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ABSTRACT

Object: To demonstrate the bene�ts of using locally low-rank (LLR) regularization for the

compressed sensing reconstruction of highly-accelerated quantitative water-fat MRI, and

to validate fat fraction (FF) and R∗2 relaxation against reference parallel imaging in the

abdomen.

Materials and Methods: Reconstructions using spatial sparsity regularization (SSR) were

compared to reconstructions with LLR and the combination of both (LLR+SSR) for up to

7-fold accelerated 3-D bipolar multi-echo GRE imaging. For 10 volunteers, the agreement

with the reference was assessed in FF and R∗2 maps.

Results: LLR regularization showed superior noise and artifact suppression compared to

reconstructions using SSR. Remaining residual artifacts were further reduced in combina-

tion with SSR. Correlation with the reference was excellent for FF with R2 = 0.99 (all

methods) and good for R∗2 with R
2 = [0.93, 0.96, 0.95] for SSR, LLR and LLR+SSR. The

linear regression gave slope and bias (%) of (0.99, 0.50), (1.01, 0.19) and (1.01, 0.10) and

the hepatic FF/R∗2 standard deviation was 3.5%/12.1 s=1, 1.9%/6.4 s=1 and 1.8%/6.3 s=1

for SSR, LLR and LLR+SSR, indicating the least bias and highest SNR for LLR+SSR.

Conclusion: A novel reconstruction using both spatial and spectral regularization allows

to obtain accurate FF and R∗2 maps for prospectively highly-accelerated acquisitions.

Key words: Multi-echo Dixon, Quantitative water-fat MRI, Fat fraction, Lo-

cally low-rank (LLR), Compressed sensing.
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INTRODUCTION

In recent years, chemical-shift-encoded water-fat imaging has become a clinical tool for

quantitative imaging of the fat-fraction (FF) and relaxation rate (R∗2), enabling the non-

invasive assessment of steatosis and iron deposits [1, 2]. These achievements originate

from the Dixon method that marked the beginning of water-fat imaging [3]. Unlike MR

spectroscopy that is known to accurately quantify fat but is restricted to a small sampling

volume, the Dixon method made imaging with a large coverage and high spatial resolution

possible [4].

Since then, this method has steadily been improved, both in terms of acquisition ef-

�ciency and signal-to-noise ratio (SNR), for instance through multi-point Dixon as well

as parallel imaging (PI) with bipolar readouts [5, 6]. Accounting for confounding factors

such as T1 bias, a single-peak fat spectrum and relaxation e�ects allowed for quantitative

water-fat magnetic resonance imaging (MRI) [7, 8]. As such, quantitative Dixon required

a multi-echo acquisition with longer echo trains [9]. After the advent of compressed sens-

ing (CS) in MRI [10], accelerated multi-echo water-fat imaging was �rst addressed by

Doneva et al. [11]. A novel blipped sampling pattern was combined with a k-space (model-

)based water-fat reconstruction, which directly enforces sparsity of water and fat as well

as smoothness of the phase map. Consequently, R∗2 estimation was included next and CS

was combined with PI (CS-PI), i.e. the acquisition and reconstruction using multiple coils,

where Wiens et al. evaluated blipped sampling for the �rst time prospectively [12, 13].

An alternative k-space based CS reconstruction exploited the correlation across multi-coil

measurements for calibrationless (CLEAR) water-fat separation [14].

Generally common to model-based reconstructions is that physical e�ects such as R∗2

or eddy current e�ects need to be modeled and considered explicitly during reconstruc-

tion. This adds further non-linear complexity, which makes these approaches considerably

harder to solve and sensitive to parameter initialization. In fact, a k-space based re-

construction, which also models eddy currents caused by bipolar readouts has not yet

been proposed. Alternatively, bipolar imaging was shown to be applicable in combina-

tion with a dedicated PI acquisition and reconstruction scheme such that adverse phase

e�ects cancel each other [15]. That being said, the particular advantage of model-based

reconstructions is the simultaneous use of data from all echoes and the ability to directly
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constrain water-fat parameters during reconstruction. This has not been shown to be

feasible with conventional two-step, image-based water-fat separation, where echo images

are �rst reconstructed, followed by a separate but quite robust parameter �tting that

imposes the water-fat signal model after image reconstruction. As such, this approach

allows for R∗2-resolved, quantitative imaging and supports fast bipolar readouts since it of-

fers the �exibility to model physical e�ects such as �eld inhomogeneities and eddy currents

conveniently during parameter �tting.

Recently, an image-based water-fat separation using CS-PI based on wavelet sparsity

in the spatial domain was introduced and demonstrated accurate fat quanti�cation for

up to 4- and 5-fold acceleration in liver and muscle imaging [16, 17]. Apart from utiliz-

ing faster bipolar readouts, which became common practice for multi-echo GRE imaging,

further acceleration can be expected from constraining the signal variation of the echo

image series. In order to also bene�t from the sparsity along the echo dimension, we

extend the CS-PI reconstruction by a model-consistent spectral regularization, which si-

multaneously regularizes over all available data to promote a low-rank constraint of locally

correlated multi-echo images. The idea is to promote consistency in between multi-TE

images by enforcing a representation with few chemical components but without knowing

the spectral properties of these components. The relationship between echoes has been

employed earlier for denoising multi-echo data using local singular value decompositions

(SVDs) [18]. Lately, a closely-related automated locally low-rank (LLR) regularization

for water-fat imaging and relaxometry obtained denoised parameter maps with a strong

SNR gain [19, 20], and proved bene�cial on clinical data [21]. The LLR regularization was

originally proposed for dynamic MRI reconstruction of the heart but had also been applied

to accelerate parameter mapping [22, 23]. Recently, an echo-coupled reconstruction based

on LLR regularization showed promising results towards higher acceleration of multi-echo

water-fat imaging [24]. The paper at hand extends this earlier work.

After having justi�ed the LLR property for multi-echo water-fat imaging, we describe

a joint LLR and spatial sparsity-enforcing (SSR) regularization for CS-PI reconstruction.

Our constrained optimization framework targets 3-D multi-echo data from bipolar read-

outs and does not require modeling of physical e�ects for the reconstruction, thereby

supporting arbitrary subsequent water-fat separation including those based on R∗2 and
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eddy-current correction. For up to 7-fold prospectively accelerated in-vivo acquisitions,

the joint spectral and spatial sparsity regularization LLR+SSR is compared against sep-

arate LLR and spatial sparsity regularization. The agreement between reconstructions

from undersampled data and a clinically applied Dixon protocol with high resolution is

validated by experiments in 10 volunteers, which includes a quantitative analysis of fat

fraction and R∗2 maps.

MATERIALS AND METHODS

We propose to obtain water, fat and R∗2 values in two independent steps. First, the

sparsely sampled multi-echo series is reconstructed with a novel regularization framework

which makes use of the limited number of independent spectral components across echo

images. Second, the reconstructed data is �tted voxel-wise to a common non-linear water-

fat model.

Low-Rank Property of Water-Fat Imaging

The acquisition of multiple images at varying echo times allows the separation of water

and fat components based on their di�erence in resonance frequency due to the di�ering

shielding in fat-bound hydrogen. The relation between individual echo images xe, e ∈

[1, E] at echo time te with E the number of echo times, and the spectral components

water and fat w, f ∈ CN can be modeled as

xe,j =
(
wj + cef j

)
eiΦe,j , j = 1 . . . N, e = 1 . . . E, (1)

for the j-th out of N = Nx ·Ny ·Nz voxels. The modulation term for the fat component,

ce =
∑

m αmei2π∆fmte , can be derived from a pre-calibrated multi-peak fat spectrum,

where αm is the known relative amplitude and fm the frequency shift of the mth fat

peak [25]. Various phase e�ects originating from �eld inhomogeneities, gradient delays

and eddy currents are modeled by Φ ∈ CN ·E . The relaxation rate R∗2 is included in the

imaginary part of the phase component and allows to identify rapid signal decline due

to iron deposits. In order to capture the relaxation in a clinical range, the acquisition of

multiple echoes is required [7].

Following this general de�nition, the signal evolution for multiple echoes is determined
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by the two spectral components water and fat as well as the phase variation Φ. A common

assumption is that the phase variation is locally smooth [11, 26, 27]. For very small local

regions, it can consequently be considered constant. Thus, for an echo train of length

greater than two, a spatiospectral matrix that is formed by vectors from locally related

samples of each echo will be rank de�cient, as the signal is primarily a linear combination

from two spectral contributions. Figure 1 demonstrates this pattern for an exemplary

multi-echo GRE sequence subject to su�ciently small patches. For water-fat imaging, this

LLR property means that the �rst two singular values and their respective singular vectors

contain signi�cant information about the dominating components while the remaining

data consists of phase variation and noise. One way to exploit this phenomenon for

reconstruction is to regularize these spatiospectral matrices via nuclear norm minimization,

which was chosen as it provides the closest convex functional to rank minimization [28].

De�ned as the sum of singular values, the nuclear norm is based on a complex-valued

singular value decomposition (SVD) of the signal and, thus, preserves phase information

as opposed to a magnitude-based SVD. Figure 2 visualizes the singular value distribution of

small and larger patches at tissue interfaces with strong phase variations. The rank seems

to be una�ected by susceptibilities for the chosen patch sizes, which seems reasonable as

the complex-valued representation of spectral components can each carry di�erent phase

information, thereby not adding to the rank. This is shown for patches containing the

liver, both fat and muscle as well an additional air interface.

CS-PI Multi-Echo Reconstruction

The straightforward application of CS to multi-echo acquisitions for water-fat imaging is

the independent reconstruction of each individual echo followed by a conventional water-fat

separation via a non-linear parameter �tting. While this two-step approach is established

and quite �exible, the redundancies within the echo series are left unexploited. We propose

to take advantage of the LLR property of the signal series by coupling the reconstruction

of all echoes in a CS optimization based on nuclear norm minimization of the locally cor-

related signal [22]. Let x = [xT1 , . . . ,x
T
E ]T ∈ CN ·E be the concatenated vector comprising

the target image sequence we wish to recover based on E multi-echo and C multi-coil
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FIG. 1 Spatiospectral matrices of local patches from all echoes of a multi-echo series exhibit a

low-rank singular value distribution. For small patch sizes, the rank is limited by the number of

independent spectral components within a patch (water, fat or mixture of both). This effect is

more prominent for smaller patches, compare size 4× 4 (solid lines) against 10× 10 (dashed

lines). Singular values are normalized by patch size

measurements with each K sampled k-space points yc,e ∈ CK :

x̂ = argmin
x

E∑
e=1

C∑
c=1

1

2
‖Acxe − yc,e‖22 +

LLR︷ ︸︸ ︷
λb
∑
p∈Ω

‖Bp(x)‖∗+

SSR︷ ︸︸ ︷
Ψ(x, λd, λw) , (2)

where Ac is the system matrix for coil c, which multiplies the image vector with the

respective coil sensitivity map and applies the undersampled Fourier transform in order

to match the acquired k-space data. The block operation Bp : CN ·E → CP×E extracts

P = Px · Py · Pz samples (E � P � N) from a local neighborhood p ∈ Ω of each

echo image and reformats them as column vectors of a spatiospectral matrix. Then, the

LLR regularization is given as the summation of the nuclear norm�de�ned as the sum of

singular values�over the set of all neighborhoods Ω. Ψ describes a joint spatial sparsity

constraint based on total variation (TV) and a discrete wavelet transform (DWT):

Ψ(x, λd, λw) = λd‖(∇xx,∇yx)‖2 + λw‖Wx‖1, (3)

where ‖(∇xx,∇yx)‖2 =
∑

j

√
(∇xx)2

j + (∇yx)2
j denotes the 2-D isotropic TV formulation

andW a redundant DWT [29, 30]. The Lagrange multipliers λ{b,d,w} balance the in�uence

of each regularization term in relation to the data �delity term. The motivation for

minimizing additional `1-terms of sparse or compressible signal representations such as
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FIG. 2 The singular value distribution (a) is visualized for various tissue boundaries (b) and for

smaller (solid) and larger (dashed) patch sizes, along with the fieldmap (c). The LLR property

of a spatiospectral matrix seems to be unaffected by strong fieldmap variations, e.g. due to

susceptibility changes at tissue-air interfaces since it is based on the complex-valued SVD,

which preserves the phase information

�nite di�erences is fundamental for CS, as it alleviates the problem of �nding a unique

solution in the underdetermined case of limited measurements data [10]. Joint sparsity by

combining TV and wavelet regularization has previously demonstrated to yield improved

image quality [29, 31]. The method is denoted SSR when only spatial sparsity is enforced

(λd, λw > 0 ∧ λb = 0). By also promoting the signal to be generated from a limited number

of spectral components via the LLR regularization across the echo dimension, further noise

reduction and, thus, higher SNR is targeted. In what follows, this is referred to as the

LLR+SSR method (λd, λw, λb > 0), while LLR denotes the corresponding method for (λd

= λw = 0 ∧ λb > 0).

Split Bregman Algorithm

To solve the unconstrained optimization problem of the joint LLR+SSR formulation and

its variants in Eq. (2), an optimization scheme which is both e�cient and versatile by

featuring multiple regularization terms is required. Alternating direction method of multi-

pliers (ADMM) [32] or Split Bregman (SB) [29] techniques are particularly fast when the

problem formulation is separable. The key idea is to split a cost function into parts that

consist of either `2-terms or proximal operators and alternate between solving the corre-

sponding sub-problems, of which the latter ones can often be solved using component-wise

soft-thresholding. Applying the SB scheme for solving Eq. (2) yields an adapted uncon-
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strained cost function with additional proxy variables db ← x, dx ← ∇xx, dy ← ∇yx,

dw ←Wx and penalty constraints with their respective Lagrange multipliers µ{b,d,w} for

each of the regularizers:

x̂, d̂b, d̂x, d̂y, d̂w = argmin
x,db,dx,dy ,dw

H(x) + λb
∑
p∈Ω

‖Bp(db)‖∗ +
µb
2
‖db − x‖22

+λd‖(dx,dy)‖2 +
µd
2

(
‖dx −∇xx‖22 + ‖dy −∇yx‖22

)
+λw‖dw‖1 +

µw
2
‖dw −Wx‖22,

(4)

with the data-�delity term H(x) =
∑E

e=1

∑C
c=1

1

2
‖Acxe − yc,e‖22. Further applying the so

called Bregman iteration and generalized split algorithm gives an iterative algorithm that

alternates between solving a quadratic problem including data-�delity and penalty terms

as well as proximal operators of their respective `1-regularization terms [29]:

x(k+1) = argmin
x

H(x) +
µb
2
‖d(k)

b − x− b
(k)
b ‖

2
2 +

µw
2
‖d(k)

w −Wx− b(k)
w ‖22

+
µd
2

(
‖d(k)

x −∇xx− b(k)
x ‖22 + ‖d(k)

y −∇yx− b(k)
y ‖22

)
,

(5)

d
(k+1)
b = argmin

db

µb
2
‖db − x(k+1) − b(k)

b ‖
2
2 + λb

∑
p∈Ω

‖Bp(db)‖∗, (6)

d(k+1)
w = argmin

dw

µw
2
‖dw −Wx(k+1) − b(k)

w ‖22 + λw‖dw‖1, (7)

(
d(k+1)
x ,d(k+1)

y

)
= argmin

dx,dy

µd
2
‖dx −∇xx(k+1) − b(k)

x ‖22

+
µd
2
‖dy −∇yx(k+1) − b(k)

y ‖22 + λd‖(dx,dy)‖2.
(8)

The procedure for reconstruction is summarized in algorithm 1 and solves the sequence

of equations (5)�(8) for Nsb iterations or until convergence. While equations (6)�(8) are

proximal functions and have known closed form solutions [29, 33], which are given in the

Appendix for completeness, Eq. (5) can be solved via gradient-based optimization with

conjugate gradient or quasi-Newton algorithms using Nl2 gradient steps. Equation (11)

performs simple updates on the residual variables b after each iteration to enforce the

penalty terms (cf. Appendix).
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Algorithm 1 Split Algorithm for CS Multi-Echo Reconstruction

Require: y, λ{b,d,w}, µ{b,d,w}, Nsb, Nl2

1: k ← 0

2: x(0) ← b
(0)
{b,x,y,w} ← 0

3: while k < Nsb and ‖x(k) − x(k−1)‖2 > ε do

4: x(k+1) ← Nl2 iterations of L-BFGS for Eq. (5)

5: d
(k+1)
{b,x,y,w} ← {Eq. (12), Eq. (13), Eq. (15), Eq. (16) } . Shrinkage

6: b
(k+1)
{b,x,y,w} ← {Eq. (11) } . Updates

7: k ← k + 1

8: return x(k)

Poisson Disc Sampling

Incoherent undersampling was obtained using a variable-density Poisson disc sampling.

Our variable-density sampling scheme is based on the concept of Bridson to rapidly gener-

ate uniform-density Poisson samples [34]. The basic principle is to draw samples starting

from an existing sample point and randomly generate up to R points within an annulus

of radii r and 2r around that position while rejecting points that lie within distance r of

existing points. For an extension to variable density, we incorporated a Gaussian density

to scale the �xed radius based on the grid position k:

fVD(k, υ) = exp

(
−(kya)2 + k2

z

0.25N2
yυ
−2

)
, (9)

where the density for a centralized sampling point coordinate k can be adjusted by υ.

The aspect ratio a = Ny/Nz enables a non-uniform variable density in the phase-encoding

plane. The radius before scaling was �xed to r = 0.634 such that a dense sampling is

obtained at the center and R = 30 was used [35]. υ was chosen based on the targeted

acceleration factor.

Acquisition Setup and Volunteer Experiments

All experiments were conducted on 1.5T and 3T MR systems (MAGNETOM Aera/Skyra,

Siemens Healthcare, Erlangen, Germany) using a prototypical bipolar 3-D GRE (VIBE)

sequence. A 6-echo bipolar protocol with 4° �ip angle, TR = 9.25ms and TEs = 1.26,
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Table 1. Methods for evaluation with their corresponding parameter setups

Method Protocol AF TA (λb, λd, λw) Px, Py, Pz

REF PI CAIPIRINHA 4 19 s - -

SSR CS Poisson 4/6/7 19/14/11 s (0, 0.3, 0.0008) -

LLR CS Poisson 4/6/7 19/14/11 s (7, 0, 0) 4, 4, 1

LLR+SSR CS Poisson 4/6/7 19/14/11 s (7, 0.3, 0.0008) 4, 4, 1

2.60, 3.94, 5.28, 6.62, 7.96ms as well as 1030Hz/pixel bandwidth was used for both

�eld strengths. The acquired matrix size was 256× 188× 40 and was interpolated to

256× 208× 64 yielding a voxel size of 1.48× 1.48× 3.44mm3 for a �xed FOV of 38× 31× 22 cm3.

In addition to the table-mounted spine array, imaging was performed with a �exible 18-

channel body array resulting in 26�30 coil elements overall. Separate reference scans for an

auto-calibration region of size 24× 24 in the phase-encoding plane were used for calibrating

the coil sensitivities and were included in the reported acquisition time (TA).

Abdominal scans were acquired with written consent from 10 volunteers (3 female)

whose average age was 39± 15 years. 6 of these volunteers were scanned with a 1.5T

scanner. The aim of the experiments was to compare conventional imaging and highly

accelerated acquisition with incoherent sampling with respect to both image quality and

quanti�cation accuracy. For each subject, two scans were acquired: 1) a reference mea-

surement using CAIPIRINHA sampling [36] with 4× acceleration factor (AF), two in each

phase-encoding direction with reorder shift of one, resulting in 19 s TA 2) a 6× accelerated

acquisition in 14 s using a variable-density Poisson disc sampling (υ = 2.5).

For one volunteer, two further Poisson sampled acquisitions (υ = 2.0, 3.0) resulting

in 19 s (4×) and 11 s (7×) scans, were acquired to assess the robustness against varying

undersampling.

Reconstruction Details

Reference acquisitions were directly reconstructed on the scanner system, whereas CS

reconstructions were performed o�ine using a C++ implementation supported by the
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Intel® math kernel library and an L-BFGS optimizer for solving Eq. (5) [37]. The k-space

measurements from echoes with negative readout polarity were time reversed. Corrections

such as linear or higher order phase correction due to the bipolar acquisition were not nec-

essary, as the complex-valued reconstruction is invariant to phase variations in between the

echoes. Initially, the acquired data was scaled to the standard normal distribution of noise,

which was derived from oversampled readout lines by taking the �rst and last one percent

of samples in central partitions. Coil sensitivity maps were pre-calculated by Hann �lter-

ing of the separate reference scan followed by voxel-wise normalization along the channel

dimension. The reconstruction of the volumetric+TE data was split into multiple 2-D+TE

reconstructions by performing a Fourier transform along the fully-sampled readout. But

as we coupled the LLR regularization along the readout and phase-encoding direction,

one SB step had to be completed for all 2-D planes before advancing to the next itera-

tion. SSR regularization was applied complementary in the undersampled phase-encoding

plane, potentially allowing fully-independent reconstructions. Regarding the block size for

the LLR regularization, we found that small block sizes gave the best results. Addition-

ally, the image resolution should be taken into account as blocks along anisotropic image

planes showed a smaller denoising e�ect, probably attributed to the large slice thickness

(cf. results). We thus propose Px, Py, Pz = 4, 4, 1.

While the SB algorithm has more parameters than the original formulation, the penalty

parameters µ{b,d,w} merely control the rate of convergence and can be �xed once. Common

choices for DWT and TV formulations are µ/λ = 0.5 [29]. With µw/λw = 0.5, µd/λd = 1

and µb/λb = 0.3, we found values in a similar range to work best. The regularization

weights λ{b,d,w} were selected empirically based on in-vivo data from a typical acquisition

protocol and visual inspection of the water, FF and R∗2 maps with respect to suppression

of aliasing and noise artifacts as well as edge preservation (cf. Table 1). Observing the

decrease in cost function and visual change in image quality, Nsb = 80 SB iterations with

Nl2 = 2 were su�cient for the proposed LLR+SSR algorithm. With an Intel® Xeon®

E5540 CPU, reconstructions took 80 ± 7min per volume in the case of LLR+SSR.

Water-Fat Separation. After reconstructing the complex-valued multi-echo images,

a multi-step Dixon algorithm [38] was used in combination with a pre-calibrated multi-
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peak fat spectrum [25] to extract water and images as well as FF and R∗2 maps. The

method successively uses both complex- and magnitude-based signal models in order to

re�ne the solution and obtain a robust estimate. Initially, using only the �rst two available

echoes, a phase-resolved complex-valued estimate for water and fat is obtained [39]. Based

on this estimate, water, fat and R∗2 are being re-�tted on the magnitude representation

of the signal model in Eq. (1). Here, we used a voxel-wise �tting based on a Levenberg-

Marquardt routine with boundary conditions. Note that any magnitude- or complex-based

water-fat separation routine is applicable since the proposed reconstruction preserves the

phase and the Gaussian noise distribution. Furthermore, the chemical-shift induced shift

of fat along the readout was neglected as it was smaller than half a voxel due to the usage

of a high receiver bandwidth.

Translation invariance for blockwise processing. Similarly to the well-known

formation of blocky artifacts when using orthogonal wavelet transforms for denoising,

the application of the blockwise nuclear norm for LLR can exhibit similar artifacts [30,

40]. However, a formulation involving the minimization of overlapping patches transforms

the problem into an overlapping group lasso, a special case of consensus optimization,

which is computationally demanding and has no closed-form solution [41]. Established

practical techniques for DWT regularization are either to apply the transform to all shifted

version of the signal followed by averaging the processed, unshifted signal, or to perform

a single random shift per iteration [30]. The latter approach, known as random cycle

spinning, has negligible computational overhead but still provides translation invariance

to some degree, and was recently adopted for the blockwise nuclear norm [40]. Yet, this

technique was not su�cient for entirely eliminating blocky artifacts in FF maps since

residual signal discontinuities are ampli�ed in the fraction calculation. Consequently, we

performed an overcomplete processing, which has emerged as one of the key ingredients

in current denoising techniques [42]:

d(k+1) ≈ diag(z)−1
∑
p∈Ω∗

B†p

(
SVT

(
Bp

(
x(k+1)

)
,
µb
λB

))
, (10)

using this sliding-window approach with fully overlapping groups Ω∗ yields a translation-

invariant approximation of Eq. (6). To this end, z ∈ NN ·E+ holds the total number of
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contributing patches at every voxel position such that a fusion or aggregation of overlap-

ping regions is performed as the arithmetic mean.

Quality Assessment Criteria

Apart from visual inspection of the reconstructed multi-echo and parameter images, var-

ious quantitative experiments were used to evaluate the described reconstruction tech-

niques SSR, LLR and LLR+SSR. Edge sharpness measurements were performed on FF

maps to assess how the di�erent regularizations a�ect the results of the water-fat separa-

tion. In literature, sharpness is usually de�ned by the slope of an intensity pro�le across

a prominent edge (organ boundary) using the 20% � 80% intensity rule [43]. Given the

maximum Imax and minimum Imin intensity of the intensity pro�le, the sharpness can be

de�ned via the reciprocal distance between the two points, A = 0.2(Imax−Imin)+Imin and

B = 0.8(Imax − Imin) + Imin. In order to yield a robust estimate, the �nal edge sharpness

(ES) was computed as the median over a multitude of pro�les orthogonal to a manually

segmented boundary [44].

Further experiments included a linear regression analysis and were based on mean

and standard deviation (SD) for several regions of interest (ROIs) in FF and R∗2 maps.

The ROIs were drawn in axial planes of the reference and matched with the CS mea-

surement subject to the same anatomical region: 4 ROIs were placed in di�erent liver

regions avoiding vessels while 1 ROI included the spleen for reference purposes, as the FF

should physiologically be close to zero there. Thus, the average spleen FF was reported

to provide a noise comparison. To assess the agreement with a clinical imaging protocol,

the ROI mean values of the reference reconstruction (REF) were subtracted from those

of the CS methods. This deviation from the reference, averaged over multiple ROIs and

subjects, is also referred to as bias. Notice, however, that unlike biopsy, REF provides

no gold-standard and is potentially biased itself. Table 1 lists methods and setups of the

corresponding reconstructions.
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RESULTS

Reconstruction Quality Assessment

Figure 4 shows water images as well as FF and R∗2 maps of the abdomen from a con-

ventional measurement with 4× acceleration in comparison to a 6× accelerated CS-based

acquisition with reconstructions from SSR, LLR and LLR+SSR along with their respec-

tive undersampling masks. Images of REF are a�ected by a central noise band, which is

particularly visible for FF and R∗2 maps. SSR exhibits less grainy but rather structured or

aliased noise, most prominent in the relaxation map where some structures become deteri-

orated. With the LLR-based methods, the R∗2 map is more smooth though with enhanced

structures while FF shows less speckled or aliased noise compared to REF and SSR. The

water image for LLR shows a �ne graininess as well as Gibbs ringing that was reduced

by joint regularization with LLR+SSR. We additionally evaluated the edge sharpness at

tissue boundaries between fat and spleen, kidney as well as the liver. Figure 3 visualizes

the ES de�nition and an ES pro�le for a boundary between fat and the liver. The hatched

lines visualize the selected boundaries in the FF map. The median ES of REF is plotted

against SSR, LLR and LLR+SSR for various regions. Note that REF and the acceler-

ated methods were manually registered to allow for an evaluation. There is a clear trend

between the accelerated methods showing the least ES for SSR and the highest for LLR

while LLR+SSR yields values in between.

A quantitative evaluation of in-vivo measurements from all 10 volunteers is provided by

Table 2 and Figure 5. Figure 5 plots the linear regression between FF values obtained by

the reference and SSR, LLR and LLR+SSR. The regression results in a slope and bias (%)

of (0.99, 0.50) for SSR, (1.01, 0.19) for LLR and (1.01, 0.10) for LLR+SSR, which shows a

reduction in bias from SSR to LLR over LLR+SSR. Generally, with correlation coe�cients

of R2 = 0.99 for all methods, there is excellent agreement with the reference. Also, the

correlation for R∗2 is good with R
2 = [0.93, 0.96, 0.95] for SSR, LLR and LLR+SSR. Table 2

lists bias and SD of the obtained FF and R∗2 maps of all methods. The deviation from

the reference for FF and R∗2 maps is low for all CS-based methods being around 5 to

10% of typical values in the liver. Yet, the average ROI SDs are relatively high, also

for the reference, which indicates a low-SNR acquisition. They are lowest for LLR+SSR,

being only one half of that of SSR and around two third of the reference method, which
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FIG. 3 Definition of the edges sharpness for an intensity profile across a boundary (a). The

sharpness values along a manually segmented boundary (livertop in (d)) are plotted for the

accelerated methods (b). Multiple organ boundaries were segmented as marked in the FF

map (c) and the corresponding edge sharpness is reported as the median of all profiles along

a segment (d)

demonstrates a substantial SNR gain. This noise reduction can also be observed when

comparing the FF of the spleen, which is normally close to zero but is around 3% for

the reference and SSR but only 2% for the LLR-based methods. Using LLR+SSR, the

noise-related measures are the lowest and the deviation from the reference is minimal. In

conclusion, the proposed method yields quantitatively equivalent results and better SNR

for AF 6 in comparison to REF (AF 4).

Figure 6 shows the sampling masks for AFs 4, 6 and 7, as well as images of the 2nd echo

and the FF map for the reconstruction methods SSR, LLR and LLR+SSR. In general,

noise and the amount of aliasing increase with higher undersampling. Arrows mark the

areas in FF and echo images where di�erences between the methods are most prominent

regarding aliasing and detail of structures. The images of SSR exhibit rather speckled,

grainy noise for AF 4 while aliasing becomes prominent at higher AFs in FF and echo

images. Using LLR, there is no speckled noise in the echo images but slight aliasing and

graininess, which increases for higher accelerations. The FF map seems relatively clear at

AF 4 while a smoothing e�ect becomes visible for higher AFs. There is a similar trend for

the combined regularization, though graininess and some aliasing or Gibbs-ringing e�ects
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FIG. 4 Water, FF and R∗2 images of one volunteer as well as their respective undersampling

masks are shown for conventional imaging (19 s) and for a CS acquisition (14 s) using different

reconstructions. Both acquisitions are affected by a central noise band and, in the case of

CS, additional undersampling aliasing. Note how the different regularizations handle these

artifacts and yield quantitative maps of varying quality subject to, e.g., noise amplification and

the delineation of structures. Be aware that the images of the CS methods are missing an

intensity inhomogeneity correction

are removed in the echo images, which leads to slightly clearer FF maps. In summary,

accelerations until AF 4 are feasible with all methods while higher AFs seem restricted to

LLR-based methods.

Table 3 summarizes the e�ect of increasing acceleration factors using a ROI analysis,

which was exemplarily performed for one volunteer. The average liver ROI mean and SD

were reported for FF and R∗2 maps as obtained by the previously described methods. The

mean FF and R∗2 values are consistent for all methods at all acceleration factors. The

reference acquisition exhibits relatively high SDs for FF and R∗2 values with 3.6% and

11.7 s=1, which are similar to those using SSR at a 4-fold CS acquisition. Comparing the

CS-based acquisitions, the FF SD is rising with increasing undersampling from 3.7% to
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FIG. 5 Linear regression analysis of the FF between the data reconstructed by REF and the

CS methods SSR, LLR and LLR+SSR, in 10 volunteers. Dashed lines represent y = x, and

solid lines are the linear regression with their formulae at the top left. Data points mark the

hepatic FF per volunteer as averaged over 4 ROIs

4.5% when using SSR but is stable at 1.9% for the LLR-based methods. The SDs of FF

and R∗2 maps are halved compared to the reference at AF 4 and more than halved at AF

6�7 in comparison to SSR.

Effects of LLR Regularization

A common attempt to �nd the optimal regularization weight for a regularized optimization

is based on the L-curve analysis [45]. Following the L-curve criterion, a plot of the data

�delity term against that of the regularizer for varying regularization weights should have

an L-shape. The region with a sharp bend or with the highest curvature is attributed to an

e�ective weight, as here a large reduction of the regularization term is obtained while the �t

to the measured data is preserved. Figure 7 plots the cost of the data �delity term against

the cost of the LLR regularizer for an increasing regularization weight λb after Nsb = 80

iterations. Next to the curve, we visualized the corresponding reconstruction for a low, the

selected and a high λb according to bend of the curve. The selected weight is a conservative

choice for regularization, which is re�ected by the similarity to the reconstruction with a

low weight. Their di�erence is only visible in the highly scaled di�erence image, which

shows Gibbs ringing only. In contrast, the closeup of the reconstruction using a high λb

shows loss in contrast and visible blur, which is also supported by the remaining boundaries

in their di�erence image.
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Table 2. Deviation from reference and noise evaluation for FF and R∗2 maps of 10 volunteers

Method Bias: FF [%] SD: FF [%] Bias: R∗2 [s
−1] SD: R∗2 [s

−1] FFspleen [%]

REF - 2.9 - 9.6 2.6

SSR 0.4 3.5 3.0 12.1 3.1

LLR 0.3 1.9 2.8 6.4 2.0

LLR+SSR 0.2 1.8 2.8 6.3 1.9

Deviation from the reference (bias) for FF and R∗2 values from ROIs in the liver was evaluated

for SSR, LLR and LLR+SSR relative to a conventional acquisition. For noise assessment,

the ROI SDs were averaged over subjects and reported as well as the average spleen FF.

Bias and uncertainty measures are high for SSR alone while LLR yields less deviation from

REF and distinctly reduced SDs. Closest agreement with REF and lowest noise measures

are obtained with LLR+SSR

Figure 8 shows the impact of varying sliding-window parameters of the LLR regulariza-

tion for FF and R∗2 maps. Utilizing patches that are embedded in the anisotropic sagittal

plane is convenient for an e�cient readout-decoupled processing but can lead to vertical

streaks in axial view. Here, these streaks blur tissue boundaries and result in elevated FF

values in comparison to an application in axial plane. Extending the axial regularization

over multiple slices also leads to unsuppressed noise and artifacts in R∗2 maps compared

to an in-plane processing. Thus, a 2-D axial processing with isotropic patch resolution

(e.g., 4 × 4 patches) is recommended for 3-D abdominal imaging with a typically large

slice thickness.

DISCUSSION

The advantage of an LLR regularization over conventional spatial regularization has been

demonstrated for abdominal CS water-fat MRI. For that, a combined LLR and spatial

sparsity regularization (LLR+SSR) was tested against separate regularization with SSR

and LLR based on acquisitions from 10 volunteers using up to 7× accelerated Poisson-disc

sampling. In contrast to SSR, LLR by itself halved the uncertainty for FF and R∗2 maps and
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FIG. 6 For increasing acceleration factors 4, 6 and 7, the sampling mask as well as the 2nd

echo and FF map of a volunteer with 13 % liver fat are shown for the reconstruction methods

SSR, LLR and LLR+SSR. Generally, noise and the amount of aliasing increases for higher

AFs, which can be observed in FF and echo images. Arrows mark areas where differences

between the methods are most prominent regarding aliasing and detail of structures

achieved a far better noise performance, i.e. SNR, than the reference acquisition (Tables 2

and 3). This substantial SNR1 gain can be attributed to the rather low-SNR acquisition

setup, which is nevertheless typical for breath-hold limited quantitative measurements [4,

7], and more essentially to the LLR-characteristic denoising: the regularization can be

thought of as an averaging along the echo dimension that becomes more e�ective with the

number of echoes [19]. As long as the LLR property is well marked, which is encouraged

by using small patches, and later echoes still have enough signal, the LLR regularization

has a similar e�ect to repetitive signal averaging but only with the short extra time for

another echo [18]. As such, severe undersampling artifacts, which remained with SSR,

were e�ectively reduced. Yet, LLR alone was not able to completely remove ringing

artifacts and subtle graininess. The combination LLR+SSR notably reduced these e�ects

and produced homogeneous tissues while keeping small structures. Although the LLR

1 As a measure of image noise, SNR is de�ned as the average signal over the standard deviation

in a homogeneous region of interest. Traditionally, higher SNR meant improved image quality. In

the light of non-linear algorithms such as CS, it alone cannot serve as universal measure of image

quality because reduced noise can simply be induced by reducing image resolution.
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Table 3. Effect of increasing acceleration factors evaluated for one subject with elevated fat

Method
AF 4 AF 6 AF 7

FF [%] R∗2 [s
=1] FF [%] R∗2 [s

=1] FF [%] R∗2 [s
=1]

REF 12.6 ± 3.6 38.1 ± 11.7 - - - -

SSR 12.6 ± 3.7 37.1 ± 10.7 12.4 ± 4.3 40.3 ± 14.5 12.7 ± 4.5 39.3 ± 14.2

LLR 12.6 ± 1.9 37.4 ± 5.4 12.3 ± 1.9 39.9 ± 7.5 13.0 ± 1.9 38.7 ± 6.5

LLR+SSR 12.7 ± 1.8 37.3 ± 5.3 12.3 ± 1.9 40.1 ± 7.3 12.8 ± 1.9 38.7 ± 6.4

For one volunteer, FF and R∗2 ROIs were compared between the reference and the CS mea-

surement at increasing acceleration factors for different reconstruction methods. Mean ROI

values of FF and R∗2 are stable at all acceleration factors for all methods. SDs are halved for

the LLR-based methods compared to SSR and REF. While the FF SD for LLR/LLR+SSR is

stable at increasing undersampling, it increases with SSR

regularization was selected rather conservative according the L-curve analysis, an e�ective

denoising was achieved while maintaining high agreement with the reference, which is

supported quantitatively by the analysis of bias and noise, linear regression as well as

edge sharpness.

For LLR, the patch size plays an important role. Generally, a processing with a small

local support is supported from a theoretical point of view since the variation in phase is

considered smooth and spatially limited [11, 26, 27]. Also, the LLR regularizer has been

used previously for denoising and demonstrated the best tradeo� between sharpness and

noise reduction for small local patches (5 × 5) [19, 21]. Having observed that the LLR

property is particularly well-marked for small 2-D patches in axial slices, and that 3-D

processing involving planes with anisotropic resolution can cause sub-optimal denoising, we

opt to apply very small patches along isotropic planes only. That being said, the improved

noise statistic con�rms that the joint application provides complementary denoising, which

is superior to separate regularization using either SSR or LLR. Similar performance was

demonstrated for acceleration factors from 4 to 7, indicating that the proposed techniques
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are robust enough to possibly support even higher accelerations.

A comparison to previous studies based on statistical values is di�cult as the related k-

space based water-fat reconstructions provide only data from retrospectively undersampled

acquisitions or images were obtained with di�erent resolution and acceleration factors.

Commonly reported is the SD of the FF in a region of interest, which can serve to indicate

SNR. Considering the k-space methods, Sharma et al. report a FF SD of over 4% averaged

over 7 datasets for AF 4 with a regression equation to the reference of 0.97x+0.25, whereas

Wiens et al. lists 1.0/1.4% on a single dataset for AF 4.2/5 [12, 13]. Regarding image-

based water-fat reconstructions and prospective experiments, Mann et al. report a FF

bias of -0.1% and average SD of 0.8% for AF 4.8, in 11 patients [16]. With a higher intra-

and interslice resolution, our method compares excellently with a regression equation of

1.01x+0.10, an average FF bias of 0.2% and FF SD of 1.8% averaged over 10 datasets for

AF 6. An advantage over previous work is that the proposed method allows for exploiting

the redundancies across the echo dimension as well as reconstructing highly undersampled

data without explicitly modeling physical e�ects such as R∗2 or eddy currents.

Due to the lack of a fully sampled reference acquisition, which is currently unfeasible
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FIG. 8 LLR regularization with rather quadratic patches in combination with anisotropic res-

olution can cause non-optimal artifact suppression due to the processing of voxels from a

larger physical distance. Here, streaks and isolated spikes occur in the FF map (a). A regu-

larization solely along the isotropic axial plane (b) instead removes this effect and leads to a

lower FF with reduced SD (1.8 ± 1.5 % vs. 2.3 ± 1.7 %). Similarly, noise reduction and more

homogeneous R∗2 maps can be obtained when LLR processing is restricted to the axial plane

(c,d) (36.6 ± 4.0 s−1 vs. 36.3 ± 6.7 s−1)

when both high resolution and short scan times are desired, we utilized an accelerated PI

acquisition with high resolution as reference standard. This seems reasonable since fat

quanti�cation from PI is considered accurate and is commonly used in abdominal studies,

e.g. [38, 46]. Note that we used 1.5T and 3T systems only due to practical purposes. No

abnormal di�erences were observed, which is expected as accurate FF quanti�cation can

be obtained independent of �eld-strength [46]. The depicted qualitative results are from

a 1.5T system.

The next step will be the validation of this method on clinical data. While the current

study included volunteers with elevated hepatic FF (up to 42%), there was no validation
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for pathological R∗2 values. Albeit from a theoretical point of view, a spatially constant

(within a given patch) R∗2 does not a�ect the rank of a spatiospectral matrix, i.e. the LLR

regularization, since their columns (echoes) will be scaled as a whole dependent on the

rate of relaxation and echo time. Also, a previous study on LLR denoising, which applies a

technique similar to LLR regularization but with only one iteration, report that mean FF

and R∗2 of 42 clinical datasets were not adversely a�ected [21]. For future work, an evalua-

tion of other low-rank inducing norms such as non-convex Schatten p-norms(p<1) might be

of interest. Even though their convergence is dependent on continuation or initialization

schemes, non-convex norms have previously outperformed nuclear norm regularization for

certain applications [47]. Furthermore, a large workload percentage of the proposed algo-

rithm including the application of spatial sparsity transforms, proximal operators as well

as the data �delity term would lend itself for parallelism on graphics hardware and could

reduce the overall reconstruction time.

CONCLUSION

The feasibility of highly-accelerated quantitative water-fat MRI using CS-PI with joint

spatial and spectral regularization has been demonstrated and validated in 10 volunteers.

LLR regularized reconstructions yield accurate quanti�cation with a substantial SNR gain

for FF and R∗2 maps in comparison to spatial sparsity regularization and parallel imaging,

which can further be improved upon by jointly promoting spectral and spatial sparsity.

The improved noise statistic can be spent for accelerating multi-echo data acquisition and

consequently for improving the accuracy of SNR-critical parameter �tting.

APPENDIX: UPDATE TERMS AND SOLUTIONS OF PROXIMAL OPERATORS

Update terms of the SB algorithm enforce the coupling with penalty terms:

b
(k+1)
b = b

(k)
b + x(k+1) − d(k+1)

b ,

b(k+1)
x = b(k)

x +∇xx(k+1) − d(k+1)
x ,

b(k+1)
y = b(k)

y +∇yx(k+1) − d(k+1)
y ,

b(k+1)
w = b(k)

w +Wx(k+1) − d(k+1)
w .

(11)
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The proximal operator for the TV formulation is realized via generalized shrinkage as

d(k+1)
x =

(
s(k) − µd

λd

)
+

∇xx(k+1) + b
(k)
x

s(k)
, (12)

d(k+1)
y =

(
s(k) − µd

λd

)
+

∇yx(k+1) + b
(k)
y

s(k)
, (13)

with

s(k) =

√(
∇xx(k+1) + b

(k)
x

)2
+
(
∇yx(k+1) + b

(k)
y

)2
, (14)

where (a)+ performs component-wise max (0,aj), while soft-thresholding of wavelet coef-

�cients is used for DWTs [29]:

d(k+1)
w = soft

(
Wx(k+1) + b(k)

w ,
µw
λw

)
. (15)

The LLR proximal functional can be solved separately in the case of non-overlapping

blocks by singular value soft-thresholding and placing the result back with the adjoint

operator B† [28, 33],

d
(k+1)
b =

∑
p∈Ω

B†p

(
SVT

(
Bp

(
x(k+1)

)
,
µb
λB

))
,

using SVT(X, θ) = U diag ((σ − θ)+)V T .

(16)
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