# **Super-Resolved Retinal Image Mosaicing**

2016 IEEE International Symposium on Biomedical Imaging (ISBI'16)

<u>Thomas Köhler</u>, Axel Heinrich, Andreas Maier, Joachim Hornegger, Ralf Tornow 15.04.2016

Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Graduate School in Advanced Optical Technologies (SAOT) Departm. of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg









## Introduction



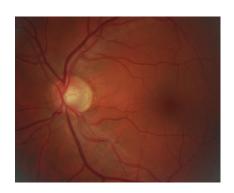


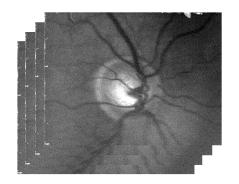









## **Background**


#### Structural imaging technologies in ophthalmology

- Optical coherence tomography (3-D)
- Slit lamp examination (2-D)
- Scanning laser ophthalmoscopy (2-D)
- Fundus photography / video imaging (2-D / 2-D + t)

#### Non-invasive examination of the eye background

- For diagnosis or screening
- For interventional applications







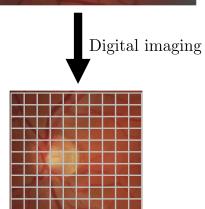




## **Background**

15.04.2016


#### Characteristics of today's imaging systems


- Narrow field of view (20 − 50°)
  - Limited by the optics and the anatomy
  - Pupil dilation for large field of view
- Limited spatial resolution
  - Limited by the sensor array and the optics
  - High resolution desirable to examine small anatomical structures

#### Solutions to overcome the limitations

- Hardware-based ⇒ expensive and/or not mobile (limitations for screening applications)
- Software-based ⇒ low-cost solution

Eye background





Spatial sampling







#### Related Work on Software-Based Methods

- Mosaicing methods based on image registration
  - Feature-based registration<sup>1</sup>
  - Intensity-based registration<sup>2</sup>
  - ⇒ Enhance the field of view at the same spatial resolution from multiple images acquired longitudinally
- Multi-frame super-resolution<sup>3</sup>
  - ⇒ Enhance the spatial resolution at the same field of view from multiple images acquired during one examination

#### Mosaicing and super-resolution are complementary techniques

<sup>&</sup>lt;sup>1</sup>A. Can et al., A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina, IEEE PAMI, vol. 24, no. 3, pp. 347–364, 2002.

<sup>&</sup>lt;sup>2</sup>K. M. Adal et al., A Hierarchical Coarse-to-Fine Approach for Fundus Image Registration, Proc. WBIR 2014, 2014, pp. 93–102

<sup>&</sup>lt;sup>3</sup>D. Thapa et al., Comparison of superresolution algorithms applied to retinal images, Journal of Biomedical Optics, vol. 19, no. 5, pp. 056002, 2014.

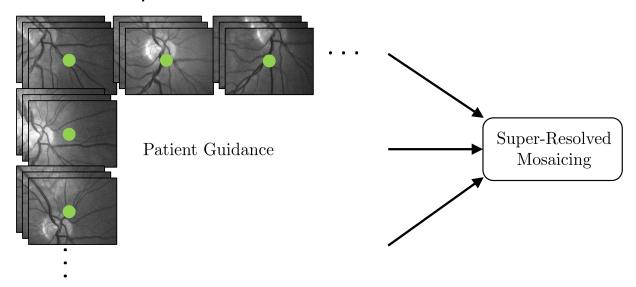


# **Super-Resolved Mosaicing Framework**











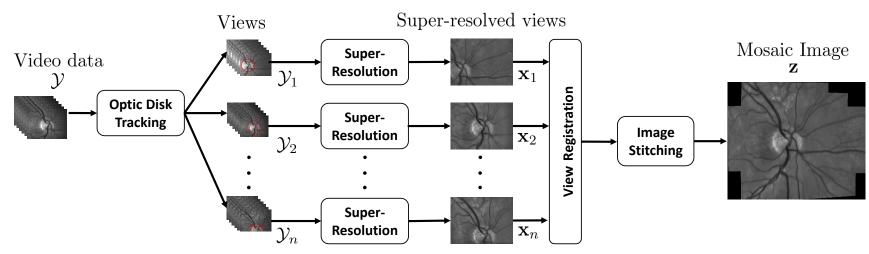



## **Key Idea and Acquisition Protocol**

- Patient guidance to control viewing direction (e.g. fixation target)
  - ⇒ Scan different regions on the retina
- Acquisition of video sequence over the entire examination



Reconstruct image with enhanced field of view and spatial resolution from low-resolution video







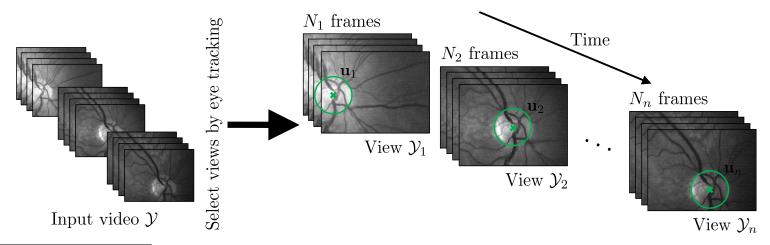

#### **Framework Overview**

Given: K frames  $\mathcal{Y} = \left\{ \mathbf{y}^{(1)}, \dots, \mathbf{y}^{(K)} \right\}$  that show different regions on the retina



#### Three-stage approach to super-resolved mosaicing:

- 1. Select *n* views  $\mathcal{Y}_1, \dots, \mathcal{Y}_n$  from  $\mathcal{Y}$  by means of eye tracking
- 2. Combine low-resolution frames in each view  $\mathcal{Y}_i$  to a super-resolved image  $\mathbf{x}_i$
- 3. Combine super-resolved images  $x_1, \ldots, x_n$  to the common mosaic z








#### **Automatic View Selection**

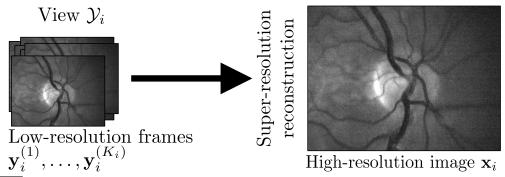
- Track the eye position over time using the optic disk center as a feature
- Fully automatic in real-time using tracking-by-detection scheme<sup>4</sup>
- Select frames for each view  $\mathcal{Y}_i$  according to:
  - Large eye motion due to patient guidance between successive views  $(d(u_{i-1}, u_i) \ge d_{\min})$
  - Small eye motion due to saccades between successive frames within one view



<sup>&</sup>lt;sup>4</sup>A. Kürten et al., *Geometry-based optic disk tracking in retinal fundus videos*, Proc. BVM 2014, pp. 120–125. 2014.








## **Super-Resolution View Reconstruction**

- Given  $K_i$  low-resolution frames  $\mathbf{y}_i^{(1)}, \dots, \mathbf{y}_i^{(K_i)}$  for view  $\mathcal{Y}_i$
- Reconstruct high-res. image  $x_i$  via maximum a-posteriori estimation:

$$\boldsymbol{x}_{i} = \underset{\boldsymbol{x}}{\text{arg min}} \sum_{k=1}^{K_{i}} \underbrace{\left| \left| \boldsymbol{y}_{i}^{(k)} - \boldsymbol{\gamma}_{m,i}^{(k)} \odot \boldsymbol{W}_{i}^{(k)} (\boldsymbol{\theta}_{i}^{(k)}) \boldsymbol{x} - \boldsymbol{\gamma}_{a,i}^{(k)} \boldsymbol{1} \right| \right|_{1}}_{\text{geometric model } (\boldsymbol{\theta}_{i}^{(k)}) + \text{photometric model } (\boldsymbol{\gamma}_{m,i}^{(k)} \text{ and } \boldsymbol{\gamma}_{a,i}^{(k)})} + \underbrace{\lambda(\boldsymbol{x}) \cdot R(\boldsymbol{x})}_{\text{bilateral total variation}}$$

- Determine geometric and photometric parameters by pair-wise registration
- Determine regularization weight  $\lambda(\mathbf{x})$  by image quality self-assessment<sup>5</sup>



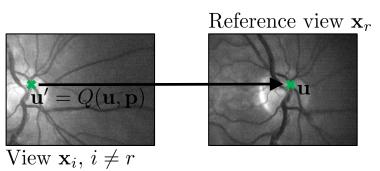
<sup>&</sup>lt;sup>5</sup>T. Köhler et al., Multi-frame Super-resolution with Quality Self-assessment for Retinal Fundus Videos, MICCAI 2014, 2014, pp. 650–657







## **Intensity-Based View Registration**


• Quadratic transformation u' = Q(u, p) for point u in a reference view to point u':

$$\mathbf{u}' = \begin{pmatrix} p_1 & p_2 & p_3 & p_4 & p_5 & p_6 \\ p_7 & p_8 & p_9 & p_{10} & p_{11} & p_{12} \end{pmatrix} \begin{pmatrix} u_1^2 & u_2^2 & u_1 u_2 & u_1 & u_2 & 1 \end{pmatrix}^{\top}$$

• Correlation based similarity measure  $\rho : \mathbb{R}^N \times \mathbb{R}^N \to [-1; 1]$ :

$$\hat{\boldsymbol{p}} = \arg \max_{\boldsymbol{p}} \rho \big\{ \boldsymbol{x}_r(\boldsymbol{u}), \boldsymbol{x}_i(Q(\boldsymbol{u}, \boldsymbol{p})) \big\}$$

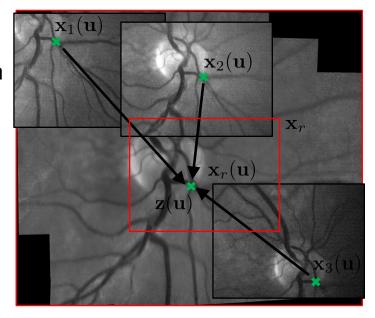
• Enhanced correlation coefficient (ECC) maximization<sup>6</sup> with quadratic transformation model  $\Rightarrow$  iterative optimization of  $\rho$  in coarse-to-fine scheme



<sup>&</sup>lt;sup>6</sup>G. D. Evangelidis and E. Z. Psarakis, *Parametric image alignment using enhanced correlation coefficient maximization.*, IEEE PAMI, vol. 30, no. 10, pp. 1858–65, 2008. 15.04.2016 | Thomas Köhler | Pattern Recognition Lab. SAOT | Super-Resolved Retinal Image Mosaicing, ISBI'16








## **Mosaic Image Reconstruction**

- Warp super-resolved views  $\mathbf{x}_i$ ,  $i \neq r$  towards the reference view  $\mathbf{x}_r$
- Histogram matching for illumination correction  $\Rightarrow$  registered views  $\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_n$
- Stitching by pixel-wise adaptive averaging:

$$\boldsymbol{z}(\boldsymbol{u}) = \frac{1}{\sum_{i=1}^{n(\boldsymbol{u})} \boldsymbol{w}_i(\boldsymbol{u})} \sum_{i=1}^{n} \boldsymbol{w}_i(\boldsymbol{u}) \tilde{\boldsymbol{x}}_i(\boldsymbol{u})$$

 $\mathbf{w}_{i}(\mathbf{u})$ : adaptive weight at pixel position  $\mathbf{u}$  associated with the i-th view





# **Experiments and Results**













## **Experimental Setup**

#### Video acquisition with low-cost fundus camera<sup>7</sup>

- Monochromatic video (25 Hz)
- VGA resolution (640 × 480 px) with FOV of 15° in vertical and 20° in horizontal direction

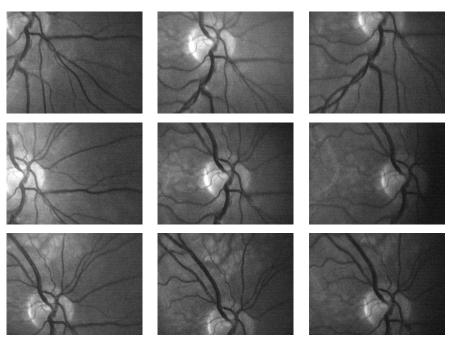
#### **Evaluation data**

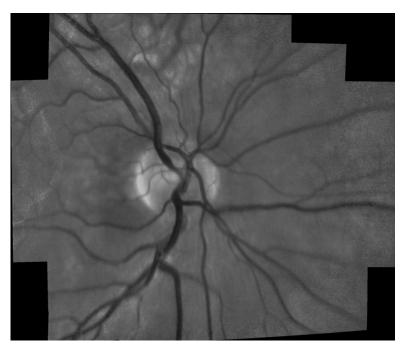
- Examination of seven human subjects (left eye)
   without pupil dilation ⇒ 24 datasets
- Horizontal/vertical eye movements during examination ⇒ 3 to 9 views for each subject
- $\bullet \approx 15 \, \mathrm{s}$  video per examination





<sup>&</sup>lt;sup>7</sup>R. P. Tornow et al., *Non-mydriatic video ophthalmoscope to measure fast temporal changes of the human retina*, Proc. SPIE Novel Biophotonics Techniques and Applications, 2015, vol. 9540, pp. 954006–954006–6





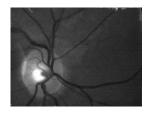

## **Qualitative Examples**

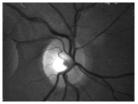
Input frames from n = 9 views and super-resolved mosaic image

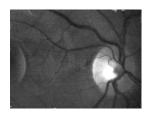




- ⇒ Increased spatial sampling by a factor of two
- $\Rightarrow$  Increased field of view from 15° to 25°




## **Qualitative Examples**

Input frames from n = 3 views and super-resolved mosaic image









- ⇒ Local misregistration between left and central view in the final mosaic
- ⇒ But no error accumulation due to registration with fixed reference







## Objective Image Noise / Sharpness Evaluation

Blind signal-to-noise ratio (SNR) estimation in homogeneous regions:

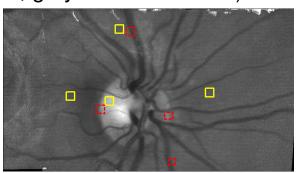
$$Q_{\mathsf{snr}} = \mathsf{10} \, \mathsf{log}_{\mathsf{10}} \left( rac{\mu_{\mathsf{flat}}}{\sigma_{\mathsf{flat}}} 
ight)$$

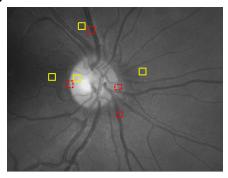
 $\mu_{\mathsf{flat}}$  and  $\sigma_{\mathsf{flat}}$  denote mean / standard deviation in a homogenous region

Blind edge preservation measurement in regions containing an object boundary:

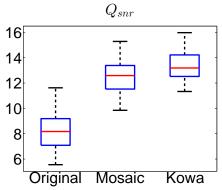
$$Q_{ ext{edge}} = rac{ extstyle W_b(\mu_b - \mu)^2 + extstyle W_f(\mu_f - \mu)^2}{ extstyle W_b \sigma_b^2 - extstyle W_f \sigma_f^2}$$

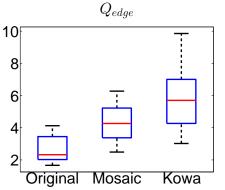
 $w_i$ ,  $\mu_i$  and  $\sigma_i$  with  $i \in \{b, f\}$  denote the weight, the mean and the standard deviation of a Gaussian mixture model fitted for background (b) and foreground (f)







## **Objective Image Noise / Sharpness Evaluation**


• Super-resolved mosaic and photograph of Kowa nonmyd camera (25° FOV,  $1600 \times 1216 \, px$ , grayscale-converted) with regions of interests:





• Statistics of  $Q_{snr}$  and  $Q_{edge}$  for five human subjects:







# **Summary and Conclusion**













## **Summary and Conclusion**

#### Summary

- Fully automatic approach to super-resolved mosaicing
- Reconstruction of high-resolution retinal images of enlarged field of view from low-resolution video
- Applicable to low-cost retinal fundus imaging

#### Future work

- Algorithm: Super-resolution and mosaicing as joint optimization problem
  - ⇒ Further improve robustness of mosaicing
- Applications: Investigations of clinical applications
  - $\Rightarrow$  e.g. screening for eye diseases







## Thank you very much for your attention!