and discontinuities are penalized
proportional to the magnitude of Sx. For this reason, the use of
heavier-tailed distributions than the Laplacian distribution has
been proposed for image restoration [29], [30] and compressed
sensing [27], [28]. The motivation of these techniques is to
better exploit sparsity of natural images. In the spirit of these
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findings and similarly to the observation model, we generalize
(7) to the spatially adaptive prior:

p(x |α) ∝ exp

{
−λ
||α� Sx||1

σprior

}
, (10)

which follows a zero-mean weighted Laplacian distribution
L(Sx | 0, σprior,α) with scale parameter σprior and spatially
varying weights α. The regularization term associated with
this prior referred to as weighted BTV (WBTV) is given by:

R(x |α) = ||α� (Sx)||1 = ||ASx||1 , (11)

where A = diag (α1, . . . ,αN ′) is assembled as a diagonal
matrix from α. The continuous weights αi ∈ [0, 1] allows us
to locally adapt p(x |α) in order to enhance the reconstruction
of discontinuities. These weights need to be selected such
that αi = 0 for discontinuities to lower the influence of
regularization and αi = 1 to increase its influence in order
to perform smoothing in homogeneous regions. This model
is similar to the locally adaptive BTV proposed by Li et al.
[26]. However, our weights are handled as latent variables and
are inferred jointly with the super-resolved image, while [26]
determines the weights in a preprocessing step.

D. Bayesian Estimation
Our goal is to reconstruct a high-resolution image that best

explains the set of low-resolution frames. More formally, this
is done using MAP estimation derived from (3) as:

x̂ = argmax
x

{
p(x |α) ·

K∏
k=1

p(y(k) |x,β(k))
}
. (12)

Since we do not know the weights α and β a priori, we
need to treat them as latent variables. Let us first review two
approaches to infer the weights that are related to our method.

One approach is to solve for x by marginalization over the
unknown weights. Under the assumption that β is statistically
independent of both x and α, this can be done according to:

x̂ = argmax
x

∫
RKM

∫
RN′

p(y,α,β |x)p(x |α) dα dβ, (13)

where the weights are marginalized out of the problem. In
general, this requires integration over (α,β) ∈ RN ′+KM ,
which is computationally prohibitive. If one employs simplified
priors p(α) and p(β) to model the weights, i. e. conjugate priors
to the data likelihood distribution, this marginalization can be
treated in closed-form. However, the main limitation of this
formulation is that conjugate priors are too simplistic to model
the statistical appearance of the weights and rely on additional
hyperparameters that need to be chosen appropriately.

Another approach is to solve for x using joint MAP
estimation for the confidence weights and the super-resolved
image [33]. This leads to the optimization problem:

(x̂, α̂, β̂) = argmax
x,α,β

{
p(x |α)p(y |x,β)p(α)p(β)

}
, (14)

that can be solved by alternating minimization for all coupled
variables. Similar to marginalization, this requires modeling of
prior distributions p(α) and p(β). However, the joint estimation
is only computationally tractable for simplistic priors.

III. ROBUST SUPER-RESOLUTION ALGORITHM

Our approach is based on MAP estimation according to (12)
while simultaneously estimating the latent variables α and β.
In statistical parameter estimation, this class of optimization
problems is commonly treated by means of expectation
maximization (EM) [34]. This section introduces a robust
iterative method, which falls into the class of majorization-
minimization (MM) methods as generalization of EM [35].
The main merit of the MM formulation over the closely
related Bayesian marginalization approach as well as the joint
MAP approach is that our method does not require a pure
statistical modeling of the latent weights. In particular, the
prior distributions p(α) and p(β) are replaced by a weighting
scheme that acts as a surrogate for the priors and enables
an iterative and closed-form estimation of the weights. Our
formulation yields a computationally efficient iteratively re-
weighted minimization scheme [27], [36] consisting of the
following steps at each iteration t ≥ 1:

1) Let xt−1 be the super-resolved image reconstructed at
iteration t− 1. Then, refined estimates for the weights
αt and βt are determined in closed form by:

αt := α
(
xt−1 |σtprior

)
βt := β

(
xt−1 |y(1), . . . ,y(K), σtnoise

)
,

(15)

where α : RN ′ → R+N ′

0 and β : RKM → R+KM
0 are

weighting functions, see Section III-A.
2) In order to avoid manual parameter tuning, the unknown

scale parameters σtnoise and σtprior as well as the regular-
ization weight λ are automatically selected per iteration,
see Section III-B and Section III-C.

3) Once αt, βt and λt are estimated, xt is obtained by
MAP estimation, see Section III-D.

These steps yield a sequence of estimates {xt}t=0 and are
embedded into a coarse-to-fine scheme to perform iteratively
re-weighted minimization efficiently. The following subsections
introduce the details of our method.

A. Weight Estimation
Let us now proceed with the derivation of the weighting

functions to estimate the weights of our Bayesian model.
1) Observation Weights: To determine the observation con-

fidence weights, we analyze the residual error r : RN → RKM
where r(x |y) = y −Wx measures the deviation between a
backprojected estimate x and all observations y. Our estimation
scheme follows the idea that unreliable observations can be
identified by their residuals. Accordingly, these observations
should be gradually downweighted over the iterations. For this
purpose, our weighting function is defined element-wise as:

β(x |y, σnoise) :=
(
β1(r |σnoise), . . . , βKM (r |σnoise)

)>
,

(16)
where r = r(x |y) and βi : RKM → R+

0 denotes the function
to determine the i-th weight from the decomposition:

βi(r |σnoise) := βi,bias(r) · βi,local(r |σnoise). (17)

In the proposed algorithm, two weighting functions are used to
remove global outliers detected by βi,bias(r) as well as local
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outliers identified by βi,local(r |σnoise). For their definition, let
r = r(xt−1 |y) be the residual error at iteration t− 1.

First, we detect global outliers on a per-frame basis by
means of bias detection. Practically, this should suppress outlier
frames, e. g. individual images with global erroneous motion
estimation or images affected by motion blur. Our detection is
justified by the assumption that the residual error associated
with each low-resolution frame y(k) needs to have zero-mean
according to the observation model in (4) and its distribution
needs to be symmetric [3]. For this reason, bias detection
needs to identify frames violating this assumption by analyzing
their residual errors. This is done using the binary weighting
function βi,bias : RKM → {0, 1} given by:

βi,bias(r) =

{
1 if

∣∣MED(r(k))
∣∣ ≤ rmax

0 otherwise
, (18)

where r(k) denotes the residual error of the k-th frame
associated with the i-th observation. For robust detection, we
replace the mean by the sample median MED(·) and classify
y(k) as biased, if its absolute median residual error exceeds the
maximum deviation rmax. We set rmax to 2 % of the maximum
intensity range, i. e. rmax = 0.02 if y(k) is given in [0, 1]M ,
which generalizes fairly well in real-world scenarios.

In addition, we detect local outliers on a per pixel basis
using the weighting function βi,local : RKM → R+

0 defined by:

βi,local(r |σtnoise) =

{
1 if |ri| ≤ cσtnoise
cσt

noise
|ri| otherwise

, (19)

where σtnoise denotes an adaptive estimate of the scale parameter
of the observation model in (4) to discriminate inliers and
outliers with a fixed constant c > 0. Assuming a Gaussian
distribution for inlier observations, c = 2 yields a correct clas-
sification of ≈ 95% of the true inliers. For these observations,
a constant confidence is assigned. Observations that are not
explained as inliers are weighted by the inverse of their absolute
residual error resulting in a lower confidence.

Fig. 2 (top row) depicts the combined observation confidence
weights for a single frame mapped to a gray-scale, with
insufficient motion estimation for the reconstruction in Fig. 1.
In this example, the confidence weights are first slightly
over-estimated. Over the course of iteratively re-weighted
minimization, the weights are adaptively refined for outlier
detection in low-resolution data. Accordingly, the confidence
weights describe the observations by mixed noise that can
be explained by a superposition of sensor noise and model
parameter uncertainties, e. g. in terms of motion estimation.

2) Image Prior Weights: Similarly, the image prior weights
are determined under the transform z = Sx according to:

α(x |σprior) :=
(
α1(z |σprior), . . . , αN ′(z |σprior)

)>
. (20)

The weighting function for the i-th element is defined as:

αi(z |σtprior) =

1 if
∣∣[Qz]i∣∣ ≤ cσtprior

p
(cσt

prior)
1−p∣∣[Qz]i∣∣1−p otherwise , (21)

(a) Iteration 1 (b) Iteration 10

Fig. 2: Gray-scale visualization of the adaptive weights estimated by our
algorithm in Fig. 1 after the 1st (a) and the 10th iteration (b), respectively
(bright regions denote higher weights). Top row: Observation confidence
weights β for a single frame in the presence of motion estimation uncertainty.
Bottom row: Image prior weights α for the sparsity parameter p = 0.5.

where p ∈ [0, 1] is referred to as sparsity parameter, σtprior is an
adaptive estimate of the scale parameter in (10) and c > 0 is a
constant to discriminate flat regions and discontinuities that is
set to c = 2 analogous to the observation weights. In order to
reduce the influence of isolated, noisy pixels, this weighting
function is applied to a filtered version of the transformed
image denoted by Qz. In our work, Q is implemented by edge
preserving 3× 3 median filtering in the transform domain.

This mixed norm weighting function explains images by a
mixture of discontinuities and flat regions and assigns spatially
adaptive weights to the underlying WBTV model. For small
|[Qz]i| corresponding to flat regions affected by residual noise,
a constant weight is used. In order to penalize discontinuities
less strictly, a smaller weight that is chosen to be proportional
to the inverse of the magnitude of the transformed image is used
for large |[Qz]i|. Fig. 2 (bottom row) visualizes this behavior
by gray-scale visualizations of the image prior weights over
the iterations corresponding to the reconstruction in Fig. 1.
Our weights are gradually refined in iteratively re-weighted
minimization in order to adapt to the local image structure in
our regularization term.

B. Scale Parameter Estimation

In order to avoid an offline selection of the noise level σtnoise
in (19), we propose to automatically adjust it in an optimal
way at each iteration. Assuming a uniform distribution for the
prior p(σtnoise), σ

t
noise is inferred at iteration t by the maximum

likelihood (ML) estimation:

σtnoise = argmax
σnoise

p(y |xt−1,βt−1, σnoise), (22)

given xt−1 and βt−1 obtained at the previous iteration. For
robust ML estimation, we propose the estimation of σtnoise from
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the median absolute deviation (MAD) [36] of the residual
rt−1 as a robust measure of statistical dispersion. The MAD
is computed from the weighted median, where βt−1 is used as
a weight vector. Hence, the scale parameter is determined by:

σtnoise = σ0 ·MAD
(
rt−1 |βt−1

)
= σ0 · MED

i=1,...,KM

(∣∣rt−1i −MED
(
rt−1|βt−1

)∣∣ ∣∣∣βt−1) ,
(23)

where we set σ0 = 1.4826 assuming a Gaussian distribution
for the inlier observations [36]. MAD(r |β) denotes the MAD
computed from the residual error r under the confidence
weights β and MED(r |β) := MEDi=1,...,KM (ri |β) is the
weighted median of the elements ri under the weights β.

Similarly, the ML estimate for σtprior employed for the
image prior weighting function in (21) is obtained from the
distribution of Sxt−1 and the weights αt−1. In our robust
approach, this is done according to:

σtprior = σ0 ·MAD
(
Sxt−1 |αt−1

)
, (24)

where we set σ0 = 1 for the Laplacian distribution.

C. Hyperparameter Estimation

For image reconstruction, the hyperparameter λ weighting
the observation model against the prior needs to be initialized.
If this parameter is underestimated, super-resolution is ill-
conditioned and affected by residual noise while in case of
an overestimate, the super-resolved images get blurred. In
general, an optimal λ is unknown and its selection also depends
on the confidence weights of our Bayesian model. Common
approaches to select λ use, e. g. the discrepancy principle [37],
generalized cross validation (GCV) [38] or Bayesian methods
[22], [39]. Typically these methods deal with specific forms
of the prior p(x) or use approximative schemes [39].

We employ a data-driven hyperparameter selection that
generalizes fairly well to different forms of p(x). Similar to
[23], we use a cross validation like procedure that is embedded
to our algorithm to estimate λ jointly with the super-resolved
image. In our approach, we decompose the observations y into
two disjoint subsets, where a fraction of δcv, 0 < δcv < 1 is
used for parameter training and the remaining observations are
used for model evaluation. Given a fixed weight λ, we denote
the associated super-resolved image as:

x(λ) = argmax
x

{
p(y |x,βt, Iδcv)p(x |αt, λ)

}
= argmin

x

{
Lcv(x | Iδcv) + λ

∣∣∣∣AtSx
∣∣∣∣
1

}
.

(25)

We use the negative log-likelihood to define the data fidelity
term Lcv(x | Iδcv) ∝ − log p(y |x,βt, Iδcv), where:

Lcv(x | Iδcv) =
(
y −Wx

)>
IδcvB

t
(
y −Wx

)
, (26)

and Iδcv ∈ RKM×KM denotes a diagonal matrix, where
Iδcv,i = 1 with probability δcv to specify the training obser-
vations and Iδcv,i = 0 with probability 1 − δcv. The optimal
regularization weight λt at iteration t is determined by:

λt = argmin
λ

Lcv(λ | Iδcv), (27)

where the cross validation error associated with λ is given by:

Lcv(λ | Iδcv) =
(
y −Wx(λ)

)>
IδcvB

t
(
y −Wx(λ)

)
, (28)

and Iδcv is obtained from Iδcv by flipping the diagonal elements
to minimize the error on the validation observations.

Notice that the cross validation error in (28) and the image
reconstruction according to (25) are interdependent and hence
the gradient of Lcv(λ | Iδcv) is not well-defined. Opposed to
gradient-based optimization [23] that might get stuck in a local
minimum, we propose an adaptive grid search to select λt

according to (27) as follows: For t = 1, λ1 is selected as the
global minimum of Lcv(λ | Iδcv) using a grid search over the
log-transformed range [log λl, log λu] of regularization weights.
For t > 1, we use λt−1 as initial guess that is refined by a local
search with the adaptive search range log λu,l = log(λt−1)± 1

t .
The number of steps is adaptively adjusted for each iteration.
For t = 1, it is initialized by T 1

cv. In the subsequent iterations,
it is gradually reduced according to T tcv = d0.5 · T t−1cv e.

D. Image Reconstruction

Given the estimates of the weights αt and βt as well as the
regularization parameter λt, we determine xt according to:

xt = argmax
x

{
p(y |x,βt)p(x |αt)

}
= argmin

x
F t(x),

(29)

where the overall energy function at iteration t is:

F t(x) =
(
y −Wx

)>
Bt
(
y −Wx

)
+ λt

∣∣∣∣AtSx
∣∣∣∣
1
. (30)

We employ Scaled Conjugate Gradients (SCG) iterations [40]
for numerical optimization of this convex minimization problem.
For t = 1, the iterations are initialized by the temporal
median of the motion-compensated low-resolution frames to
provide an outlier-insensitive initial guess [41]. Subsequently,
at each iteration t > 1, we update xt−1 determined at the
previous iteration to obtain the refined estimate xt. For the
implementation of SCG, we use a smooth and continuous
differentiable approximation of (11) according to:

R(x |α) =
∣∣∣∣ASx∣∣∣∣

1
≈

N ′∑
i=1

αi

√
[Sx]2i + τ . (31)

For small τ (τ = 10−4), this provides a reasonable approxima-
tion of the L1 norm in the WBTV prior. This inner optimization
loop to minimize (30) is performed until a maximum number
of TSCG iterations or a convergence tolerance is reached.

In order to avoid local minimums in our iterative algorithm,
we propose an implementation in a coarse-to-fine scheme.
The confidence weights are initialized by α0 = 1 and
β0 = 1, where 1 is an all-one vector. Moreover, we gradually
increase the magnification factor by ∆s per iteration such
that st = st−1 + ∆s until the desired magnification s is
reached. In addition to the avoidance of local minimums,
this approach also reduces the computational costs, as more
iterations for the computational demanding hyperparameter
selection are done more efficiently for smaller s. This coarse-
to-fine optimization alternates between weight computation,



KÖHLER et al.: ROBUST MULTIFRAME SUPER-RESOLUTION 7

Algorithm 1 Super-resolution via iteratively re-weighted minimization

Set x0 to the motion-compensated median of y(1), . . . ,y(K)

Set α0 = 1, β0 = 1, s0 = 0 and t = 1
while (32) not fulfilled and t ≤ Tmax do

Set magnification factor st to st = min(st−1 +∆s, s)
Propagate xt−1 using magnification factor st

Compute σtnoise from xt−1 and βt−1 according to (23)
Compute σtprior from xt−1 and αt−1 according to (24)
Compute βt from rt−1 and σtnoise according to (17)
Compute αt from Sxt−1 and σtprior from (21)
Select λt in T tcv = d0.5 · T t−1cv e steps according to (27)
Set xt = xt−1 and tSCG = 1
while (32) not fulfilled and tSCG ≤ TSCG do

Update xt according to (30) using SCG iteration
Set tSCG ← tSCG +1 and proceed with next iteration

end while
Set t← t+ 1 and proceed with next iteration

end while

hyperparameter selection and image reconstruction until a
stopping criterion is met or Tmax iterations are performed. As
a stopping criterion we choose the maximum absolute change
of the pixel values between xt and xt−1 according to:

max
i=1,...,N

(∣∣xt−1i − xti
∣∣) < η, (32)

where η > 0 denotes the termination tolerance. Our overall
coarse-to-fine scheme is summarized in Algorithm 1.

IV. ALGORITHM ANALYSIS

A. Formulation as Majorization-Minimization Algorithm

Our algorithm iteratively solves a sequence of convex mini-
mization problems, which is steered by means of confidence
weighting. Interestingly, using our weighting scheme, iteratively
re-weighted minimization according to (30) coincides with the
solution of the robust and sparse reconstruction problem:

x̂ = argmin
x

F (x),

where F (x) =
KM∑
i=1

hδ ([y −Wx]i) + λR(Sx).
(33)

In order to show the relation to our iteration scheme, the data
fidelity term is defined by the Huber loss function:

hδ(z) =

{
z2 if |z| ≤ δ
2δ|z| − δ2, otherwise.

, (34)

where δ denotes a non-negative threshold. The regularization
term is defined via a mixed L1/Lp norm according to:

R(z) =
∑
i6∈I(z)

|zi|+
∑
i∈I(z)

|zi|p, (35)

where small elements are treated by the L1 norm (i 6∈ I(z))
and large elements are treated by the Lp norm (i ∈ I(z)),
where 0 < p < 1. Without loss of generality, we define the
index set for our analysis as I(z) = {i : zi ≥ 1} since we can
use a normalization of z to satisfy this condition.

Using the Huber loss in (34), small residuals are penalized
quadratically while large residuals are penalized linearly
making this formulation robust regarding outlier observations.
Similarly, the mixed L1/Lp norm with sparsity parameter p in
(35) enforces sparsity of the reconstructed images under the
transform S . These relations to the optimization in (33) are
useful to clarify the properties of our algorithm in terms of
robustness. As the primary finding, our method is an MM
algorithm to the non-convex optimization problem in (33)
by reformulation via a sequence of weighted optimization
problems. Notice that our algorithm extends related approaches
for re-weighted L2/Lp norm minimization [42].

B. Convergence Analysis

Now, let us investigate the convergence of the proposed
iteratively re-weighted minimization scheme. In contrast to our
numerical algorithm but to make our analysis tractable, we start
from an initial guess x0 and limit ourselves to iteratively re-
weighted minimization according to (30), where λ is assumed
to be a constant regularization weight and the weights At

and Bt are computed from (21) and (19) with constant scale
parameters over the iterations. Using this iteration scheme, the
objective value in (33) converges within a finite number of
iterations. The convergence in terms of the objective value
F (x) is guaranteed by the following theorem.

Theorem 1. Let {xt}t=0 be an iteration sequence obtained
by iteratively re-weighted minimization. Then, there exists a
strict positive β such that:

F (xt−1)− F (xt) ≥ β
∣∣∣∣Wxt−1 −Wxt

∣∣∣∣2
2
. (36)

Proof. The proof is given in the appendix.

This theorem shows that F (xt) is monotonically decreasing
over the iterations. In addition, F (x) is a lower-bounded
function. Hence, F (xt) converges to an extreme value, and
so does Algorithm 1. In addition to this theoretical finding,
an experimental convergence analysis of our algorithm with
adaptive parameter selection is presented in Section V-B.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

This section reports experimental results of our method on
simulated and real data. The proposed method was compared
to the following state-of-the-art super-resolution algorithms:
L2-TIK MAP super-resolution with L2 norm data fidelity

term and Tikhonov regularization [2].
L1-BTV The robust L1 norm minimization with BTV

regularization proposed by Farsiu et al. [4].
LOR The robust Lorentzian M-estimator with Lorentzian

prior proposed by Patanavijit and Jitapunkul [10].
BEP The adaptive algorithm with bilateral edge preserv-

ing (BEP) regularization of Zeng and Yang [11].
For fair comparison, all algorithms were implemented using the
image formation model presented in Section II-A. In general,
this model is parametrizable with different types of motion
models ranging from a pure translation to non-rigid motion.
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(b) PSNR and SSIM for inaccurate motion estimation

Fig. 3: Comparison of mean ± standard deviation of the PSNR and the SSIM measures over ten simulated datasets with ten randomly generated image
sequences per dataset. (a): error measures if exact subpixel motion is used. (b): error measures in case of inaccurate motion estimation.

Throughout our experiments, we limited ourselves to an affine
motion model that was employed for all compared algorithms.
As all methods are formulated via energy minimization but
are independent of the underlying numerical optimization
technique, we implemented them by means of SCG iterations.
This might improve the convergence and avoids parameter
tuning regarding the step size required for fixed step size
steepest descent as proposed in the original publications. For
L2-TIK, L1-BTV, LOR and BEP, the regularization weights
were selected based on a grid search on one training sequence
per dataset. The additional model parameters of the LOR and
BEP approach were determined empirically.

Throughout all experiments, we used the following parameter
settings for our method. For the WBTV prior, we set P = 2,
α0 = 0.7 and p = 0.5. For coarse-to-fine optimization, we
set ∆s = 1 and s1 = 1. Cross validation was performed with
δcv = 0.95, log λl = −12, log λu = 0 and T 1

cv = 20 steps. In
our iterative scheme, we used Tmax = 10 iterations, TSCG = 5
iterations for SCG in the inner optimization loop and η = 10−3

for the termination criterion.

B. Simulated Data Experiments

In order to conduct a quantitative evaluation, we generated
synthetic data and measured the peak-signal-to-noise ratio
(PSNR) in decibels (dB) of super-resolved data x with respect
to a ground truth image x̂. Additionally, we measured the
structural similarity (SSIM) to assess the fidelity of x̂ and x.
We used the reference images from the LIVE database [43] as
ground truth given as grayscale images in the intensity range
[0, 1]. For each dataset, we generated K low-resolution frames
simulating a rigid motion. Thus, all frames were displaced
by uniform distributed random translations (−3 to +3 pixels)
and rotations with uniform distributed angles (−1◦ to +1◦)
relative to the reference coordinate grid. Each frame was blurred
by an isotropic Gaussian PSF with kernel size 6 · σPSF low-
resolution pixels (σPSF = 0.5) and subsampled according to

the magnification factor s. Finally, each frame was affected by
a fixed amount of Poisson noise as well as varying levels of
Gaussian noise depending on the experiment2. All experiments
reported in the subsequent paragraphs were repeated ten times
for each dataset with randomly generated frames.

1) Effect of Image Noise: We generated ten datasets con-
sisting of image sequences with K = 8 frames each from
our ground truth images to reconstruct high-resolution images
with magnification s = 2. Each frame was disturbed by
AWGN with noise standard deviation σnoise = 0.02. In order
to consider the best-case for a baseline experiment, super-
resolution was performed based on the exact subpixel motion.
The corresponding statistics of the PSNR and SSIM measures
over all datasets are summarized in Fig. 3a. In most of the
datasets, the proposed method substantially outperformed the
competing approaches. On average, compared to L1-BTV, our
approach improved the PSNR and SSIM by 1.2 dB and 0.03,
respectively. A qualitative comparison of all methods is depicted
in Fig. 4 (middle row) showing that our approach achieved
smaller residual noise levels with accurate edge reconstruction.
In order to assess the noise robustness of super-resolution
reconstruction, the noise standard deviation was gradually
increased from σnoise = 0 to σnoise = 0.05 on this dataset. The
averaged error measures over ten realizations of the experiment
versus the noise standard deviation are plotted in Fig. 5. In
terms of both measures, our method consistently achieved the
best reconstructions among the compared algorithms.

2) Effect of Motion Estimation Uncertainty: Next, we
conducted experiments to investigate the influence of inaccurate
motion estimation on our datasets. For this purpose, the rotation
R ∈ R2×2 of two randomly selected frames was corrupted
by a small scaling factor c such that cR is a corrupted
version of the rotation to simulate a zooming camera. For
motion estimation, enhanced correlation coefficient (ECC)
optimization [44] with rigid motion was employed. This

2Artificial noise was simulated using the Matlab imnoise function.
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(a) Original (27.1 dB, 0.66)

(b) L2-TIK [2] (29.9 dB, 0.76) (c) L1-BTV [4] (30.4 dB, 0.83) (d) LOR [10] (29.2 dB, 0.80) (e) BEP [11] (30.3 dB, 0.82) (f) Proposed (31.7 dB, 0.88)

(g) L2-TIK [2] (26.6 dB, 0.76) (h) L1-BTV [4] (29.6 dB, 0.84) (i) LOR [10] (28.8 dB, 0.78) (j) BEP [11] (30.1 dB, 0.82) (k) Proposed (30.4 dB, 0.86)

Fig. 4: Super-resolution on the Lighthouse dataset with PSNR and SSIM measures in brackets (K = 8 frames, magnification s = 2). Top row: original,
low-resolution frame. Middle row: super-resolution using exact subpixel motion. Bottom row: super-resolution under inaccurate subpixel motion.

resulted in outliers due to misregistrations of the two frames
affected by scaling, while the accuracy for the remaining frames
was limited by the uncertainty of ECC optimization. The scaling
followed a normal distribution with mean equal to one and
standard deviation σc. Fig. 3b shows the statistics of the error
measures over ten datasets under inaccurate motion estimation
for σc = 0.05. Form these results we can observe that the
performance of the L2-TIK method was severely degraded
by motion estimation outliers. The proposed method achieved
better robustness regarding inaccurate motion estimation and
outperformed the competing methods on most of our datasets.
A visual comparison is depicted in Fig. 4 (bottom row). Here,
the effect of outliers is noticeable by ghosting artifacts and
blurring of sharp edges in the outcome of L2-TIK.

3) Effect of Invalid Pixels: In order to assess the effect of
invalid pixels, the low-resolution frames were further degraded
by salt-and-pepper noise. The noise level was gradually
increased from ν = 0 to ν = 0.15, where ν denotes the
fraction of invalid pixels. Super-resolution was performed for
K = 8 frames and magnification s = 2 using the exact subpixel
motion. Fig. 6 shows the averaged PSNR and SSIM measures
for different amounts of invalid pixels for ten realizations of
this experiment on the Cemetery dataset. We observe that the
L2-TIK method failed to reconstruct reliable high-resolution
images in the presence of invalid pixels, while the methods
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Fig. 5: Mean PSNR and SSIM versus the standard deviation of additive, white
Gaussian noise on the Lighthouse dataset.

based on robust observation models were insensitive to invalid
pixels. In particular, our approach performed best and was only
slightly affected by outliers. See Fig. 7 for a visual comparison.

4) Effect of the Sequence Length: Next, we evaluated
the influence of the number of low-resolution frames to the
quality of super-resolution. For this analysis, the AWGN
level was set to σnoise = 0.02, the fraction of invalid pixel
was ν = 0.01 and super-resolution was performed using the
exact subpixel motion. This experiment considered s = 3 to
analyze a larger magnification factor as this typically requires
longer image sequences to achieve stable reconstructions. The
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Fig. 6: Mean PSNR and SSIM versus the amount of salt-and-pepper noise (ν)
evaluated on the Cemetery dataset.

(a) Original (13.4 dB, 0.39) (b) L2-TIK [2] (18.7 dB, 0.57)

(c) L1-BTV [4] (24.7 dB, 0.84) (d) LOR [10] (23.3 dB, 0.74)

(e) BEP [11] (23.2 dB, 0.81) (f) Proposed (27.0 dB, 0.90)

Fig. 7: Super-resolution reconstructions with PSNR and SSIM measures in
presence of salt-and-pepper noise (fraction of invalid pixels: ν = 0.10) using
the compared approaches (K = 8 frames, magnification s = 2).

sequence length was varied between K = 4 to K = 20.
Note that for K < s2 the underlying super-resolution problem
is underdetermined, which was the case in our experiment.
The averaged error measures for ten realizations of this
experiment on the Lighthouse dataset are depicted in Fig. 8.
Super-resolution was more accurate for longer sequences
and our method achieved the highest measures among the
competing approaches. Notice that this was also the case for
an underdetermined reconstruction problem (K < 9). Our
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Fig. 8: Effect of the sequence length to the mean PSNR and SSIM on the
Lighthouse dataset.
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Fig. 9: Mean PSNR and SSIM for different error levels in photometric
registration for the Church-and-capitol dataset.

approach based on K = 8 frames was competitive to L1-
BTV and BEP based on K = 20 frames and substantially
outperformed the L2-TIK as well as the LOR method.

5) Effect of Photometric Distortions: We also evaluated
the effect of varying photometric conditions in low-resolution
frames caused, e. g. by time variant lighting conditions. If
such effects occur in real-world applications, photometric
registration [45] needs to be considered. Outliers in photometric
registration were simulated for two randomly selected frames
that were corrupted by photometric distortions according to the
model z(k) = γ

(k)
m y(k) + γ

(k)
a , where y(k) is a frame without

distortions and z(k) is a corrupted frame. The parameters
γ
(k)
a and γ

(k)
m were assumed to be uniform distributed in

[− 1
2σp,+

1
2σp] and [1 − 1

2σp, 1 + 1
2σp], respectively. Super-

resolution was performed with K = 8 frames and magnification
s = 2 using exact subpixel motion. Fig. 9 shows the PSNR
and SSIM measures averaged over ten realizations of the
experiment on the Church-and-capitol dataset for different
levels of photometric distortions. The L2-TIK approach was
sensitive to outliers in photometric registration resulting in a
bias in the intensity values as indicated by a decreasing of the
PSNR. With the exception of the LOR approach, the robust
methods were less sensitive to photometric distortions. Note that
even for severe distortions, the proposed approach compensated
for this effect and achieved the best error measures. A visual
comparison is depicted in Fig. 10.

6) Convergence and Parameter Study: Finally, we report
results of a convergence and parameter study conducted for
our method. For this purpose, we used the Parrots dataset
and generated K = 12 low-resolution frames according to the
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(a) Original (22.9 dB, 0.68) (b) L2-TIK [2] (22.7 dB, 0.75)

(c) L1-BTV [4] (26.6 dB, 0.85) (d) LOR [10] (23.4 dB, 0.59)

(e) BEP [11] (26.4 dB, 0.85) (f) Proposed (28.1 dB, 0.91)

Fig. 10: Super-resolution reconstructions with PSNR and SSIM measures
under inaccurate photometric registration (σp = 0.15) using the compared
approaches (K = 8 frames, magnification s = 2).

magnification factor s = 3. In order to analyze the convergence
of our iterative scheme, we traced the PSNR and SSIM
measures over the iterations. This was performed for different
amounts of invalid pixels in low-resolution data. Moreover,
we compared different initializations of our algorithm using
the outlier-insensitive temporal median of the low-resolution
frames as well as a simple bicubic interpolation of the
reference frame. The averaged measures for ten realizations
of this experiment are depicted in Fig. 11 (top row), which
demonstrates that our algorithm typically converges after ≈ 5
iterations for different outlier fractions. The most substantial
improvements were achieved in the first two iterations, which
is also noticeable by visual comparison in Fig. 11 (bottom
row). This finding confirms empirically that the proposed
iterative scheme converges to accurate solutions even for a
large amount of outlier. Moreover, despite the non-convexity
of the underlying energy function solved by our algorithm,
we observed that our iterative scheme converges to similar
solutions even if the initial guess is different. In terms of the
PSNR and SSIM measures, using a simple bicubic interpolation
as a rough initial guess for the high-resolution image leads to
reconstructions that are competitive to those obtained by the
temporal median initialization. However, using the temporal
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Fig. 11: Convergence analysis for our approach. Top row: mean PSNR and
SSIM versus the iteration number for different amounts of invalid pixels using
the outlier-insensitive temporal median of the low-resolution frames (solid
lines) as well as the bicubic interpolation of a single frame (dashed lines)
for initialization. Bottom row: super-resolved images depicted at different
iterations for ν = 0.10 using the temporal median as initial guess.
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Fig. 12: Influence of the sparsity parameter p of weighted bilateral total
variation to the accuracy of super-resolution on the Parrots dataset.

median leads to a faster convergence within the first iterations.
This confirms the robustness of our approach regarding the
initialization used for iteratively re-weighted minimization.

In addition to the convergence, we studied the benefit of
our prior weighting scheme in (21) that is parametrized by the
sparsity parameter p. We considered p = 1 corresponding to the
unweighted BTV as well as different versions of WBTV with
p < 1. For this experiment, the amount of invalid pixels was
set to ν = 0.01. Fig. 12 depicts the averaged error measures
corresponding to the different p values for varying noise levels
σnoise. In case of p < 1, we consistently observed higher
measures compared to p = 1. In particular, this is noticeable
for higher noise levels. The major differences between these
settings is that the smaller p, the stronger the sparsity in the
transform domain is exploited by regularization. A higher
degree of sparsity leads to improved edge reconstructions as
sharp edges are penalized less severe, which encourages the
use of our sparse regularization technique.
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(a) Original (b) L2-TIK [2]

(c) L1-BTV [4] (d) LOR [10]

(e) BEP [11] (f) Proposed

Fig. 13: Super-resolution reconstruction on the Adyoron sequence (K = 20
frames, magnification factor s = 3).

C. Real Data Experiments

In addition to our experiments on simulated data, we
demonstrate the performance of our method on real images.
In the absence of a ground truth, we compared super-resolved
images qualitatively and adjusted the model parameters of the
competing methods empirically such that they produce the
visually most appealing results.

First, we conducted experiments on the MDSP benchmark
dataset [46]. We approximated the PSF by an isotropic Gaussian
kernel of size 6σPSF and used the Adyoron (frame 1 to 20,
σPSF = 0.4, s = 3) as well as the Car sequence (frame 1 to
12, σPSF = 0.5, s = 3). Motion estimation was performed by
the ECC method [44] using an affine motion model. However,
individual frames were affected by a substantial amount of
rotation and zoom, which resulted in misregistrations. The
reconstructed images obtained by the different methods are
depicted in Fig. 13 and Fig. 14. The Adyoron sequence follows
a translational motion in the first subsequence and affine
motion in the second subsequence. Here, the L2-TIK method

(a) Original (b) L2-TIK [2] (c) L1-BTV [4]

(d) LOR [10] (e) BEP [11] (f) Proposed

Fig. 14: Super-resolution on the Car sequence to reconstruct the license plate
(K = 12 frames, magnification factor s = 3).

produced severe ghosting artifacts due to misregistrations.
This was avoided by the algorithms that employ a robust
observation model. In particular, the proposed method achieved
the most accurate reconstruction of small details, e. g. the font,
compared to the competing approaches. On the Car sequence,
our goal was to super-resolve the car’s license plate. This
sequence follows a translational motion with zoom, which
caused misregistrations for individual frames. Hence, the L2-
TIK method caused ghosting artifacts on the license plate. The
most reliable reconstruction was achieved by the proposed
method, whereas the images provided by the competing robust
methods suffered from blurring.

We also examined super-resolution in the field of Time-of-
Flight (ToF) imaging to reconstruct high-resolution surface
data from low-resolution range images. We acquired range
data from indoor scenes with a PMD CamCube 3.0 camera
that provides range images of 200 × 200 pixels. Note that
ToF imaging is typically prone to systematic errors, e. g.
intensity-dependent noise. This results in space variant noise
as distance measurements on dark surfaces are less reliable.
Example reconstructions for the Keyboard sequence consisting
of K = 16 frames with a Gaussian PSF (σPSF = 0.5) and
magnification s = 3 are depicted in Fig. 15. Space variant
noise is visible on the punch caused by its black surface. L2-
TIK, L1-BTV, LOR and BEP failed to suppress space variant
noise resulting in an inaccurate reconstruction of this surface.
More reliable surface reconstructions were provided by the
proposed algorithm. Fig. 15g shows the confidence map β(1)

associated with the first frame that was estimated by our method.
This clearly highlights the identification of space variant noise,
which is indicated by lower confidence weights in regions with
higher noise levels. In addition, Fig. 15h visualizes the prior
weights α after convergence of our algorithm.

D. Computational Complexity

We also performed a detailed analysis of the computational
complexity of our method in terms of run time3. In addition,
we evaluated the number of energy function evaluations for
numerical optimization in the different algorithms. Table I
compares these measurements for the Adyoron and the Car

3The run time evaluation was performed on an Intel Xeon E3-1245 CPU
with 3.4 GHz and 16 GB RAM using our experimental Matlab implementation.
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(a) Original (b) L2-TIK [2] (c) L1-BTV [4] (g) Observation weights β(1)

(d) LOR [10] (e) BEP [11] (f) Proposed (h) Prior weights α

Fig. 15: Super-resolution on Time-of-Flight range data with space variant noise (K = 16 frames, magnification factor s = 3). Super-resolved images obtained
by the different methods are depicted in (b) - (f). The observation confidence weights β(1) associated with the first frame as well as the prior weights α after
convergence of our algorithm are visualized in gray-scale in (g) and (h), respectively (brighter regions denote higher weights).

sequence and summarizes the performance of iteratively
re-weighted minimization with different configurations. We
observed that L2-TIK converged quite fast and resulted in
the lowest run time among the compared methods while the
different robust methods typically required more iterations.

In order to provide insights into the complexity of the
different computational steps of our algorithm, we evaluated
iteratively re-weighted minimization using the proposed hy-
perparameter selection (adaptive λ) and with a bypass of
this step (constant λ). As expected, the adaptive version
resulted in an increased run time and a higher number of
function evaluations relative to the competing algorithms that
do not provide automatic parameter selection. However, if
we bypass the hyperparameter selection, the complexity of
iteratively re-weighted minimization is comparable to those of
the other algorithms. In addition, we compared our algorithm
with coarse-to-fine optimization to a straightforward single-
scale implementation. The by-passing of the coarse-to-fine
iterations resulted in substantially higher computational costs.
This proves the significance of the proposed iteration scheme
that enables robust super-resolution without manual parameter
tuning coupled with a reasonable computational effort.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a new robust multiframe
super-resolution algorithm. Unlike prior work, our method is
derived from a spatially adaptive Bayesian model to consider
space variant noise and outliers as well as sparse regularization.
The proposed iteratively re-weighted minimization algorithm
provides a joint estimation of model confidence weights,
regularization parameters and the super-resolved image. We
examined super-resolution under challenging conditions of
practical relevance including inaccurate geometric and pho-
tometric registration, invalid pixels and space variant noise.

TABLE I: Computational complexity in terms of run time and the number
of function evaluations for numerical optimization. The measures in brackets
denote the relative increase with respect to L2-TIK considered as the baseline.

Method Adyoron sequence Car sequence
(66× 76, K = 20 frames) (70× 50, K = 12 frames)
Time [s] # Fun. eval. Time [s] # Fun. eval.

L2-TIK [2] 4.7 31 1.9 50
(× 1.0) (× 1.0) (×1.0) (× 1.0)

L1-BTV [4] 9.9 50 3.4 50
(× 2.1) (× 1.6) (× 1.8) (× 1.0)

LOR [10] 10.8 50 3.6 50
(× 2.3) (× 1.6) (× 1.9) (× 1.0)

BEP [11] 32.5 22 18.3 50
(× 6.9) (× 0.7) (× 9.6) (× 1.0)

Proposed
coarse-to-fine 36.2 250 16.0 250
(adaptive λ) (× 7.7) (× 8.1) (× 8.4) (× 5.0)

coarse-to-fine 19.4 50 7.3 50
(constant λ) (× 4.1) (× 1.6) (× 3.8) (× 1.0)

w/o coarse-to-fine 66.4 246 24.4 250
(adaptive λ) (× 14.1) (× 7.9) (× 12.8) (× 5.0)

Our evaluation confirms the performance of our algorithm that
outperforms other robust methods based on L1 norm and M-
estimator models. We also examined super-resolution for ToF
imaging, where the properties of our algorithm are essential to
reconstruct accurate 3-D surface data. Our method combines the
benefits of being robust, computationally efficient and easy to
implement. Moreover, it provides automatic parameter selection
in contrast to methods that require manual parameter tuning.
This is profitable in practical applications as parameter settings
might have substantial influence to the algorithms robustness.

This framework might be further extended in several ways.
In this work, we limited ourselves to non-blind super-resolution,
where the PSF is assumed to be known. However, iteratively re-
weighted minimization could be augmented by blur estimation
as also used in [21]. Another promising extension is joint
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motion estimation and super-resolution, e. g. by using the non-
linear least squares algorithm in [19]. Conversely, blur and
motion estimation can also benefit when using it in combination
with our spatially adaptive model. One further direction of our
future work is to make our approach adaptive to the scene
content, e. g. by a local selection of the sparsity parameter p.

APPENDIX
PROOF OF THEOREM 1

In this appendix, we summarize our proof for Theorem 1
to analyze the convergence of our method. Our proof is a
modified version of the derivation of Chen and Zhou [42] that
addresses Lp norm regularized least-squares optimization. Let
us first consider the sparse regularization term defined via the
L1/Lp norm in (35) that fulfills the following lemma:

Lemma 1. For all index sets I ′, I(z) = {i : zi > 1} and the
parameter 0 < p < 1, there is:∑

i6∈I(z)

|zi|+
∑
i∈I(z)

|zi|p ≤
∑
i6∈I′
|zi|+

∑
i∈I′
|zi|p. (37)

Proof. From (37) and I = I(z) we have:∑
i 6∈I

|zi| −
∑
i 6∈I′
|zi|+

∑
i∈I
|zi|p −

∑
i∈I′
|zi|p

=
∑
i∈I′\I

|zi| −
∑
i∈I\I′

|zi|+
∑
i∈I\I′

|zi|p −
∑
i∈I′\I

|zi|p

=
∑
i∈I′\I

(|zi| − |zi|p)−
∑
i∈I\I′

(|zi| − |zi|p) .

Notice that |zi| ≥ |zi|p if and only if zi ≥ 1, i.e., i ∈ I(z).
Thus, |zi| − |zi|p < 0,∀i ∈ I ′\I(z) and |zi| − |zi|p ≥ 0,∀i ∈
I(z)\I ′. From these inequalities, it follows that:∑

i∈I′\I(z)

(|zi| − |zi|p)−
∑

i∈I(z)\I′
(|zi| − |zi|p) ≤ 0.

Hence, (37) is true for any index set I ′.

Next, let us now examine the Huber loss function defined
in (34). The following lemma shows how this loss function
can be expressed in terms of weighted optimization.

Lemma 2. The Huber loss function in (34) can be written as
the weighted minimization problem:

hδ(z) = argmin
β∈R+

0

{
βz2 + δ2ρ(β)

}
,

where ρ(β) =

{
1
β − 1 if 0 ≤ β < 1

0, if β ≥ 1.
.

(38)

Proof. Obviously, hδ(z) is a convex function and when β ≥ 1,
it is monotonically increasing. Thus, the optimal weight is
β∗ = 1 in case of z2 ≤ δ2 or β∗ = δ

|z| in case of z2 > δ2,
where the later comes from the first order optimality condition.
Comparing the objective values the optimal weight is:

β∗ =

{
1 if |z| ≤ δ
δ
|z| if |z| > δ

. (39)

Therefore, the solution of the weighted minimization yields:

min
β∈R+

0

βz2 + δ2ρ(β) =

{
z2 if |z| ≤ δ
2δ|z| − δ2 if |z| > δ

, (40)

which coincides with the Huber loss in (34).

Finally, we use these lemmas for the proof of Theorem 1 to
show the convergence of iteratively re-weighted minimization.

Proof. For the sake of notational brevity, we prove this theorem
by assuming the identity for the sparsifying transform (S = I)4.
Then, according to Lemma 2, we can reformulate F (xt) to:

F (xt) = λR(xt) +

KM∑
i=1

min
β∈R+

β
[
Wxt − y

]2
i
+ δ2ρ(β)

≤ λR(xt) +
KM∑
i=1

βti
[
Wxt − y

]2
i
+ δ2ρ(βti ),

where βti is computed according to (19). Comparing the weights
given by (19) and (39), one can verify that:

F (xt) = λR(xt) +

KM∑
i=1

βti
[
Wxt − y

]2
i
+ c0,

where c0 ≥ 0 is a constant not related to xt. Therefore, we
can derive the inequality condition for the objective values:

F (xt−1)− F (xt) ≥ (Wxt−1 − y)>Bt(Wxt−1 − y)
− (Wxt − y)>Bt(Wxt − y)
+ λ

(
R(xt−1)−R(xt)

)
,

where Bt is constructed as Bt = diag (βt1, . . . , β
t
KM ). This

inequality condition can be rearranged according to:

F (xt−1)− F (xt) ≥ (xt−1 − xt)>W>BtW (xt−1 − xt)
+ 2(Wxt−1 −Wxt)>Bt(Wxt − y)
+ λ

(
R(xt−1)−R(xt)

)
≥ βt‖Wxt−1 −Wxt‖22
+ 2(Wxt−1 −Wxt)>Bt(Wxt − y)
+ λ

(
R(xt−1)−R(xt)

)
,

where the last inequality is based on Lemma 1 and βt =

mini βi
t. Then, β = mink β

t is strictly positive and:

F (xt−1)− F (xt) ≥ β‖Wxt−1 −Wxt‖22
+ 2(Wxt−1 −Wxt)>Bt(Wxt − y)
+ λ

(
R(xt−1)−R(xt)

)
.

(41)
Since xt is the solution of iteratively re-weighted minimization
at iteration t, it follows:

0 ∈ ∂

∂x

{
(Wx− y)>Bt(Wx− y) + λ

N ′∑
i=1

αti|xi|
}
,

for x = xt and αti computed from the weighting function (21).

4Note that for S 6= I , we can include the transform S , by re-formulation
of (33) as a constrained problem.
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Thus, it follows for the subgradient:

2W>Bt(Wxt − y) + λctiα
t
i = 0,∀i

where cti ∈


{1}, if xti > 0

[−1, 1] if xti = 0

{−1}, if xti < 0

.
(42)

Substituting the condition in (42) into (41) and using the fact
that ctix

t
i = |xti| and |cti| ≤ 1, leads to:

F (xt−1)− F (xt)
≥ β‖Wxt−1 −Wxt‖22
+ λ

∑
i 6∈I(xt−1)

(
|xt−1i | − |x

t
i|+ cti(x

t
i − xt−1i )

)
+ λ

∑
i∈I(xt−1)

(
|xt−1i |

p − |xti|p

+ p|xt−1i |
p−1cti(x

t
i − xt−1i )

)
≥ β‖Wxt−1 −Wxt‖22
+ λ

∑
i 6∈I(xt−1)

(
|xt−1i | − |x

t
i|+ (|xti| − xt−1i )

)
+ λ

∑
i∈I(xt−1)

(
|xt−1i |

p − |xti|p

+ p|xt−1i |
p−1(|xti| − xt−1i )

)
≥ β‖Wxt−1 −Wxt‖22
+ λ

∑
i∈I(xt−1)

|xt−1i |
p−1
(
(1− p)|xt−1i |

+ p|xti| − |xt−1i |
1−p|xti|p)

)
≥ β‖Wxt−1 −Wxt‖22,

where the last inequality is according to Lemma 1 in [42] as
corollary of Young’s inequality, which completes the proof.
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