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Abstract

Bright field microscopy is preferred over other microscopic imaging modalities
whenever ease of implementation and minimization of expenditure are main con-
cerns. This simplicity in hardware comes at the cost of image quality yielding images
of low contrast. While staining can be employed to improve the contrast, it may
complicate the experimental setup and cause undesired side effects on the cells. In
this thesis, we tackle the problem of automatic cell detection in bright field images
of unstained cells. The research was done in context of the interdisciplinary research
project COSIR. COSIR aimed at developing a novel microscopic hardware having
the following feature: the device can be placed in an incubator so that cells can be
cultivated and observed in a controlled environment. In order to cope with design
difficulties and manufacturing costs, the bright field technique was chosen for imple-
menting the hardware. The contributions of this work are briefly outlined in the text
which follows.

An automatic cell detection pipeline was developed based on supervised learning.
It employs Scale Invariant Feature Transform (SIFT) keypoints, random forests, and
agglomerative hierarchical clustering (AHC) in order to reliably detect cells. A key-
point classifier is first used to classify keypoints into cell and background. An intensity
profile is extracted between each two nearby cell keypoints and a profile classifier is
then utilized to classify the two keypoints whether they belong to the same cell (inner
profile) or to different cells (cross profile). This two-classifiers approach was used in
the literature. The proposed method, however, compares to the state-of-the-art as
follows: 1) It yields high detection accuracy (at least 14% improvement compared
to baseline bright field methods) in a fully-automatic manner with short runtime on
the low-contrast bright field images. 2) Adaptation of standard features in litera-
ture from being pixel-based to adopting a keypoint-based extraction scheme: this
scheme is sparse, scale-invariant, orientation-invariant, and feature parameters can
be tailored in a meaningful way based on a relevant keypoint scale and orientation.
3) The pipeline is highly invariant with respect to illumination artifacts, noise, scale
and orientation changes. 4) The probabilistic output of the profile classifier is used as
input for an AHC step which improves detection accuracy. A novel linkage method
was proposed which incorporates the information of SIFT keypoints into the linkage.
This method was proved to be combinatorial, and thus, it can be computed efficiently
in a recursive manner.

Due to the substantial difference in contrast and visual appearance between sus-
pended and adherent cells, the above-mentioned pipeline attains higher accuracy in
separate learning of suspended and adherent cells compared to joint learning. Sep-
arate learning refers to the situation when training and testing are done either only
on suspended cells or only on adherent cells. On the other hand, joint learning refers
to training the algorithm to detect cells in images which contain both suspended and
adherent cells. Since these two types of cells coexist in cell cultures with shades of
gray between the two terminal cases, it is of practical importance to improve joint
learning accuracy. We showed that this can be achieved using two types of phase-
based features: 1) physical light phase obtained by solving the transport of intensity
equation, 2) monogenic local phase obtained from a low-passed axial derivative image.



In addition to the supervised cell detection discussed so far, a cell detection ap-
proach based on unsupervised learning was proposed. Technically speaking, super-
vised learning was utilized in this approach as well. However, instead of training the
profile classifier using manually-labeled ground truth, a self-labeling algorithm was
proposed with which ground truth labels can be automatically generated from cells
and keypoints in the input image itself. The algorithm learns from extreme cases and
applies the learned model on the intermediate ones. SIFT keypoints were successfully
employed for unsupervised structure-of-interest measurements in cell images such as
mean structure size and dominant curvature direction. Based on these measurements,
it was possible to define the notion of extreme cases in a way which is independent
from image resolution and cell type.



Kurzübersicht

Hellfeldmikroskopie wird immer dann anderen Mikroskopieverfahren vorgezogen, wenn
großer Wert auf die Minimierung der Anschaffungskosten und die Einfachheit der
Umsetzung gelegt wird. Diese Einfachheit der Hardware vermindert jedoch die Bild-
qualität und führt zu einem verringerten Kontrast in den erzeugten Bildern. Eine Ein-
färbung der Zellen kann zur Erhöhung des Kontrasts verwendet werden. Allerdings
macht sie die Versuchsanordnung komplizierter und verursacht Nebenwirkungen auf
die Zellen. In dieser Dissertation wurde das Problem der automatischen Detektion
ungefärbter Zellen in Hellfeldmikroskopie-Bildern untersucht. Die Forschung fand im
Rahmen des interdisziplinären Projekts COSIR statt. Ziel des Projekts COSIR war es,
eine Mikroskop-Hardware zu entwickeln, mit der Zellkulturen innerhalb des Inkuba-
tors beobachtet werden können. Um Konstruktionschwierigkeiten zu vermeiden und
Herstellungskosten gering zu halten, wurde die Hellfeldmikroskopie zur Umsetzung
des COSIR-Projekts ausgewählt. Die Beiträge dieser Doktorarbeit sind im Folgenden
zusammengefasst.

Basierend auf überwachtem Lernen wurde eine Pipeline zur automatischen Zell-
detektion entwickelt. Sie verwendet Scale Invariant Feature Transform (SIFT), Ran-
dom Forests, und die agglomerative hierarchische Clusteranalyse (AHC), um Zellen
zuverlässig zu detektieren. Als erster Schritt wurde ein Keypoint-Klassifikator zur
Unterscheidung zwischen Zell- und Hintergrund-Keypoints eingesetzt. Danach wurde
ein Intensitätsprofil zwischen je zwei nebeneinanderliegenden Zell-Keypoints extra-
hiert. Ein Profil-Klassifikator wurde danach verwendet, damit die Profile entweder
als inner (in derselben Zelle) oder cross (zwischen zwei Zellen) klassifiziert werden.
Dieser Zwei-Klassifikatoren-Ansatz wurde bereits in der Literatur verwendet. Im Ge-
gensatz zu anderen State-of-the-Art Algorithmen trägt der vorgeschlagene Ansatz
das Folgende bei: 1) Die Zelldetektion ist vollautomatisch, arbeitet mit hoher Genau-
igkeit (mindestens 14% besser als Baseline Hellfeld-Ansätze) und in kurzer Zeit auf
kontrastarmen Hellfeldbildern. 2) Pixelbasierte Standardmerkmale aus der Literatur
wurden basierend auf SIFT-Keypoints angepasst. Dieser Ansatz ist dünnbesetzt, ska-
leninvariant, rotationsinvariant, und die Parameter der Merkmale können basierend
auf der relevanten Vergrößerung und der relevanten Orientierung sinnvoll angepasst
werden. 3) Die vorgeschlagene Pipeline ist weitgehend invariant gegenüber Beleuch-
tungsartefakten, Rauschen, und Änderungen der Vergrößerung oder der Orientie-
rung. 4) Die probabilistische Ausgabe des Profil-Klassifikators wird als Eingabe eines
AHC-Verfahrens genutzt, was die Genauigkeit der Detektion verbessert. Ein neues
Linkage-Verfahren wurde dargestellt, das die Informationen der SIFT-Keypoints ins
Linkage-Verfahren einbezieht. Es wurde bewiesen, dass dieses Verfahren kombinato-
risch ist. Daher kann es effizient in rekursiver Weise berechnet werden.

Wegen des erheblichen Unterschieds zwischen adhärenten Zellen und Suspensions-
zellen sowohl im Kontrast als auch im Erscheinungsbild, liefert die oben aufgeführte
Pipeline eine niedrigere Detektionsgenauigkeit bei gemeinsamem Lernen im Vergleich
zum separaten Lernen. Separates Lernen bezieht sich auf die Situation, in der Trai-
ning und Testen entweder nur auf adhärente Zellen oder nur auf Suspensionszellen
angewandt werden. Auf der anderen Seite bezieht sich das gemeinsame Lernen auf
die Situation, in der adhärente Zellen und Suspensionszellen zusammen in den Trai-
ningsbildern enthalten sind. Da diese zwei Zelltypen in Zellkulturen koexistieren,



ist die Verbesserung des gemeinsamen Lernens wichtig für die Praxis. Wir haben
gezeigt, dass dieses Ziel mit zwei Typen phasenbasierter Merkmale erreicht werden
kann: 1) Die Phase des physikalischen Lichts, die man durch das Lösen der Transport
of Intensity Equation erhält. 2) Die monogene lokale Phase, die basierend auf einer
tiefpassgefilterten axialen Ableitung berechnet werden kann.

Zusätzlich zur bisher diskutierten überwachten Zelldetektion, wurde ein Ansatz
zur unüberwachten Zelldetektion vorgeschlagen. Technisch gesehen, wurde auch hier
überwachtes Lernen benutzt. Statt des Trainings des Profil-Klassifikators mit manuell
gelabelten Ground-Truth-Daten, wurde ein Self-Labeling Algorithmus vorgeschlagen,
mit dem Labels basierend auf Zellen und Keypoints im Bild automatisch erzeugt
werden können. Der Algorithmus lernt aus extremen Fällen und wendet das gelern-
te Model auf die dazwischenliegenden Fälle an. SIFT-Keypoints wurden erfolgreich
für Ermittlung der relevanten Strukturen (z. B. die mittlere Strukturgröße und die
dominante Krümmungsrichtung) eingesetzt. Anhand dieser ermittelten Werte war es
möglich, ein Konzept für die extremen Fälle zu definieren, das unabhängig von dem
Zelltyp oder der Bildauflösung ist.
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Chapter 1

Introduction

Automatic image-based cell detection approaches are indispensable in biomedical
image analysis. They can be used for cell number estimation [Sjos 99, Louk 03], cell
tracking [Li 08], initializing cell segmentation methods [Ali 12], and for extracting
features which can be employed for other application-dependent tasks such as cell
viability determination [Long 06, Van 13].

From an application point of view, the information obtained by cell detection
approaches can be utilized in different medical, biological, and pharmaceutical fields
including virology, toxicity tests, vaccine production, cancer research, and gene ther-
apy. The role of automatic cell detection in these fields can be clarified in simple
non-technical words: when cells are in a healthy state, they proliferate, otherwise
they undergo a degradation in activity which may lead to cellular death. Therefore,
by tracking the cell number after injecting a new factor (e. g. a chemical, a toxin, or
a vaccine), the effect of this factor on the cells under study can be revealed. In addi-
tion to the cell number, the cell shape and the visual appearance are also important
indicators of the cellular activity.

1.1 Microscopic Imaging and Research Context

There are many microscopic modalities which enable us to visualize cells. For in-
stance, a bright field microscope utilizes cell absorption of light in order to form an
image. A phase contrast microscope, on the other hand, visualizes the light phase-
shift introduced by a specimen due to a difference in refractive index between the
specimen and its surrounding medium. In fluorescence microscopy, fluorescent dyes
are employed to improve the contrast by imaging the light which they emit upon
being excited with a specific wavelength. Since microscopic modalities differ in the
information they provide and the artifacts and/or limitations from which they suffer,
each of them poses different challenges for automatic image analysis. For instance, in
fluorescence microscopy, staining reshapes the cell detection problem as a relatively
easy task due to high contrast in the acquired images. However, in some biological
applications, it is desired to avoid staining for the following reasons: Firstly, it may
induce side effects on cells [Lule 09]. Secondly, using fluorescence microscopy alone
may lead to incomplete shape information. In fact, what we see using such a tech-
nique is the activity of fluorescent dyes which, in general, does not reveal structural

1
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COSIR system 2COSIR system 1

Incubator

Figure 1.1: Two COSIR systems placed inside an incubator

information. Moreover, these fluorescent dyes do not always cover the entire cell,
and it is thus not suited for cell boundary segmentation [Ali 07]. Without staining,
cell detection is more challenging and sometimes very difficult [Opst 94, Long 05].
Microscope modalities will be thoroughly discussed in Chapter 2.

Typically, cells are cultivated within a special liquid called culture medium. More-
over, since cells require proper physical conditions to survive, they are placed inside
a device known as incubator . This device enables biologists to control the physi-
cal conditions of the environment in which cells are cultivated such as temperature,
CO2 level, O2 level, humidity, and other factors. Cell growth, i. e. the growth of cell
population, in a cell culture depends on the surrounding physical conditions and the
composition of the culture medium. Usually, in order to observe a cell culture by
a microscope, a biologist needs to take the cell culture outside the incubator which
causes undesired effects.

Most of the research in this thesis was performed in context of the interdisciplinary
research project COSIR: Combination of Chemical-Optical Sensors and Image Re-
cognition. In this project, a novel microscopic hardware was developed over a period
of three years. The COSIR system (cf. Figure 1.1) contains 24 channels, each of
which delivers an image of a single well of a microtiter plate (cf. Figure 1.2). A
main attraction of COSIR is that it is designed to work inside an incubator, and
hence, cell cultures can be observed in a controlled environment. The COSIR sys-
tem is connected to a computer through which the acquired images can be observed
using a special software developed by ASTRUM IT GmbH1. The hardware itself was

1ASTRUM IT GmbH, Erlangen: http://www.astrum-it.de/

http://www.astrum-it.de/
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Wells

Figure 1.2: A 24-well microtiter plate containing a cell culture inside each well

developed by PreSens Precision Sensing GmbH2 which was supported during the de-
velopment by the Pattern Recognition Lab3, ASTRUM IT GmbH, and the Institute
of Bioprocess Engineering4.

Due to the requirement that COSIR will operate inside an incubator, the hardware
developers had to cope with real design difficulties. For instance, the system has to
be limited in size so that it easily fits in an incubator. The size limitation and other
factors such as manufacturing costs led to decisions which favor simple microscope
components over complicated and costly ones. With this in mind, a bright field
microscopic setup was adopted for COSIR as it is cheaper and easier to implement
compared to the other microscope modalities. For the development and evaluation
of our algorithms, we employed two types of bright field images: 1) standard bright
field images obtained by Nikon Eclipse microscope (cf. Figure 1.3), 2) COSIR images
obtained by COSIR prototype. The use of standard images was necessary for two
reasons: 1) COSIR’s image quality was instable during hardware development. 2) In
order to guarantee that our algorithms can be used by anybody who has a standard
bright field microscope.

Even though image analysis in bright field microscopy was the main focus of this
thesis, many algorithmic concepts are general and can be applied to other modalities
as well. For instance, both of our supervised [Mual 13a] and unsupervised [Mual 14b]
cell detection approaches were successfully applied to phase contrast images.

Figure 1.4a shows a COSIR image at focus, while figures 1.4b and 1.4c show a
positively defocused image and a negatively defocused image, respectively. An image
is considered positively defocused when the microscope’s objective approaches the
object and negative otherwise [Ager 03]. Further details about this concept can be

2PreSens Precision Sensing GmbH, Regensburg: http://www.presens.de
3Pattern Recognition Lab, Erlangen: http://www5.cs.fau.de/
4Institute of Bioprocess Engineering, Erlangen: http://www.bvt.cbi.uni-erlangen.de/

http://www.presens.de
http://www5.cs.fau.de/
http://www.bvt.cbi.uni-erlangen.de/
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Figure 1.3: A standard Nikon Eclipse light microscope at the Institute of Bioprocess
Engineering, Erlangen

found in Chapter 2. In this thesis, defocused images were employed for cell detection
while both focused and defocused images were used for phase retrieval.

Figure 1.5 shows a standard bright field image at focus obtained by the microscope
shown in Figure 1.3. The image contains both adherent and suspended cells. These
two cell descriptors are used in cell biology to differentiate cells which adhere at the
bottom of some surface (e. g. at the bottom of a microtiter-plate’s well) and cells
which freely float in the culture medium. Adherent cells, being thin due to their
adherence at the surface, absorb much less light compared to cells in suspension.
Therefore, in a bright field image, adherent cells exhibit low contrast compared to
suspended cells.

1.2 State of the Art

Unstained cell recognition in bright field images was frequently described in literature
as a challenging problem [Opst 94, Long 05, Long 06, Tsch 08, Zari 11]. In general, cells
exhibit a great diversity in shape and size. In addition, a simple microscopy technique
such as bright field does not always offer sufficient contrast between cells and back-
ground [Tsch 08, Curl 04] (cf. Figure1.5). In fact, adherent cells are almost invisible
at focus [Ager 03, Beca 11, Ali 07]. The contrast can be improved by defocusing the
microscope (cf. Figure 1.4). This improvement in contrast can be interpreted by the
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(a) A COSIR image at focus

(b) A positively defocused COSIR image (c) A negatively defocused COSIR image

Figure 1.4: COSIR images of a CHO cell culture acquired at different focus levels.
Contrast was linearly stretched for clarity.

so-called transport of intensity equation (TIE). In Section 2.6, the TIE and its related
contrast will be explained in detail. Moreover, in Chapter 6, we will show how the
TIE can be employed for improving joint learning of adherent and suspended cells.

In [Beca 11], a positively defocused image was segmented by applying the water-
shed algorithm on the distance transform of a thresholded image. An in-focus image
was processed with the self-complementary top-hat [Soil 13] followed by thresholding
and watershed. A negatively defocused image was preprocessed with a Canny edge
detector before being analyzed by anisotropic contour completion [Gil 03]. These
three results were then combined in order to select micro-injection points inside the
cells. In [Curl 04], the three aforementioned images (positive, focused, and negative)
where used to solve the TIE and obtain a phase map. Typically, the resulting phase
map shows more contrast than the original images even though it may suffer from a
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Cells in suspension

Adherent cells

Figure 1.5: An image acquired with a standard bright field microscope showing the
difference between adherent and suspended cells.

low-frequency bias field. Thresholding was then applied on the phase map in order
to segment cells.

A considerable contribution to bright field image analysis of adherent ultra-thin
cells was made by Rehan Ali and his colleagues in [Ali 10]. In [Ali 10], a link between
the physical phase-shift of light and the local phase of a low-passed axial-derivative
image was established. The physical phase-shift of light can be obtained by solving
the TIE. On the other hand, the axial-derivative image can be estimated by sub-
tracting two images at two different focus levels (e. g. subtracting the image shown in
Figure 1.4b from the image shown in Figure 1.4c). The local phase is then obtained
using the so-called monogenic signal framework with this axial derivative as input. A
main feature of the utilized monogenic signal framework is its use of low-pass filters
rather than band-pass filters which are typically employed for local phase estimation.
This link between the two quantities, i. e. physical phase and local phase, is interest-
ing as they express different concepts. The physical phase-shift of light is introduced
when light passes through transparent objects such as ultra-thin adherent cells. It is
related to the object thickness and the difference of refractive index between the ob-
ject and its surrounding medium. On the other hand, local phase can be, informally
speaking, perceived in the sense of phase in the short time Fourier transform. Essen-
tially, it reveals local symmetry/asymmetry features. In Chapter 6, this connection
between physical phase and local phase is profoundly explained.

In [Ali 12], in order to detect and segment cells, a positively defocused image was
subtracted from a negatively defocused one. The difference image was thresholded
and the result was post-processed with an appropriately chosen size filter implemented
using morphological opening. Each connected component of the resulting mask was
used to initialize a level-set evolution. The level-set driving force was based on mono-
genic signal features: local phase, local energy, and local orientation (cf. Chapter 6).

The aforementioned cell detection methods are based on image processing tech-
niques. In contrast, there is a family of methods for cell detection that are learning-
based. In these approaches, a classifier labels each pixel as either a cell or a non-cell
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pixel. The output of the pixelwise classifier delivers a confidence map. The local
maxima of the latter correspond to cell centers.

For training the classifier, features are extracted from a fixed-size patch sampled in
the neighborhood of the pixel under investigation. Several papers share this common
strategy despite differences in classifier model and image modality. For example,
[Natt 99] used principal component analysis (PCA) features extracted from 15 × 15
sized patches which are then analyzed by an artificial neural network. In [Long 05],
Fisher discriminant analysis was used instead of PCA. In [Long 06], a support vector
machine (SVM) replaced the neural network.

An interesting pixelwise cell/background classification on phase contrast and dif-
ferential interference contrast microscopy was suggested in [Yin 10]. In this approach,
training was made more efficient by employing a clustering step on ground-truth fea-
ture vectors before using them to train a bag of classifiers. Fixed-size pixel patches
are randomly extracted from training images and clustered into k categories, where k
is a parameter of the algorithm. A patch is represented by a feature vector computed
based on a local intensity histogram of the patch. Each of the resulting clusters is
then used as ground truth to train a pixelwise cell/background classifier. This has
the advantage of pushing training algorithms to learn how to discriminate feature
vectors which are nearby in feature space. The training yields k classifiers, each of
them is an expert in a specific visual appearance pattern. For classifying a patch
from a test image, a feature vector is extracted and its distance5 to each cluster is
computed. Each classifier’s output is then given a weight inversely proportional to
the distance of the considered feature vector to the cluster on which this classifier
was trained. The final decision for the considered patch is a weighted sum of the
individual classifier decisions. Compared to AdaBoost [Freu 97] weights which are
dependent on global classifier accuracies and are constant after training, this method
incorporates information from test feature vectors into the process of aggregating
individual classifiers. This property is partially similar to some boosting approaches
in the machine learning literature which extend the scheme of AdaBoost such as
WeightBoost [Jin 03] and iBoost [Kwek 02].

Most of these learning-based approaches require parameter tuning so that they
can be successfully employed for cell detection. These parameters are related to
thresholding the confidence map (the pixelwise classification result), applying mor-
phological operators on the thresholding result, and/or searching for the maxima of
the confidence map. In all learning-based approaches mentioned so far, the optimal
size of the patch should conform to the mean cell size which is not always known
a priori. In addition, the square neighborhood used in these methods, does not fit
non-circular cells.

In the work of Jiyan Pan and his colleagues [Pan 09] on phase contrast microscopy,
a major contribution to point-based cell detection was presented. In this work, max-
ima of convolution results with a bank of Laplacian filters are detected. The detected
points with fluctuation energy below a specific threshold thresh1 are discarded in or-
der to reduce the number of points. Typically, these maxima are not well-localized
inside cells. Therefore, a mean-shift algorithm is applied in order to refine their loca-

5Since the feature vectors are histograms, a similarity measure on probability distributions is
employed, for instance, the Bhattacharyya coefficient.
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tions. Mean-shift merges the points which are very close to each other. Additionally,
it pushes the points which are close to cell boundaries toward cell centers. This is
achieved by making use of the fact that cell centers tend to be darker than cell bound-
aries in phase contrast microscopy. Weights of the mean-shift kernel were thus made
proportional to the darkness level. An SVM classifier is utilized to classify the points
resulting from mean shift as either cell points or background points. Afterwards, an-
other SVM classifier is employed to label each two nearby cell points as belonging
to the same cell or to two different cells. A sigmoid function is fit on the SVM out-
put (similar to Platt scheme in [Plat 99]) in order to convert distances to the SVM
decision boundary to probability measures. Two points are considered to belong to
the same cell if the probability obtained by the resulting Platt scheme is above a
threshold thresh2. This approach performs well in phase contrast microscopy, but it
is sensitive to the critical thresholds thresh1 and thresh2. In [Pan 10], the method in
[Pan 09] was extended and the dependency on thresholds was eliminated at the cost
of some extra computation time. In the this approach, the two classification steps
were performed jointly in a conditional random field (CRF) framework. The two
aforementioned approaches require ground truth of segmented cells. In other words,
cell borders should be delineated and each cell should have a distinguishing identifier
in the ground-truth mask. In [Arte 12], maximally stable extremal regions (MSER)
keypoints were utilized instead of the Laplacian maxima and a structured SVM 6 was
used to learn a bijective mapping between the MSER regions and the ground-truth
cell centers. Compared to [Pan 09] and [Pan 10], this approach has the advantage
that it is easier to train because only cell centers are required as ground truth.

In some special cases, cellular images expose distinct characteristics which make
it possible to adopt simplifying assumptions. For instance, images of vocal folds’
epithelium or corneal endothelium exhibit two important properties (cf. Figure 1.6):
Firstly, due to the nature of the imaged tissue, cells cover the whole scene. Therefore,
the cell/background separation required in all approaches mentioned so far, is not
necessary. Secondly, cells in a single image show a repetitive pattern. Consequently,
in the Fourier transform of image intensity, this repetition will manifest itself as a
peak at the fundamental frequency of the pattern. More specifically, in the spatial
domain, cos(u0x + v0y), where x, y are the spatial dimensions, represents a sinusoid
with angular frequency ω0 =

√
u2

0 + v2
0 along a direction defined by (u0, v0). In the

Fourier domain, this corresponds to a peak at ±(u0, v0). If we assume isotropy, i. e.
ω0 is almost the same in all directions, these peaks will form a circular ring. This fact
was exploited in [Fora 02] and [Rugg 05] for estimating cell density of donor corneas.
The radius of the aforementioned ring is a measure of cell density, which is in turn a
measure of the cornea quality. In [Mual 13b], this principle was applied on epithelial
cell images of the vocal folds. However, instead of estimating the density, cells were
detected by simply localizing minima in a band-pass filtered image. The pass-band
was defined in terms of the Fourier-space ring. In [Bier 15], this method was extended
by approaching the band-pass filter design as ring segmentation in the Fourier domain.
Images of cell cultures in a medium, such as the images acquired for this thesis, do

6A structured SVM [Tsoc 04] is a generalization of the SVM model, in which labels may have
arbitrary structures, e. g. sequences or trees.
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not show a repetitive pattern. Therefore, the aforementioned approaches which are
based on this assumption cannot be applied.

1.3 Contributions to the Progress of Research

The contributions of this thesis can be summarized as follows:

• A point-based supervised cell detection algorithm [Mual 13a] on bright field
microscopy which utilizes the scale invariant feature transform (SIFT), two
random forest classifiers, and an agglomerative hierarchical clustering step with
a customized linkage method (cf. Section 3.3 and Section 5.5.1) in order to
robustly detect cells in low-contrast bright field images. Compared to the state-
of-the-art, it presents the following contributions:

– The algorithm is fully automatic, i. e. no parameter tuning is required,
neither in training nor in testing.

– It achieves high detection rates (at least 14% improvement compared to
baseline methods) in short runtimes on the low-contrast bright field im-
ages.

– It is very robust against illumination artifacts. For instance, when the
algorithm was tested on images perturbed with an illumination field whose
energy is 100 times larger than the energy of the training image (which is

Figure 1.6: An endomicroscopy image of the vocal folds’ epithelium acquired us-
ing a micro endoscope: image courtesy of the Department of Medicine I, Friedrich-
Alexander University Erlangen-Nuremberg. It exhibits two properties: 1) The entire
image is covered with cells. Therefore, no cell/background separation is required. 2)
Cells show a repetitive pattern, and hence, Fourier analysis can be employed for cell
detection and/or cell density estimation.
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free from illumination artifacts), the change in the detection error was 8%
in the worst case.

– Learning is scale- and orientation-invariant.

– Adaptation of some typical computer vision features such as intensity sten-
cils, variance maps, and ray features, from being pixel-based features to
adopting a keypoint-based extraction scheme. The advantages of this
adaptation are: 1) sparsity, 2) scale- and orientation-invariance, 3) the
features can be extracted in a more meaningful way since their related
parameters can be tailored according to a relevant scale and orientation.

– The results of the two classification steps used in point-based cell detec-
tion (cell/background and cell/cell described in the previous section) were
aggregated in a hierarchical clustering framework yielding higher detection
accuracy. Moreover, a novel linkage method was suggested which incorpo-
rates application-specific information from SIFT keypoints into the link-
age method. This linkage was proved to be combinatorial7 and monotonic.
Therefore, it can be computed efficiently and it is also guaranteed to pro-
duce clustering trees without reversals. These concepts will be clarified in
Chapter 5.

• Local phase and physical phase information were employed for improving su-
pervised cell detection:

– Improving pixelwise cell/background classification rate using the so-called
low-pass monogenic signal framework [Mual 14c].

– Utilizing the low-pass monogenic signal and the transport of intensity
equation in order to achieve better joint learning of suspended and ad-
herent cells [Mual 14a]. Joint learning refers to training a system to detect
cells in images which contain both suspended and adherent cells with an
accuracy which is comparable to the separate learning case. The latter,
i. e. separate learning, refers to the situation when training and testing are
done either only on suspended cells or only on adherent cells.

• An unsupervised cell detection algorithm [Mual 14b] which provides an alter-
native to the supervised approaches in cases where reliability of the detection
can be compromised for having a labeling-free system. The main contributions
in this part are:

– A novel self-labeling algorithm for generating ground truth from an input
image (test image). This automatically-generated ground truth is used
then to train a classifier to separate cells from each other.

– Employing SIFT for unsupervised structure-of-interest measurements such
as mean structure size and dominant curvature direction. One advantage
of this point is that the approach parameters can be set safely independent
of cell type or image resolution.

7The term “combinatorial” is to be understood here in the context of hierarchical clustering rather
than combinatorial optimization. A clear definition of this concept is given in Section 3.3.1.
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– Good detection accuracy with very short runtime on images of the two
most-widely used microscope modalities for unstained imaging: phase con-
trast microscopy and bright field microscopy.

1.4 Structure of this Work
In Chapter 2, the physical principles of different microscope types are explained. This
includes the fundamentals of bright field, phase contrast, and fluorescence microscopy.
In addition, quantitative phase microscopy based on the TIE is clarified and major
differences to phase contrast microscopy are highlighted. Chapter 3 introduces back-
ground knowledge about SIFT keypoints, random forests, and hierarchical clustering.
Understanding these concepts is essential for appreciating the contributions of this
thesis in the chapters which follow. Chapter 4 describes the image materials used
for evaluating the algorithms proposed in this work. In Chapter 5, our supervised
cell detection approach is explained in detail. This includes heavy experimental eval-
uations for testing scale-, orientation-, and illumination-invariance. In Chapter 6,
we clarify the relation between physical phase and local phase. We also show how
phase information can be used for: 1) improving cell/background classification, 2)
improving the joint learning of adherent and suspended cells. Our unsupervised cell
detection approach is discussed in Chapter 7. The thesis is concluded with an outlook
in Chapter 8 and a summary in Chapter 9.
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Chapter 2

Light Microscopy

We perceive the physical world around us using our eyes, but only down to a certain
limit. Objects with a diameter smaller than 75 µm cannot be recognized by the naked
eye [Murp 02], and due to this reason, they remained undiscovered for the most of
human history. Entities which belong to this category include cells (diameter of 10
µm), bacteria (1 µm), viruses (100 nm), molecules (2 nm), and atoms (0.3 nm)1.
In fact, the importance of these micro/nano entities in almost every aspect of our
life cannot be sufficiently appreciated. Microscopes are the tools which enable us to
extend our vision to the micro-world and, despite the prefix micro- in the name, to
the nano-world, too. This chapter takes the reader through the basic principles of the
most widely-used light microscopy techniques, their advantages, and their inherent
limitations. Further microscope types such as scanning tunneling microscopes or
atomic force microscopes are beyond the focus of this text.

2.1 Image Formation with a Thin Lens

Contents of this section belong to common physical knowledge which can be checked
in classical books such as [Pedr 06, Feyn 63]. Consider an object with height h standing
at a distance d in front of a converging lens with a focal length f < d. Naturally, the
lens creates an image of this object. The question then arises as how we can determine
the height of the image h′ and its distance d′ to the lens. From a geometrical optics
perspective, the image formation process can be described using three simple rules
(cf. Figure 2.1):

1. An incident light ray which passes through the optical center O does not suffer
any refraction.

2. An incident light ray parallel to the optical axis is refracted passing through
the image focal point F ′.

3. An incident light ray which passes through the object focal point F is refracted
parallel to the optical axis.

1The diameter measurements given here are for a blood cell, a typical bacterium, an influenza
virus, a DNA molecule, and a uranium atom.

13
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h
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Q′1
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E

Figure 2.1: Image formation in a converging lens for an object whose distance to the
lens is larger than the focal length.

As shown in Figure 2.1, the three rays intersect at a point positioned at distance
d′ from the lens. Obviously, two rays are sufficient to geometrically construct this
intersection point. The image acquired at d′ is defined as an in-focus image. On
the other hand, an image acquired at a longer or a shorter distance than d′, is called
defocused image. In this context, an image of a point source (such as Q1 in Figure 2.1)
is infinitely small at focus (abstracted as a point Q′1 in Figure 2.1), but it is larger
than a point for defocused images.

Figure 2.2 shows the result of applying the rules of image formation, i. e. the
three rules mentioned above, on the case when the object is within the focal length
(d < f). As can be seen in the figure, the rays do not converge. However, the ray
extensions intersect at a point Q′1, called virtual image, from which the rays appear
to diverge. In contrast, the images formed when d > f are called real as they are
real convergence points of light rays. Virtual images formed by a converging lens are
upright while the real images are upside-down. Another important difference is that
virtual images cannot be projected on a screen, a camera film, or any other surface.
Nevertheless, they can be perceived by the human eye because the eye behaves as a
converging lens which recollects the diverged light rays on the retina.

Figure 2.3 shows the result of applying the rules of image formation in a diverging
lens when d < f . It should be noted, however, that: contrary to the case of converging
lenses, when applying these rules on diverging lenses, the image focus F ′ is at the side
of incident light rays and the object focus F is at the other side of the lens. Similar
to the case described in Figure 2.2, the image is upright and virtual. However, in
contrast to Figure 2.2, it is demagnified. We obtain this result with a diverging lens
when d > f as well.
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Figure 2.2: Image formation in a converging lens for an object whose distance to the
lens is smaller than the focal length.
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Figure 2.3: Image formation in a diverging lens
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Algebraic Formulation

So far we could geometrically construct the image of an object in a diverging or a
converging lens. At this point, we may ask whether there are closed-form equations
which relate the object height h to the image height h′, or the object-lens distance d
to the image-lens distance d′.

Let us consider a converging lens with d > f (cf. Figure 2.1). From the similar
triangles Q1OQ2 and Q′1OQ′2, one can directly write:

h′

h
=
d′

d
(2.1)

The same applies for triangles Q1FQ2 and FOE:

h′

h
=

f

d− f
(2.2)

Combining Eq. 2.1 and Eq. 2.2 yields:

f

d− f
=
d′

d

fd = d′d− d′f

fd+ d′f = d′d

Dividing by fdd′ yields the thin lens equation:

1

d′
+

1

d
=

1

f
(2.3)

Eq. 2.3 was derived in this text for real images in a converging lens. Nevertheless, it
can be also used for virtual images and/or diverging lenses under the following sign
conventions: 1) d′ is negative when the image is at the object side of the lens (similar
to the case in Figure 2.2), otherwise it is positive. 2) f is negative for diverging
lenses. Moreover, if we add a third sign convention stating that h′ is positive for
upright images and negative otherwise, then Eq. 2.1 and Eq. 2.2 can be generalized
to the following form:

MGN =
h′

h
= − f

d− f
= −d

′

d
(2.4)

Based on the above-mentioned sign conventions, the magnification MGN is positive
for upright images and negative for upside-down images. This generalization, i. e.
Eq. 2.3 and Eq. 2.4, can be proved to be correct by applying the three rules of
geometric image formation and employing triangle similarity for each specific setup.
Moreover, based on Eq. 2.4, the following conclusions can be drawn:

• The image of an object in a converging lens is magnified (|MGN| > 1) when d <
2f , has the same size of the object when d = 2f , and demagnified (|MGN| < 1)
when d > 2f .

• The image of an object in a diverging lens (f < 0) is demagnified.



2.1. Image Formation with a Thin Lens 17

h

h′

Qobj

Qeye

h′′

Fobj

Feye

F ′eye

feyefobj

dobj d′obj deye < feye

d′eye

fobj < dobj < 2fobj

F ′obj

Objective

Eyepiece

Figure 2.4: Image formation in a compound microscope. Symbols Fobj, F ′obj, Feye, and
F ′eye represent the objective object focal point, objective image focal point, eyepiece
object focal point, and eyepiece image focal point, respectively. A human observer
at the right-hand side of the figure will see the image Qeye.
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Figure 2.5: The numerical aperture is determined by 	 the half angle of the maximum
light cone and n the refractive index of the medium between lens and specimen.
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2.2 Compound Microscope

If you look through a magnifying glass at an object located within the focal length
of the lens, you see a magnified upright virtual image of the object. Conceptually,
this is a simple microscope. The compound microscope (cf. Figure 2.4) extends this
basic principle by using at least two converging lenses. The lens which is closer to the
specimen is called objective lens. It creates a real magnified inverted image Qobj of
the specimen. This requires that the specimen distance to the objective dobj is in the
range fobj < dobj < 2fobj, where fobj is the focal length of the objective. The second
lens is called eyepiece as it is the component through which a user of the microscope
observes the sample. The distance of Qobj to the eyepiece deye is, by construction,
less than the focal length of the eyepiece (deye < feye). Consequently, the eyepiece
lens creates a magnified virtual image Qeye of Qobj. Since the image of the first lens
is an object for the second one, the total magnification is the product of the two lens
magnifications [Murp 02].

In modern microscopes, the objective lens is characterized by its magnification
and numerical aperture. The magnification was defined above in Eq. 2.4. The nu-
merical aperture NA quantifies the capability of a lens to gather light. It is defined
as follows [Wu08]:

NA = n sin	, (2.5)

where n is the refractive index of the medium between objective lens and specimen
(nair ≈ 1) and 	 is the half angle of the maximum light cone which the lens can
collect (cf. Figure 2.5). Since the image formed by the objective lens is real, it can
be captured by a physical detector. For instance, it can be recorded by a CCD chip,
and hence, the magnified view can be saved as a digital image which can be further
processed by a digital computer.

The principle of compound microscope models the magnification mechanism. Ad-
ditionally, depending on how the sample is illuminated and which kind of information
is carried by light rays, light microscopes can be further classified into subcategories:
bright field, fluorescence, phase contrast, quantitative phase, and others. In the
following sections, more details will be given about each of the aforementioned mi-
croscopic modalities.

2.3 Bright Field Microscopy

Typically, the density and thickness of a specimen are space-variant (change in space).
Consequently, specimen points absorb light differently, i. e. the energy of light after
passing through the specimen is, likewise, space-variant. Figure 2.6a schematically
shows how this fact can be utilized in a microscopic setup. The condenser shown
in the figure plays the role of concentrating light coming from a light source at the
specimen [Albe 05]. The specimen information is encoded in the intensity of light
wave which reaches the objective. Background or the part of the scene which does
not contain dense objects tends to be bright in the resulting image [Lace 99]. This
observer impression gave the technique its name. Bright field setup is the number-
one choice whenever minimization of expenditure or implementation difficulties are



2.3. Bright Field Microscopy 19

Eyepiece

Eye

Objective

Specimen

Light source

Condenser

(a) Scheme of a bright field microscope
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(b) Scheme of a fluorescence microscope

Figure 2.6: Basic diagrams of a bright field microscope and a fluorescence microscope.
Both were drawn after [Albe 05].

Figure 2.7: A microscopic image of a cell culture: the image was acquired using a
Nikon Eclipse TE2000U microscope with a bright field objective of magnification 10×
and NA = 0.3.
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(a) A bright field image of CHO cells (b) The same scene at the left-hand side but
seen under a fluorescent channel. Red spots
indicate dead cells.

Figure 2.8: Illustration of cell viability detection using PI-staining

main concerns. Examples of bright field images of cells were shown in Chapter 1. An
additional example is shown in Figure 2.7.

2.4 Fluorescence Microscopy

While a bright field microscope utilizes light absorption of a sample, a fluorescence
microscope makes use of another natural phenomenon called fluorescence. Some
special materials, when illuminated with light having a specific wavelength, emit light
with another wavelength. As shown in Figure 2.6b, an excitation filter is required to
select a part of the electromagnetic spectrum for exciting the fluorescent materials in
specimen. Another filter is then utilized to separate the emitted light from that used
in the excitation process.

Fluorescence microscopes deliver images of high contrast when compared to bright
field images. In addition, due to the fact that fluorescence can be incited by specific
biological or physical processes, scientists were able to find many applications of
fluorescence microscopy in materials science and cellular biology. To give just one
example, a widely-used technique for cell viability detection (cf. Figure 2.8) is based
on imaging of a fluorescent dye called propidium iodide (PI) [Van 13]. Viable cells
are usually selectively permeable, i. e. they do not allow molecules to freely cross the
cellular membrane. When a cell dies, this exclusion property is lost allowing PI to
leak through the cellular membrane toward cell interior. PI binds then to RNA and
DNA inside the penetrated cell which drastically enhances the fluorescence [Arnd 89].
Therefore, dead cells can be easily distinguished from the non-stained viable cells.

There are at least two shortcomings of fluorescence imaging: Firstly, staining may
cause some undesired effects on the sample under study. For instance, it was shown
that the dyes used in cell viability detection affect cell stiffness [Lule 09]. Secondly,
what we see under fluorescence microscopy is the activity of fluorescent dyes which,
in general, does not reveal structural information. Moreover, these fluorescent dyes
do not always cover the entire imaged object [Ali 07]. These two factors lead to
incomplete shape information.
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(a) A bright field image dom-
inated by amplitude objects:
CHO cells in suspension.

(b) A bright field image dom-
inated by phase objects: ad-
herent ultra-thin CHO cells.

(c) A phase contrast image of
the same scene shown in 2.9b.
In comparison to 2.9b, cells
are clearly visible, albeit sur-
rounded by halo artifacts.

Figure 2.9: Examples of amplitude objects and phase objects in biology

2.5 Phase Contrast Microscopy

As mentioned earlier, in bright field microscopy, light absorption is responsible for
image formation. Objects which absorb light are called amplitude objects since they
affect light amplitude. Transparent objects, on the other hand, hardly alter the
amplitude of light. They, however, retard light wave introducing a phase shift, and
thus, they are given the name phase objects [Ager 03]. Typical light detectors such
as CCD chips or retina in our eyes can recognize amplitude variations but they are
insensitive to phase distortion. In the 1930s, the Dutch physicist Frits Zernike came
up with a brilliant trick for converting the invisible phase shift to a visible amplitude
change [Zern 55]. His contribution is the basis for a long-established technique in
laboratories today known as phase contrast. Figure 2.9a shows a bright field image of
a sample dominated by amplitude objects. In this particular example, they are cells
in suspension. Figure 2.9b also shows a bright field image, but of a sample dominated
by phase objects. The sample contains ultra-thin adherent cells. In Figure 2.9c, the
same specimen of Figure 2.9b is shown, but under a phase contrast microscope. A
considerable improvement in contrast and information content can be clearly seen
in the phase contrast image. In the text which follows, in order to grasp a concrete
conception of phase and Zernike’s trick, we introduce phase in the context of wave
equation and thereafter explain the working principle of phase contrast.

2.5.1 Wave Equation

Informally speaking, at a point in space r = (x, y, z)>, we can imagine the light activ-
ity as a particle dancing in time according to eiωt, where t is time and ω is the angular
frequency which determines light color. In general, this dance is amplitude-scaled
and phase-shifted differently at each point in space. Consequently, the wave/particle
function ψ(r, t) can be modeled as follows:

ψ(r, t) = A(r)ei(ωt+φ(r)) = A(r)eiφ(r)eiωt = U(r)eiωt. (2.6)
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The term U(r) encodes both amplitude change A(r) and phase shift φ(r) as a complex
number, and thus called complex amplitude of the wave. Eq. 2.6 is insufficient to
describe a wave unless ψ fulfills the wave equation [Good 96]:

∂2ψ

∂t2
= c2∇2ψ, (2.7)

where c is the speed of light in the propagation medium, and ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

is the spatial Laplacian. Assuming that ψ can be factorized as ψ(r, t) = ψr(r)ψt(t)
(which is the case in Eq. 2.6), one can derive the time-independent wave equation, also
known as Helmholtz’s equation [Sale 07]. More specifically, using Eq. 2.6 in Eq. 2.7
yields:

∂2

∂t2
(
U(r)eiωt

)
= c2∇2

(
U(r)eiωt

)
−ω2U(r)eiωt = c2eiωt∇2U(r)

c2∇2U(r) + ω2U(r) = 0,

which is typically written in terms of the wavenumber k, defined as k = ω
c
, in the

following form:
∇2U(r) + k2U(r) = 0. (2.8)

An important class of solutions for Helmholtz’s equation is given by the following
complex amplitude:

Ul(r) = Ale
i k>·r. (2.9)

In this solution, the amplitude is constant everywhere with a real value Al while the
phase is linearly dependent on position φl = k> · r = xkx + yky + zkz. In order for
Eq. 2.9 to satisfy Helmholtz’s equation, k must fulfill

√
k2
x + k2

y + k2
z = k [Sale 07].

This fact can be easily verified by setting U(r) = Ul(r) in Eq. 2.8. Moreover, the
locus of points in space for which Ul(r) = constant, is clearly a plane with a normal
vector k. Therefore, waves described by Eq. 2.9 are called plane waves.

2.5.2 Phase Contrast Principle

The core concept of Zernike’s phase contrast can be appreciated under some simpli-
fications. Consider a plane wave propagating along the z-direction, i. e. k = kz. In
addition, consider an image detector positioned at z = zd perpendicular to the z-axis.
In the absence of a specimen, the complex amplitude of incident light at the detector
is given by:

Uin = Aine
i kzd , (2.10)

where Ain is a real constant. Uin can be thus seen as a complex constant (see the
explanation of Eq. 2.9). The effect of specimen on the incident light can be modeled
by a complex multiplication of Uin with the specimen transmittance function defined
as [Heis 10]:

Uf (x, y) = a(x, y)eiφdiff(x,y), (2.11)
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where a(x, y) and φdiff(x, y) are, respectively, the amplitude change and the phase
shift introduced by the specimen. Consequently, the presence of a specimen modeled
by Uf yields the following complex amplitude at z = zd:

Us(x, y) = Uina(x, y)eiφdiff(x,y) = Aina(x, y)ei(kzd+φdiff(x,y))· (2.12)

Ideal amplitude objects are characterized by a � 1 due to the reduction of light
amplitude induced by the absorption, whereas a = 1 holds for ideal phase objects.
The detector at z = zd is only sensitive to amplitude variations, and hence, from the
wave described in Eq. 2.12, the following image will be recorded:

Is(x, y) = |Us(x, y)|2 = A2
ina

2(x, y)· (2.13)

This equation clearly reveals that phase objects in the scene (a = 1) will be in-
visible. Moreover, under the assumption of weak phase objects (φdiff(x, y)� 1 rad),
the complex exponential can be approximated by the first two terms of its Taylor
series [Glck 09]. Therefore, Eq. 2.12 yields:

Up
s (x, y) = Uin(1 + iφdiff(x, y))· (2.14)

The constant term 1 can be interpreted as unscattered light, i. e. the part of light
wave which is unaffected by the sample. The phase term φdiff(x, y), on the other
hand, represents the scattered light which carries information about the sample. The
image, which the detector records when it receives this wave, is given by:

Ips (x, y) = |Up
s (x, y)|2 = A2

in(1 + φ2
diff(x, y)) ≈ A2

in, (2.15)

which shows again that the phase shift introduced by phase objects cannot be cap-
tured by the detector. Let us now consider Eq. 2.14 in the Fourier domain. Applying
Fourier transform on both sides of Eq. 2.14 yields:

Ups (kx, ky) = Uin
(
(2π)2 δ(kx, ky) + iΦdiff(kx, ky)

)
, (2.16)

where (kx, ky)
> is the vector of spatial frequencies2, and δ is the Dirac delta function.

From a mathematical perspective, Zernike’s idea can be conceptualized as a shift of
the DC component by π/2 (a multiplication with i) so that the scattered and the
unscattered light waves are in-phase [Glck 09]:

Ups,Zernike(kx, ky) = Uin
(
i (2π)2 δ(kx, ky) + iΦdiff(kx, ky)

)
· (2.17)

At the hardware level, this shift of the DC component is achieved using a flat sheet
of glass. By transforming Eq. 2.17 back to the spatial domain, we obtain:

Up
s,Zernike(x, y) = Uin (i+ iφdiff(x, y)) · (2.18)

Consequently, the following image is acquired at the detector:

Ips,Zernike(x, y) =
∣∣Up

s,Zernike(x, y)
∣∣2 = A2

in

(
1 + 2φdiff(x, y) + φ2

diff(x, y)
)

≈ A2
in (1 + 2φdiff(x, y)) · (2.19)

Comparing Eq. 2.19 with Eq. 2.15 reveals how Zernike’s trick converts the phase shift
to a visible contrast in the acquired image.

2Notation (kx, ky) is used as a spatial frequency (Fourier domain) even though it was used earlier
in the text to denote a wave vector. This is justified because wave vector has a spatial frequency
interpretation [Mir 12]. This fact can be checked by applying Fourier transform on both sides of
Eq. 2.8.
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2.6 Quantitative Phase Microscopy
In the previous section, phase was employed to obtain more contrast of transparent
specimens. At this point, we may ask the following question: what does the numerical
value of phase tell us about the physical properties of a specimen? In fact, the phase
difference introduced by a phase object (cf. Eq. 2.11) can be given as follows [DiMa 11]:

φdiff(x, y) = k

∫ z2(x,y)

z1(x,y)

∆n (x, y, z) dz, (2.20)

where k is the wavenumber of incident light, ∆n (x, y, z) is the difference in refractive
index between the object and surrounding medium, z1 and z2 are the start and
end coordinates of light path through the object. If the object has a homogeneous
refractive index, Eq. 2.20 reduces to:

φhomdiff (x, y) = k ·∆n · th (x, y) , (2.21)

where th (x, y) is the object thickness at (x, y). The product of refractive index with
the geometric length of light path is usually termed optical path length (OPL). In
addition, the difference of two OPL values is called optical path difference (OPD).
Therefore, the numerical value of phase is interpreted as OPD between the object and
the surrounding medium (the constant k is ignored). Phase contrast (cf. Section 2.5)
is convenient for qualitative unstained imaging of transparent specimens. However, it
is not suitable for obtaining quantitative phase values for two reasons: Firstly, phase
information is perturbed by artifacts, called phase halos, in image regions which
surround phase objects (cf. Figure 2.9c) [Curl 04, Heis 10]. Secondly, Eq. 2.19 which
links an observed intensity value in a phase contrast image to the corresponding phase
value is valid only for very small phase shifts [Glck 09, Heis 10].

Quantitative phase microscopy (QPM) is an umbrella term for a set of techniques
by which it is possible to obtain reliable quantitative phase information. In this
text, we confine ourselves to discuss one of these methods: the transport of intensity
equation TIE. Teague derived the TIE in 1983 [Teag 83] starting from Helmholtz’s
equation (cf. Eq. 2.8) under the approximation of a slowly varying field along the
z-axis:

− k∂I (x, y)

∂z
= I (x, y) · ∇2

⊥φ (x, y) +∇⊥I (x, y) · ∇⊥φ (x, y) , (2.22)

where I (x, y) is the at-focus intensity image (related to the complex amplitude in
Eq. 2.8 by I = |U |2), and ∇⊥ is the gradient operator in the lateral directions, i. e. in
the xy plane. The symbol φ denotes the phase difference (cf. Eq. 2.11 and Eq. 2.20),
but φ was used instead of φdiff as the phase appears only in differential terms in the
TIE. In other words, the phase in TIE is defined up to an additive constant which
makes no difference between φ and φdiff. This equation can be further simplified
if we assume ideal phase objects, i. e. I (x, y) = constant = I0, to the following
form [Ager 03, Mir 12]:

− k∂I (x, y)

∂z
= I0∇2

⊥φ (x, y) · (2.23)

The axial derivative at the left-hand side of Eq. 2.22 or Eq. 2.23 can be measured:
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I0 I(∆z)I(−∆z)

z

Figure 2.10: The axial derivative of the wave intensity at focus can be measured by
subtracting two images at two different focus levels.

(a) A defocused bright field image of
the cell culture: ∆z = −15 µm

(b) A bright field image of the cell
culture at-focus: ∆z = 0

(c) A defocused bright field image of
the cell culture: ∆z = +15 µm

(d) A quantitative phase map ob-
tained by solving the TIE. The bias
field was partially corrected using a
bias-correction algorithm.

Figure 2.11: Illustration of QPM using the TIE. The figures show a cell culture of
adherent ultra-thin L929 cells.
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First, acquire a bright field image at focus I0. Defocus the microscope by a dis-
tance ∆z and acquire another image I(∆z) (cf. Figure 2.10). The finite-difference
approximation of the derivative is then given by I(∆z)−I0

∆z
. After estimating the axial

derivative, the only unknown which is left in the TIE is the phase. Therefore, the
TIE can be solved for φ yielding a quantitative phase map. Figure 2.11 exemplifies
defocused images, an at-focus image, and a TIE solution.

Earlier in this text (cf. Section 2.5.2), it was mentioned that ideal phase ob-
jects are invisible in bright field microscopy. As pointed out in Chapter 1 and also
demonstrated in Figure 2.11, the aforementioned statement is correct only under the
condition that the image is acquired at focus. This phenomenon, i. e. the possibility
to visualize phase objects in bright field microscopy, can be interpreted in the light of
TIE. The contrast obtained by defocusing is numerically represented by the left-hand
side of Eq. 2.23. The right-hand side reveals that this contrast is, in fact, phase infor-
mation. The employment of defocusing to visualize transparent samples in a bright
field setup is sometimes called defocusing microscopy [Ager 03].

Due to the quantitative nature of TIE results, it can be utilized to compute
specimen physical descriptors which are difficult to obtain using phase contrast. For
instance, it can be in principle used for estimating cell thickness and volume in
biological cell cultures. In general, TIE seems to be attractive when compared to
phase contrast for at least two reasons: 1) It is possible to obtain high-contrast phase
images using a bright field microscope which is cheap and easy to implement compared
to a phase contrast microscope. 2) TIE yields quantitative rather than qualitative
phase information. However, every new technique comes with its own problems, and
TIE is by no means an exception to this rule. In fact, estimating the axial derivative is
very sensitive to the selection of defocus distance ∆z [Paga 04, Wall 10]. In addition,
a TIE solution is prone to be perturbed by a low-frequency bias field which needs to
be corrected [Ali 10].

2.7 Limitation of Light Microscopy

In Figure 2.1, a point source creates a point image at focus. This is, however, a result
of geometrical optics which does not take the wave nature of light into account.
From a wave-optics perspective, light exhibits the properties of waves, and hence, it
undergoes diffraction upon encountering a barrier or a slit. In microscopy, this slit is
the finite-sized aperture of the objective. Due to the diffraction process, the image of
a point source is a pattern known, after Sir George Airy, as Airy pattern. As shown
in Figure 2.12a, it is composed of a central spot, known as Airy disk, surrounded
by multiple diffraction rings. The radius of Airy disk, when the image is in its best
focus, is [Murp 02]:

dAiry = 0.61
λ

NA
, (2.24)

where λ = 2π
k

is the wavelength of incident light, and NA is the numerical aperture
(cf. Eq. 2.5). It is noteworthy to mention that dAiry in Eq. 2.24 is given in object-
space units. Therefore, in image plane, the radius of Airy disk is MGN · dAiry, where
MGN is the magnification.
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The resolving power of a microscopic system is defined as the minimum distance
between two point sources in the object space for which they are still discernible
as two points in the image plane. Intuitively, the two points are distinguishable as
long as the sum of the two corresponding Airy patterns contains two distinct peaks.
However, the condition under which the two peaks are considered distinct, can be
defined in several ways. This led to different, but similar, definitions of the resolving
power. According to Rayleigh, it is given by the radius of Airy disk dmin = dAiry
(cf. Figure 2.12b). A slightly different definition, known as Abbe criterion, is given
as dmin = 0.5 λ

NA
. The reader is referred to [Wu08] for more details about the two

aforementioned criteria.
In order to enhance microscopic resolution, one needs to employ light of shorter

wavelength and/or an objective of higher numerical aperture. Using shorter wave-
lengths will be considered in the next section. The numerical aperture, as revealed
by Eq. 2.5, is theoretically upper-limited by unity when air (nair ≈ 1) is the medium
between the specimen and the objective. In order to go beyond this limit, microscope
manufacturers designed objectives which can function when a medium of higher re-
fractive index such as water (nwater ≈ 1.33) or oil (noil ≈ 1.51) is embedded between
the specimen and the objective. This led to the development of water immersion
objectives and oil immersion objectives.

If we set wavelength in Eq. 2.24 to the wavelength at the center of visible spec-
trum λvisible ≈ 550 nm and numerical aperture to the theoretical upper-bound of
oil-immersion numerical apertures NAbest = 1.51, we obtain a Rayleigh resolution of
dbestmin = 222 nm ≈ 0.2 µm. This value3 is often cited as the resolution limit of optical
microscopy. Two distinct points in object space with distance less than 0.2 µm will
be imaged as a sum of two Airy patterns in which only one distinct peak can be
recognized. Increasing the magnification will increase the size of this sum of Airy
patterns at the image plane, but the enlarged image remains a single-peak pattern.
In other words, beyond a certain limit, increasing the magnification does not resolve
new details. This phenomenon is known as empty magnification.

2.8 Beyond Light Microscopy

One obvious way of increasing microscopic resolution is using a wavelength which is
shorter than the wavelength of visible light. For instance, it is possible to employ
ultraviolet (UV) radiation (wavelength in range 300 - 100 nm), soft X-ray (10 - 1
nm), hard X-ray (below 1 nm)4, or electron beams (wavelengths below 5 pm are
achievable). Each wavelength range allows us to explore a part of the nano-world,
but also imposes a new type of challenges for both microscope manufacturers and
users.

At the UV wavelengths, glass strongly absorbs light radiation, and thus, in UV
microscopy, the lenses are made of UV-transparent materials such as quartz [Cox 12].

3or other close approximations of it depending on the considered upper-limit of numerical aper-
ture and definition of resolving power

4X-ray and UV radiation, being a part of the electromagnetic spectrum, belong to invisible light.
The term light microscopy is, however, restricted to visible light in this text.



28 Chapter 2. Light Microscopy

Space

Intensity

dAiry

(a) Airy pattern composed of Airy disk with
radius dAiry surrounded by diffraction rings.

Space

Intensity
dmin

(b) Rayleigh criterion: two features with
distance less than dmin = dAiry will be re-
solved as a single feature.

Figure 2.12: Diffraction barrier: due to diffraction, the image of a point source is an
Airy pattern. The resolving power dmin of a microscope is thus limited by the width
of this pattern.

Moreover, at the wavelengths of X-ray radiation, the refractive index of solid sub-
stances is very close to the refractive index of air. Since the light-focusing performed
by a visible-light lens is inherently a refraction process, these lenses cannot be used
to focus X-ray beams. In fact, in X-ray microscopy, expensive and impractical de-
vices which are based on diffraction instead of refraction are employed to replace the
typical optical lenses [Eger 05]. Electron microscopy (EM) utilizes electromag-
netic lenses and cathode rays in order to achieve a drastic improvement in resolution
compared to light microscopy. Unlike ultraviolet and X-ray radiation, cathode rays,
being electron beams of measurable mass and negative charge, do not belong to the
electromagnetic radiation. Therefore, the photon-wave duality, and hence the con-
ception of wavelength, are not directly applicable. One of the major contributions
which led to the development of electron microscopy is the theory of Louis de Broglie
who stated in his PhD thesis that the particle-wave duality is also valid for matter.
According to de Broglie, the wavelength of an electron of rest mass rme and speed ce
is given by [De B65]:

λe =
P

rme · ce
, (2.25)

where P is Planck constant. As an alternative for reflection in optical lenses, in
electromagnetic lenses, deflection of electron beams by magnetic fields was exploited
to focus the beams. In an electron microscope, similar to a cathode-ray tube, an
electron beam is emitted into vacuum by heating the cathode, and then accelerated
by applying a voltage between the cathode and the anode. The speed of the electrons,
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and hence the wavelength (cf. Eq. 2.25), can be controlled by varying the voltage.
The first electron microscopes were very similar from a schematic point of view to
bright field microscopes [Eger 05]. The acquired image is based on the specimen
absorption of electrons when transmitted into the sample, and hence, they were given
the name transmission electron microscopes (TEM). A resolution as high as 0.2
nm [Wils 12] is achieved by the TEM. A major limitation of this scheme, however,
is that only very thin samples can be imaged. Scanning electron microscopy
(SEM) was developed to cope with this difficulty. In SEM, a primary electron beam
is focused by an electromagnetic lens on a very small part of the specimen. This
primary beam incites the emission of a secondary electron beam. The intensity of
this secondary beam is recorded. Afterwards, the primary beam is moved to another
part of the specimen, and the same process is applied. This is repeated so that the
entire specimen is scanned in a raster pattern and the final image is obtained from
the recorded values of the secondary beam intensities [Eger 05, Chan 09]. SEM can
be used to image thick samples, even though it captures only the surface details.
In addition, the secondary beam is accompanied with X-ray emission characteristic
to the material which emitted it [Chan 09]. Therefore, SEM is employed to reveal
the chemical composition of specimens. Both SEM and TEM work in a vacuum.
Consequently, they can be used only for dead specimens. From this perspective, X-ray
and traditional light microscopy are preferred over EM. Although X-ray and electron
microscopes provide a considerable improvement of resolution over light microscopes,
they are extremely expensive, require large hardware, and mostly involve complicated
sample preparation.

2.9 Light Microscopy Beyond the Diffraction Limit
In the past few years, the so-called superresolution microscopy [Hell 09] became
an active research trend. Today, based on this technology, there are microscopes
which achieve a resolving power of about 10 nm [Galb 11]. While this number is
inferior to the EM resolution, the breakthrough lies in the fact that this is achieved
using visible light. As stated earlier in this text (cf. Section 2.7), the attainable
resolution using visible light is limited to 200 nm. May we then conclude that the
theory which led to the diffraction limit in light microscopy is flawed? In fact, su-
perresolution microscopy is based on alternatively making fluorescent molecules in a
specimen on and off [Marx 13]. Two adjacent fluorescent molecules with a distance
less than 200 nm will not be resolved as two points in a superresolution microscope
when both of them are turned on simultaneously. However, this will be the case,
i. e. they will be resolved as two points, if only one of them is activated at a specific
time, and in addition, there is a mechanism to control this activation process. Super-
resolution microscopy techniques differ in the way in which this on/off switching is
implemented. Major technologies in this field today include: stimulated emission de-
pletion (STED), reversible saturable optical fluorescence transitions (RESOLFT),
and stochastic optical reconstruction microscopy (STORM).
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Chapter 3

SIFT, Random Forests, and
Hierarchical Clustering

In this chapter, we introduce background information necessary to understand the
rest of this thesis. In Section 3.1, basic principles behind automatic scale selection
and the details of SIFT keypoint detection are clarified. Random forests along with
concepts such as decision trees and bagging are explained in Section 3.2. Lastly, some
aspects of agglomerative hierarchical clustering are briefly discussed in Section 3.3.

3.1 SIFT

3.1.1 Informal Introduction

In the computer vision literature, there are a plenty of approaches which detect points
of interest in an image and then describe the local neighborhood of each point, usu-
ally using features which capture the visual appearance in the point vicinity. These
methods are thus called local feature detectors and descriptors. The detectors differ
in the way in which they define a point of interest while the descriptors differ in the
way in which they represent its vicinity. A survey of local feature detectors can be
found in [Tuyt 08].

In SIFT, the point of interest is defined as a blob. Informally speaking, and
considering a one-dimensional image, a blob is an increase of intensity followed by
a decrease, or oppositely, a decrease followed by an increase. Mathematically, this
behavior is captured by the second derivative which tends to have a high absolute
value at the blob’s top or bottom [Mual 12]. Whether it is a bottom or a top is,
however, determined by the sign of the second derivative. In two-dimensional images,
the same principle applies and the second derivative is merely the Laplacian of image
intensity.

Since the estimation of derivatives is very sensitive to noise, a low-pass filter
is typically applied on an image before computing its derivatives. If we choose a
Gaussian kernel for smoothing, the process of computing the m-th derivative of an
image is equivalent to convolving this image with the m-th derivative of the Gaussian
kernel. For two-dimensional images and a derivative order m = 2, the corresponding
kernel is commonly called the Laplacian of Gaussian (LoG).

31
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Intuitively, the width of the selected kernel (e. g. the standard deviation of the
LoG) has to be somehow related to the target structure size. Since the latter, i. e. the
size of structures of interest in a given image, is not known a priori, one may employ
a multi-scale approach: use multiple LoG kernels of different widths. Important
questions arise in this context: can we induce the structure size by comparing the
filter responses? How to compare the filter responses in a meaningful way? Is it
possible to detect the structure orientation?

These questions and others will be addressed in the next sections. At this point,
we remind the reader with the concept of Gaussian scale space (GSS). A GSS of an
image I(x, y) is defined as:

Igss(x, y, τ) = I(x, y) ∗ s(x, y, τ), (3.1)

where s(x, y, τ) is the isotropic Gaussian kernel with variance τ = σ2:

s(x, y, τ) =
1

2πτ
e−

x2+y2

2τ · (3.2)

Space in the scale-space representation is obviously the two spatial dimensions x and
y while scale is the variance τ of the Gaussian kernel [Lind 09].

3.1.2 GSS and Heat Equation

The diffusion of heat in metals is usually modeled by the so-called heat equation. This
equation states that the temperature change (derivative with respect to time) at each
point of the considered metal surface is proportional to the spatial Laplacian of the
heat at that point. If one imagines the image as a metal surface, and the intensity at
each pixel as a heat value, how would the image look like after the diffusion of intensity
for a short time interval ∂t? This analogy is frequently used in the literature of image
processing for different purposes such as anisotropic filtering [Weic 98] and scale space
representation [Lind 09]. More specifically, the heat equation in this context can be
given as [Lind 09]:

∂L(x, y, t)

∂t
=

1

2
∇2L(x, y, t), (3.3)

where L(x, y, t) is the intensity at time t and position (x, y), and ∇2 = ∂2

∂x2
+ ∂2

∂y2
is

the spatial Laplacian. The constant 1
2
in Eq. 3.3 is irrelevant for image processing ap-

plications, and in principle, can be replaced with any other arbitrary value. However,
as it will become clear soon, the value 1

2
is convenient for further derivations.

Before discussing solutions of Eq. 3.3, we remind the reader with some properties
of the Gaussian kernel (cf. Eq. 3.2). Differentiating both sides of Eq. 3.2 with respect
to its variance τ yields:

∂s

∂τ
=
−1

2πτ 2
e−

x2+y2

2τ +
1

2πτ

x2 + y2

2τ 2
e−

x2+y2

2τ

=

(
−1

τ
+
x2 + y2

2τ 2

)
s(x, y, τ)

=

(
x2 + y2 − 2τ

2τ 2

)
s(x, y, τ)· (3.4)
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On the other hand, the first derivative of s with respect to x is given by:

∂s

∂x
=
−x
τ
s(x, y, τ),

and the second derivative is:

∂2s

∂x2
=
−1

τ
s(x, y, τ) +

(
−x
τ

)(
−x
τ

)
s(x, y, τ)

=

(
x2 − τ
τ 2

)
s(x, y, τ)·

Consequently, the spatial Laplacian of s, called LoG as mentioned earlier, is given as:

∇2s(x, y, τ) =
∂2s

∂x2
+
∂2s

∂y2

=

(
x2 + y2 − 2τ

τ 2

)
s(x, y, τ)· (3.5)

One can easily notice from Eq. 3.5 and Eq. 3.4, that s(x, y, τ) fulfills the heat equation
(Eq. 3.3) under the assumption t = τ .

This result can be employed to derive the relation between the GSS and the heat
equation. If we differentiate both sides of Eq. 3.1 with respect to τ , we obtain:

∂Igss(x, y, τ)

∂τ
=

∂

∂τ
(I(x, y) ∗ s(x, y, τ))

= I(x, y) ∗ ∂s(x, y, τ)

∂τ

= I(x, y) ∗ 1

2
∇2s(x, y, τ)

=
1

2
∇2 (I(x, y) ∗ s(x, y, τ))

=
1

2
∇2Igss(x, y, τ)· (3.6)

In other words, the GSS fulfills the heat equation. This implies two important results:

1. Starting from an image L(x, y, 0) = I(x, y) and applying the diffusion scheme
given by Eq. 3.3 until time t = τ is equivalent to convolving I(x, y) by a
Gaussian kernel with variance τ . This justifies the interchangeable use of the
two terms time t and scale τ in context of the GSS theory.

2. The LoG can be approximated by subtracting two successive layers in the GSS
as this subtraction is the finite difference estimation of ∂Igss(x,y,τ)

∂τ
. This approx-

imation of the LoG is called the difference of Gaussians (DoG) and it is used
in SIFT for blob detection instead of the LoG.

3.1.3 Automatic Scale Selection

In this section, we address the problem of comparing Gaussian derivatives at multi-
ple scales and employing this comparison for detection of structure size. A general



34 Chapter 3. SIFT, Random Forests, and Hierarchical Clustering

solution of the heat equation (cf. Eq. 3.3) for one-dimensional images (without loss
of generality) can be given by the following equation [Lind 98]:

L(x, t) = e−ω
2
0t/2 sin (ω0x) , (3.7)

which is a sinusoid with angular frequency ω0 and amplitude exponentially decreasing
with scale. This result can be approached as a solution of an initial-value problem
as follows: consider a single-frequency one-dimensional image Iω0 = sin(ω0x). What
is the result of convolving it by the Gaussian kernel s(x, τ)? In the Fourier domain,
this convolution can be written as multiplication:

F (Iω0(x))F (s(x, τ)) = −iπ (δ (ω − ω0)− δ (ω + ω0)) e−τω
2/2

= −iπ (δ (ω − ω0)− δ (ω + ω0)) e−τω0
2/2,

where ω is the angular frequency of the Fourier transform, δ is the Dirac delta func-
tion, and e−τω

2/2 is the Fourier transform of the Gaussian kernel. By transforming
back to the spatial domain, we obtain:

sin(ω0x) ∗ s(x, τ) = e−τω0
2/2 sin(ω0x)· (3.8)

The fact that smoothing a sinusoidal function yields a scaled version of it is expected
since sinusoids are eigenfunctions of linear systems. The right-hand side in Eq. 3.8
is the same right-hand side of Eq. 3.7 given t = τ . The message from both equa-
tions is that a sinusoid in GSS keeps its frequency fixed, but its amplitude decays
exponentially with scale.

Moreover, the m-th order derivative with respect to space is:

∂mL(x, t)

∂xm
= ωm0 e

−ω2
0t/2 sin

(
ω0x+m

π

2

)
· (3.9)

The amplitude of the derivative is clearly always decreasing with scale. In other
words, Gaussian derivatives do not achieve optima over scale. This conclusion con-
forms to the observation that smoothing does not increase derivative amplitude.
However, this is not the case with the γ-normalized derivatives introduced by Tony
Lindeberg [Lind 98]:

Dn(x, t) = tmγ/2
∂mL(x, t)

∂xm
(by definition)· (3.10)

Combining Eq. 3.10 and Eq. 3.9 yields:

Dn(x, t) = tmγ/2ωm0 e
−ω2

0t/2 sin
(
ω0x+m

π

2

)
· (3.11)

Differentiating both sides of Eq. 3.11 with respect to scale yields:

∂Dn(x, t)

∂t
=

(
mγ

2
tmγ/2−1 − ω2

0

2
tmγ/2

)
e−ω

2
0t/2ωm0 sin

(
ω0x+m

π

2

)
· (3.12)
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The root is obtained at:

mγ

2
tmγ/2−1 − ω2

0

2
tmγ/2 = 0

mγt−1 − ω2
0 = 0

mγ − ω2
0t = 0

troot =
mγ

ω2
0

· (3.13)

Eq. 3.13 can be written in terms of wavelength of the sinusoid λ0 = 2π
ω0

as:

troot = σ2
root =

mγ

4π2
λ2

0· (3.14)

Therefore, unlike the amplitude of the derivative ∂mL(x,t)
∂xm

, the amplitude of the γ-
normalized derivative attains a stationary point in the scale dimension. Moreover,
since wavelength can be understood in terms of structure size, Eq. 3.14 conveys that σ
at which the γ-normalized derivative achieves this stationary point is proportional to
structure size. Lastly, this stationary point is unique and it maximizes the amplitude
of the γ-normalized derivative along the scale dimension [Lind 98].

Let us find the value of the γ-normalized derivative amplitude at the maximizer
by setting t in Eq. 3.11 to troot given by Eq. 3.13:

max
(
Damplitude
n

)
=

(
mγ

ω2
0

)mγ/2
ωm0 e

−mγ/2

=
(mγ)mγ/2

emγ/2
ω
m(1−γ)
0 · (3.15)

This equation conveys that the value of the γ-normalized derivative amplitude at
γ = 1 has a very desirable property: it is independent of the signal frequency, that is
to say it is scale-invariant.

3.1.4 SIFT Detector

In order to detect SIFT keypoints in an input image, a GSS (cf. Eq. 3.1) of this image
is required. The parameter σ =

√
τ in Eq. 3.1 is a continuous variable, and hence, its

range needs to be discretized. The discretization is performed at logarithmic steps
with base 2 where each doubling of σ is termed octave. More specifically, the discrete
σ values are given as follows:

σ(j) = σ02
j
S , j = 0 · · ·S ·O− 1, (3.16)

where σ0 is the initial σ, S is the number of scales per octave, and O is the number
of octaves. Setting these parameters appropriately is essential for robust blob detec-
tion. Extensive evaluations were performed by Lowe [Lowe 04] in order to achieve
this robustness. For instance, he reported that the best keypoint repeatability can be
achieved with three scales per octave (S = 3). Repeatability refers to the possibility
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of regenerating the same keypoints in a transformed image. Several image transforma-
tions were considered including rotation, scaling, contrast change, and perturbation
with noise.

As mentioned above, the Gaussian standard deviation at the first level of each
octave (in Eq. 3.16, j = l ·S, l = 1 · · ·O − 1) is doubled compared to its preceding
octave (at l − 1). Consequently, the maximum image frequency is halved at the
beginning of each octave, and hence, we can subsample by a factor of 2 (sample each
second pixel) without violating the sampling theorem. Based on this justification,
and in order to improve performance, the SIFT algorithm applies subsampling at the
beginning of each octave.

It was mentioned in Section 3.1.1 that blobs tend to have high absolute values of
the LoG. Additionally, it was shown in Section 3.1.3 that the γ-normalized Gaussian
derivatives achieve maximal amplitudes at scales corresponding to structure size.
Moreover, for γ = 1, the derivative value at the optimum in scale is scale-invariant.
Based on these facts, SIFT employs the γ-normalized Laplacian with γ = 1. This
operator is given as σ2∇2 by setting m = 2 and γ = 1 in Eq. 3.10 (considering
two spatial dimensions x and y). We pointed out in Section 3.1.2 that the LoG
can be approximated by the DoG. This approximation is used in SIFT so that a
γ-normalized DoG is computed. We will refer to it through this thesis as DoGγ1.

SIFT assumes a keypoint at (x, y, σ) if the DoGγ1 achieves a local optimum in
scale and space. In other words, DoGγ1(x, y, σ) has to be either larger or smaller
than all its 26 neighbors in the scale-space. The value of σ at which DoGγ1 attains
the aforementioned optimum is, by definition, the keypoint scale. Unfortunately, there
is no consensus about using the term scale in the literature. It may denote either the
variance of the Gaussian kernel used for smoothing [Lind 09, Lind 98] or the standard
deviation of this kernel [Lowe 04, Bay 08, Lind 98]. In this work, and in order to
avoid any possible ambiguity, we put the following conventions: 1) When it makes a
difference, we use symbols σ for the standard deviation and τ for the variance. 2) If
no symbols are used, scale refers to the variance as defined in Eq. 3.2 while keypoint
scale refers to the standard deviation. Please note that, in many cases, both concepts
are applicable. One last note about terminology: in order to simplify notation, and
unless otherwise mentioned, we use (x, y, σ) both for an arbitrary coordinate in scale-
space and for a detected keypoint, i. e. for a point in scale-space at which DoGγ1 has
a local optimum.

In order to assign an orientation to a keypoint (x, y, σ), SIFT polls orientations
of the spatial gradients of L(., ., σ) in the vicinity of (x, y). An isotropic Gaussian
window with standard deviation 1.5 σ defines the polling region. A histogram of
gradient orientations is then computed. The contribution of each gradient vector
to the histogram is weighted by the Gaussian window and the gradient magnitude.
The orientation ϑ at which the histogram achieves its maximum is considered the
keypoint orientation. Basically, it can be interpreted as the dominant gradient orien-
tation in the keypoint neighborhood. In some symmetric structures, this dominant
orientation is poorly defined. SIFT addresses this problem by detecting histogram
maxima which are not smaller than 80% of the highest histogram peak. For each of
them, a new keypoint is created with the same (x, y, σ), but having a different ori-
entation. Lowe reported an improvement in matching stability by considering these
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Figure 3.1: Demonstration of SIFT keypoints: typically, each keypoint (x, y, σ, ϑ) is
represented by a circle centered at (x, y) with radius equal to σ. The direction of line
segment which represents this radius is given by ϑ. Note that some keypoints have
multiple orientations.

multiple orientations. SIFT matching refers to finding similarities between images
by comparing their SIFT descriptors. Figure 3.1 demonstrates SIFT keypoints on a
cell-image example.

The obtained spatial coordinates of SIFT keypoints are real values. In addition,
the σ values for these keypoints are not necessarily the discretized σ values given by
Eq. 3.16. This is due to the subpixel/subscale interpolation performed by the SIFT
algorithm. In order to improve localization in space and scale, the DoGγ1(x, y, σ) at
a keypoint location is interpolated as a quadratic function expressed by the first three
terms of the Taylor series of DoGγ1(x, y, σ). The local derivatives of DoGγ1(x, y, σ)
are estimated at the keypoint location in order to find Taylor coefficients. Afterwards,
the extremum of the quadratic is found by setting its derivative to zero and solving the
resulting equation. The scale-space location of this extremum is the refined keypoint
which is returned by the algorithm. Moreover, the value of the extremum is the
refined DoGγ1 value also returned by the algorithm.

SIFT offers a measure which describes circularity of structure. It is the principal
curvatures ratio (PCR) defined as:

PCR =
Tr2
(
HDoGγ1

)
Det

(
HDoGγ1

) , (3.17)
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where HDoGγ1 is the Hessian of DoGγ1 in the xy plane, Tr is the trace, and Det is the
determinant. Assuming that the eigenvalues of HDoGγ1 are e1 and e2, we can define
the following eigen ratio:

er =
e2
e1
,

where |e2| ≥ |e1|. Since there is a maximum or a minimum of DoGγ1 at the keypoint,
the two eigenvalues have the same sign, and hence er ≥ 1. Accordingly, the PCR can
be written as:

Tr2
(
HDoGγ1

)
Det

(
HDoGγ1

) =
(e1 + e2)

2

e1e2

=
(e1 + ere1)

2

e1ere1

=
e1

2 + er
2e1

2 + 2e1
2er

e12er

=
1 + er

2 + 2er
er

=
(1 + er)

2

er
· (3.18)

This function, and hence PCR, has a minimum of 4 when er = 1 which conforms
to isotropic blobs. On the other hand, its value increases theoretically until +∞ by
increased er values which conform to increased blob anisotropy.

3.1.5 SIFT Descriptor

After detecting keypoints, the SIFT algorithm creates a descriptor for each keypoint
(x, y, σ, ϑ) in order to characterize the keypoint vicinity. For feature extraction, the
algorithm considers a square neighborhood centered at the keypoint location (x, y)
with size proportional to the keypoint scale σ in the pyramid level which corresponds
to this scale, i. e. L(., ., σ). In the SIFT implementation used in this thesis [Veda 08],
the side length of the aforementioned square neighborhood is 4Mσ pixels, where
M is a magnification factor which can be determined by user. The neighborhood
is divided into 16 subregions with subregion’s side length equal to Mσ. For each of
them, a histogram of gradient orientations with 8 bins is computed. These orientation
histograms form the SIFT descriptor with length 16 × 8 = 128 features. Similar to
the dominant orientation computation in Section 3.1.4, the contribution of a gradient
vector is weighted by the gradient’s magnitude and also according to a Gaussian
window. The gradient orientations are computed with respect to ϑ and the descriptor
coordinates are also rotated relative to ϑ in order to make the descriptor rotation-
invariant. Scale-invariance of the descriptor, on the other hand, is a result of choosing
a neighborhood’s size proportional to the keypoint scale. In Chapter 5, we employ
and extend these principles in order to make other feature sets scale- and orientation-
invariant.
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3.2 Random Forests
The random forest [Brei 01] is a tree-based classifier introduced by Breiman in 2001.
It combines three techniques: classification and regression trees (CART), bootstrap
aggregation, and random selection of features at each tree’s node. These concepts
are clarified in the next sections.

3.2.1 CART Trees

A tree classifier or regressor is a hierarchical structure of decision-making nodes which
lead to final decisions (class labels or regression values) at the tree leaves. There are
many algorithms in the machine learning literature which address the problem of
automatically building a decision tree based on training data. Just to name a few:
CART [Brei 84], ID3 [Quin 86], C4.5 [Quin 93], and VFDT [Domi 00]. In this section,
we consider the CART algorithm, as it is the building-block of random forests.

In order to grow a CART tree for classification on a training dataset TD, the
following recursive procedure is followed:

1. Start with the entire training dataset TD′ = TD.

2. If TD′ is pure enough (see below for definition of purity), stop here (see below for
other stopping criteria), mark the current node as leaf, and assign the majority-
vote class label (most frequent label) in TD′ to this leaf. Otherwise, i. e. if TD′

is not pure enough, pick the feature feat for which it is possible to find a
threshold thresh that can split TD′ into two complementary datasets TD′1 and
TD′2 so that the sum of their impurity is minimized. TD′1 may thus contain
feature vectors for which feat >= thresh while TD′2 contains feature vectors
for which feat < thresh.

3. Set TD′ = TD′1 and go to step 2.

4. Set TD′ = TD′2 and go to step 2.

An impurity measure should quantify the degree of inhomogeneity. For instance,
considering a binary classification problem, a dataset with all feature vectors having
the label of class 1 is more pure than a dataset with 20% of feature vectors belonging
to class 1 and 80% belonging to class 2. The maximum impurity is attained when
the two classes have the same relative frequency in the considered dataset, i. e. 50%
of the feature vectors belonging to each class. In CART, the two following impurity
measures are frequently employed for classification problems [Hast 09]:

Entropy (TD′) = −
NClasses∑
j=1

P̂j log P̂j, (3.19)

where NClasses is the number of classes and P̂j is the empirical probability (relative
frequency) of class j in TD′.

Gini index (TD′) =

NClasses∑
j=1

P̂j(1− P̂j)· (3.20)
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Decision tree learning algorithms tend in general to build large tress which overfit
training data. Moreover, due to its hierarchical structure, the consequences of an
over-fitted decision at higher levels propagate to the lower-level nodes [Hast 09]. A
small change in training data may thus lead to a substantial difference in the resulting
tree structure. This variance reduces the stability and interpretability of decision
trees. Some typical procedures are followed in order to lessen the over-fitting effects.
For instance, the tree-growing algorithm can be stopped when the cardinality of TD′

is below a certain threshold. Moreover, pruning is commonly employed in order to
restructure a tree and discard its unnecessary splits. Basically, pruning algorithms
remove subtrees from the original tree in a way which minimizes some criterion, e. g.
a combination of test error and tree size. In the following sections, more effective
anti-overfitting techniques such as bootstrap aggregation and random forests will be
discussed.

3.2.2 Random Forest Approach

Instead of growing a single decision tree, NTr trees are grown in the random forest
approach [Brei 01]. Each tree is trained on a bootstrap sample of the training data. A
bootstrap sample of a dataset TD of size |TD| = N is obtained by randomly sampling
N feature vectors from TD with replacement. The probability of a specific feature
vector to be outside the resulting sample is

(
N−1
N

)N . Consequently, the probability
that this feature vector belongs to the bootstrap sample is:

P̂bootstrap = 1−
(
N − 1

N

)N
·

For large datasets, one can write:

P̂∞bootstrap = lim
N→+∞

1−
(
N − 1

N

)N
= lim

N→+∞
1−

(
1− 1

N

)N
= 1− 1

e
≈ 0.632·

Therefore, in a statistical sense, each bootstrap replicate will contain approximately
63% of the data. That is to say, each tree is trained on a random subset of the
feature vectors containing 63% of the entire training set. For a test feature vector,
the final decision made by the forest is the majority-vote of all trees in classification
and the arithmetic average in regression. In [Brei 96], it was shown that aggregating
classifier or regressor outputs trained on bootstrap replicates substaintially improves
the accuracy when the individual classifiers or regressors are instable. As mentioned
in the previous section, this instability is an inherent property of decision trees.
Breiman coined the term bootstrap aggregating or baaging for this procedure.

The random forest employs the bagging concept for building a forest of CART
decision trees. However, it goes one step further by injecting a second level of ran-
domness at each tree’s node. It modifies the tree’s growing algorithm explained in
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Section 3.2.1 as follows: at each node, a random subset of NRand features is selected,
and the training algorithm chooses then the best feature from this subset instead of
the full feature set. The number of randomly selected features at each tree’s node
NRand is a parameter of the training algorithm. Due to the two aforementioned levels
of randomness, random forests do not overfit even though the trees are grown with
full length without pruning.

The accuracy of random forest is dependent on the strength of each tree, but also
on the diversity of search spaces explored by different trees. Large NRand values push
the training algorithm to generate trees which are, more or less, correlated. On the
other hand, very small values of NRand reduce the strength of individual trees. In
both cases, the prediction accuracy of random forest degrades. A proper value of
NRand is thus essential to control the trade-off between individual tree strength and
inter-tree correlation.

In general, a training procedure of a machine learning model yields a trained
model instance and also its mis-prediction error on training data. Since generalization
error on unseen data is what matters most, cross-validation or other data sampling
techniques are commonly employed to estimate the test error of the model. With
random forests, this is not necessary as the test error can be obtained directly from
the training algorithm. This internal test error is computed as follows: each feature
vector is classified using a sub-forest containing only the trees which did not use
this feature vector for training. Statistically, the trees involved in this estimation
are about 100%− 63% = 37% of the random forest trees. The majority-vote of this
sub-forest is considerd to be the prediction result. After applying this process on the
entire dataset, the so-called out-of-bag (OOB) test error is obtained by calculating the
ratio of feature vectors which were misclassified by their corresponding sub-forests.

Another practicality of random forest is that it provides feature ranking in a
straightforward manner: in order to rank a specific feature, permute its values ran-
domly in the OOB data of each tree and compute the OOB error of the entire forest
after this permutation. The increase in OOB error is a measure of importance of the
considered feature. Interested readers are referred to [Brei 02] for more measures of
feature importance using random forests.

The imbalance problem is tackled differently in different classifier models. One
approach to deal with imbalanced classes in random forests is the balanced random
forest [Chen 04]: from each class, consider a bootstrap sample of size NMinority which
is the number of feature vectors in the minority class. In this way, class labels are
uniformly distributed in the bootstrap replicate used for training.

In the last decade, random forest gained a considerable interest due to its desired
properties. In a nutshell: it can be used for classification, regression, and clustering
with efficient training time and without data normalization. Additionally, and as
byproducts, it yields OOB test error estimates and feature ranking. Its accuracy is
not very sensitive to its parameters. The parameter which has the greatest impact
is NRand. However, in most cases, default values such as log2(NF ) + 1 (casted to
integer) [Brei 01, Khos 07] or NF/5 [Khos 07], where NF is the number of features,
work pretty well.
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3.3 Agglomerative Hierarchical Clustering
Consider a dataset for which a distance measure π between feature vectors is assumed.
Evaluations of this measure on all feature-vector pairs in the considered dataset can
be written as a matrix W where W (j, l) = πjl. Conceptually, we can consider each
feature vector to be a single-element cluster or a singleton cluster [Hast 09]. In order
to find clusters at higher levels, agglomerative hierarchical clustering (AHC) in its
simplest version conducts the following straightforward algorithm:

1. Start with the initial distance matrix between singleton clusters W ′ = W .

2. Find the minimum value in W ′.

3. Merge the two corresponding clusters into a new one.

4. Delete or invalidate entries of the two merged clusters in W ′ and add an entry
of the newly-born cluster.

5. If the algorithm ends up with a single cluster (the entire dataset), stop. Oth-
erwise, go to step 2.

In step 4, adding a new entry representing the emerging cluster requires computing
distances between this cluster and each other cluster available at the current iteration.
Therefore, a mechanism is needed to induce distances between clusters starting from
the available singleton-cluster distances given in W . This mechanism is termed link-
age method in the hierarchical clustering literature. People in the machine learning
community have been using several standard linkage methods for decades. The most
common ones include single, complete, average, and centroid. In single linkage, the
distance between two clusters A and B is defined as the minimum distance between
ej ∈ A and el ∈ B:

Πsingle(A,B) = min
ej∈A el∈B

π (ej, el)· (3.21)

Complete linkage is defined similarly, but using maximum instead of minimum:

Πcomplete(A,B) = max
ej∈A el∈B

π (ej, el)· (3.22)

On the other hand, average and centroid linkages adopt more moderate strategies
compared to single and complete linkage methods. Average linkage is defined as
follows:

Πaverage(A,B) =
1

|A| |B|

|A|∑
j=1

|B|∑
l=1

π(ej, el), (3.23)

where | · | refers to cluster cardinality. In centroid linkage, the distance between
two clusters is defined as the squared Euclidean distance between the two cluster
centroids. A cluster centroid is the arithmetic average of feature vectors belonging
to the cluster.

Obtaining final clusters, i. e. outputs of the clustering procedure, is typically done
by imposing a threshold in Π values so that only the clusters which were formed
under this level are considered. The value of the threshold is, however, application-
dependent. Therefore, it is desirable to use interpretable distance measures π and
linkage methods Π in order to select this threshold in a meaningful way.
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Linkage β1 β2 β3 β4

Single 1/2 1/2 0 −1/2
Complete 1/2 1/2 0 1/2

Average |A|
|A|+|B|

|B|
|A|+|B| 0 0

Centroid |A|
|A|+|B|

|B|
|A|+|B|

−|A|·|B|
(|A|+|B|)2 0

Table 3.1: Coefficients of the Lance-Williams model for some standard linkage meth-
ods

3.3.1 Lance Williams Update Formula

In order to compute linkage distances efficiently at a specific iteration, one needs to
reuse cluster distances computed during preceding iterations rather than recomput-
ing these distances at each iteration from scratch (e. g. using Eq. 3.21, Eq. 3.22, or
Eq. 3.23). In this regard, a linkage method is considered combinatorial under the
following condition: if cluster AB is resulting from merging clusters A and B, then
the cluster distance between AB and any other cluster C can be induced using the
Lance Williams recurrence formula. This formula is given as [Lanc 66, Lanc 67]:

Π(AB,C) = β1Π(A,C) + β2Π(B,C) + β3Π(A,B) + β4|Π(A,C)− Π(B,C)|, (3.24)

where β1, β2, β3, and β4 are the model coefficients which are characteristic for the
linkage method. Table 3.1 shows the coefficient values for some standard linkage
methods [Murt 12].

3.3.2 Monotonicity

The graphical representation of an AHC tree is called dendrogram where a cluster
AB resulting from merging A and B is represented as a node with two daughters,
one for each cluster. The height of the node AB is proportional to Π(A,B). In the
so-called monotonic clustering strategies, Π(A,B) is guaranteed to be larger than
Π(A1,A2) and Π(B1,B2), where A1 and A2 are the two clusters which were merged
to form A, while B1 and B2 are the clusters which were merged to form B. Non-
monotonic dendrograms are usually undesired as they pose difficulty in interpretation
[Murt 85, Morg 95]. In fact, you cannot draw a dendrogram as a tree if a reversal,
i. e. a non-monotonic growing of Π values, occurred during agglomeration. When
β4 is zero, the model given in Eq. 3.24 is monotonic under the following condition
[Lanc 67]:

β1 + β2 + β3 ≥ 1· (3.25)

Using Inequality 3.25 and Table 3.1, one can directly conclude that average linkage
is monotonic while the centroid linkage is not. Inequality 3.25 cannot be applied
for single and complete linkage methods because β4 6= 0. There are, however, more
general statements which can be used in this regard. According to [Bata 81], a linkage
method is monotonic iff all the following conditions are met:

1. β1 + β2 ≥ 0.
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2. β1 + β2 + β3 ≥ 1.

3. β4 ≥ −min(β1, β2).

Obviously, these constraints are fulfilled with the single and complete linkage meth-
ods, and they are thus monotonic.



Chapter 4

Cell Image Materials

In this chapter, we describe image materials which are used for experimental eval-
uations in the next chapters. For the assessment of our algorithms, cell cultures of
different cell lines were cultivated by our project partners at the Institute of Bio-
process Engineering. Since bright field microscopy is the main focus of this thesis,
standard bright field images of the cultivated cell lines were acquired. Moreover, a
software package for cell image simulation was employed in order to obtain additional
images equipped with ground-truth masks. The entire database of both simulated
and real standard bright field images is available online1 so that other researchers can
also benefit from it.

Moreover, COSIR images were obtained during the development of COSIR hard-
ware and used for qualitative evaluations. In addition to the bright field images
acquired by us, phase contrast images from other research groups were also utilized
to evaluate both the supervised and unsupervised cell detection approaches.
We point out that considerable parts of this chapter were already published in:
F. Mualla, S. Schöll, B. Sommerfeldt, A. Maier, and J. Hornegger. “Automatic cell de-
tection in bright-field microscope images using SIFT, random forests, and hierarchical
clustering”. Medical Imaging, IEEE Transactions on, Vol. 32, No. 12, pp. 2274–2286,
December 2013.

4.1 Standard Bright Field

Table 4.1 shows a summary of the image sets while Figure 4.1 exemplifies cell visual
appearance in each of these sets. The first three rows of the table are real cell lines:
CHO adherent cells (cf. Figure 4.1a), L929 adherent cells (cf. Figure 4.1b), and
Sf21 suspension cells (cf. Figure 4.1c). By the term adherent cell line, we mean that
almost all cells were adherent. Due to biological reasons, it was not possible to force
all cells to adhere. Figure 4.1b exemplifies this case where some cells in the adherent
cell line L929 are in suspension.

Two bioprocess engineering experts have manually labeled cells in the three real
cell lines using the LabelMe annotation framework [Russ 08]. The total number of

1Images along with their ground-truth files are available at http://www5.cs.fau.de/~mualla/
#imagedb
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Cell line Description Images Cells Resolution
CHO Real CHO adherent cells 6 1431 1280× 960
L929 Real L929 adherent cells 5 1078 1280× 960
Sf21 Real Sf21 cells in suspension 5 1001 1280× 960

Simulated A Simulated cells with SNR ≈ 63 100 15000 1200× 1200
Simulated B Simulated cells with SNR ≈ 0.07 100 15000 1200× 1200

Table 4.1: Summary of the simulated and real standard bright field image sets

manually labeled cells is 3510. The result of this labeling is cell delineation (seg-
mentation), so that each cell is given a unique identifier and each pixel can be thus
assigned to a specific cell or to background. Cell culturing process of these cell lines
is explained in Section 4.1.1 while image acquisition details are described in Sec-
tion 4.1.2.

The last two rows of Table 4.1 describe the simulated images. SIMCEP [Lehm07]
was employed to simulate two cell lines. The first (cf. Figure 4.1d) is simulated with
high SNR, while the second (cf. Figure 4.1e) is simulated under severe Gaussian noise
conditions. Details about the simulation process are given in Section 4.1.3.

4.1.1 Cell Culturing

CHO-K1 epithelial-like cells and L929 murine fibroblast cells were pre-cultured and
maintained in exponential growth phase in T-25 polystyrene culture flasks (Sarsted
8318.10) using DMEM/Ham’s F-12 (1:1) (Invitrogen 21331-046) with 10% fetal calf
serum (PAA A15-102) and 4 mM Glutamine (Sigma-Aldrich G7513-100ML) at 37◦C
and 7% CO2 containing atmosphere. For image acquisition, cells were detached from
the T-Flask using Accutase (Sigma-Aldrich A6964-100ML) on the day before and
seeded out in 24-well plate format using a working volume of 600 µl of the mentioned
medium composition. Cells were allowed to attach and spread out in the well-plate
for at least 18 hours but not more than 30 hours.

Sf21 insect cells were maintained in exponential growth phase in silicon solution
treated shaker flasks in Ex-Cell 420 medium (Sigma-Aldrich: 24420C) at 27◦C and
normal air CO2 level. On the day of investigation, an aliquot of this culture was
transferred to a 24-well plate in a final volume of 600 µl and cells were allowed to
sediment before image acquisition.

4.1.2 Real Image Acquisition

The images of the three real cell lines in Table 4.1 were manually acquired with an
inverted Nikon Eclipse TE2000U microscope using Nikon’s USB camera. Cells were
illuminated by a halogen light bulb for standard bright field microscopy. The used
microscope’s objective has 20× magnification, 0.45 numerical aperture, and 7.4 mm
working distance. Image resolution is 1280× 960 pixels with 0.49 µm/pixel.

The most important acquisition parameter is probably the defocus distance. This
distance was empirically set to +30 µm for the adherent cell lines and +15 µm
for the suspension cell line. In addition to the previous focus level, we acquired
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(a) CHO adherent (b) L929 adherent (c) Sf21 suspension

(d) Simulated A, SNR ≈ 63.0 (e) Simulated B, SNR ≈ 0.07

Figure 4.1: Demonstration of simulated and real standard bright field images: the
defocus distance in (a), (b), and (c) is +30 µm, +30 µm, and +15 µm, respectively.

images at levels 0 and −30 µm for the adherent cell lines and at levels 0 and −15
µm for the suspension cell line. Acquiring images at multiple focus levels is needed
for two reasons: 1) We compare our supervised cell detection in Chapter 5 with
other approaches which require images at multiple focus levels. 2) Phase retrieval
conducted in Chapter 6 requires information of intensity variation as a function of
defocus distance.

4.1.3 Image Simulation

As mentioned above, the software in [Lehm07] was utilized to simulate the two ar-
tificial cell lines in Table 4.1. It is important to point out that this software was
designed for fluorescence microscopy. Nonetheless, we chose to use it for the follow-
ing reasons: Firstly, to the best of our knowledge, there is no simulation software
available for bright field microscopy. Secondly, if cytoplasm is excluded from the sim-
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(a) A COSIR image acquired from channel
A3

(b) A COSIR image acquired from channel
A5

Figure 4.2: Example images acquired by the 24-channels COSIR system

ulation, cell nuclei resemble the negatively defocused bright field images even though
this resemblance is partial due to differences at cell borders.

Cells were generated according to a shape model described in [Lehm07] with
dynamic range equal to 0.3 of the allowed image bins number. An illumination
field with scale 10 was then added to each image. This illumination scale is defined
as the ratio between illumination energy (sum of squared values) and ideal-image
energy. Afterwards, white Gaussian noise was added so that the signal to noise ratio
is approximately 63 in the first cell line (cf. Figure 4.1d) and 0.07 in the second (cf.
Figure 4.1e). SNR is the ratio between ideal-image energy and noise energy. The
illumination energy does not contribute to the SNR.

4.2 COSIR Images

During the development of COSIR hardware, a large number of images were obtained
for calibrating the hardware components and verifying image quality. At the end of
the financial support period of the COSIR project (end 2013), a new set of images
(cf. Figure 4.2) was acquired as to reflect the most recent status of the hardware. The
images were preprocessed according to the COSIR preprocessing pipeline partially
described in [Scho 13]. Unlike the other image sets used in this work, COSIR images
were not labeled (except a single image used for training in Chapter 5). They were
thus utilized only in a qualitative evaluation of cell detection algorithms.
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Cell line Images Cells Ground truth Resolution Source
HeLa 11 1156 center dots 400× 400 [Arte 12]
Bovine 10 2584 border delineation 680× 512 [Pan 10]

Table 4.2: Summary of the phase contrast image sets

4.3 Phase Contrast
Besides bright field microscopy, we compared our cell detection algorithms with other
approaches on phase contrast microscopy. The phase contrast image sets are listed in
Table 4.2 along with their corresponding sources. As shown in the table, the ground-
truth type in the dataset of [Pan 10] is cell border delineation, which is similar to
ground-truth type of the standard bright field images described in Section 4.1. On
the other hand, in the dataset of [Arte 12], a dot is marked at the center of each cell
without delineating cell borders. As it will become clear in the next chapters, this
difference in ground-truth type has implications on both training and evaluation of
cell detection algorithms.
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Chapter 5

Supervised Cell Detection

Considerable parts of this chapter were published in:
F. Mualla, S. Schöll, B. Sommerfeldt, A. Maier, and J. Hornegger. “Automatic cell de-
tection in bright-field microscope images using SIFT, random forests, and hierarchical
clustering”. Medical Imaging, IEEE Transactions on, Vol. 32, No. 12, pp. 2274–2286,
December 2013.

5.1 Motivation

We think that a good cell detection system should fulfill the following criteria:

1. It has to be automatic, i. e. no manual parameter tuning is required.

2. It should be invariant to cell size and orientation.

3. It should be invariant to illumination conditions.

4. If tracking is required after detection, then the detected cells should be equipped
with trackable features.

5. The degradation of detection rate due to the aforementioned invariance require-
ments needs to be minimal.

6. It can learn to detect cells from a small number of labeled images.

7. It is efficient with respect to both training and detection time.

With these criteria in mind, we developed a system for unstained cell detection based
on supervised learning. In this chapter, we explain this system in detail and show its
robustness by conducting intensive experimental evaluations.

5.2 System Overview

A cell is expressed in bright field images as one or more blobs in intensity. As explained
in detail in Section 3.1, a blob is an extremum of the γ-normalized LoG in scale-space.

51
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In SIFT, it is concretely an extremum of the DoGγ1 in scale-space which is again the
γ-normalized difference of Gaussians for γ = 1.

The proposed supervised cell detection algorithm is roughly demonstrated in Fig-
ure 5.1. The algorithm starts by extracting SIFT keypoints from an input image.
These keypoints are classified into cell and background keypoints. For each cell key-
point, an intensity profile to each nearby cell keypoint is extracted and classified as
either inner or cross. A profile between two keypoints is termed inner if these two
keypoints belong to the same cell. Otherwise, it is described as cross. The output of
the profile classifier is probabilistic. The probability that a profile between two key-
points is inner can be seen as a similarity measure between the keypoints. Based on
this similarity measure, an agglomerative hierarchical clustering of the keypoints with
a customized linkage method is applied. A weighted mean of the keypoint coordinates
inside each cluster marks then a detected cell.

Before using these classifiers, the system must be trained. For training, a set of
mask/image pairs is required. The masks should contain border delineation of cells,
i. e. manual segmentation. The images should be defocused and the same defocus
distance needs to be used for training and detection (testing). Defocusing can be
either in the positive or the negative direction. It is important for at least two
reasons: Firstly, as mentioned in previous chapters (see Section 1.1 and Section 2.6),
some adherent cells are totally invisible at focus. Secondly, defocusing smoothes out
tiny details which may degrade system performance in terms of time and detection
rate.

No manual tuning of any parameter is required neither in training nor in detection.
The system learns its parameters automatically in a scale- and orientation-invariant
manner.

The rest of this chapter is organized as follows: Section 5.3 describes the features
and classifier model of the keypoint classifier. Section 5.4 discusses different aspects
of the profile learning. In Section 5.5, the hierarchical clustering step is explained
and the customized linkage method is introduced. Section 5.6 provides details of the
training phase. Measures of detection quality are defined in Section 5.7. Section 5.8
contains experimental evaluation. The chapter ends with a detailed discussion in
Section 5.9.

5.3 Keypoint Learning
SIFT keypoints are extracted by searching for DoGγ1 extrema at all possible scales. In
other words, the number of octaves O is approximately log2 (min (NRows, NColumns)),
where NRows and NColumns are the number of image’s rows and columns, respectively.
The number of scales per octave S was set to 3. As mentioned in Section 3.1.4,
this value was shown to yield stable keypoints. SIFT keypoints can be thresholded
according to their strength represented by the DoGγ1 value and/or their elongation
given by the PCR value (cf. Section 3.1.4). As we aim to design an automatic pipeline,
we consider all SIFT keypoints without setting any manual threshold. Nonetheless,
later on, we use training data to learn a relevant DoGγ1 threshold.
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background
cell

(a): Input image (b): SIFT keypoints

Random forest

SIFT

Hierarchical clustering

Weighted average

(g): Final detection result

Random forest

Profile
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(d): Intensity profiles are extracted
between nearby cell keypoints

(c): Keypoints are classified
into cell and background
keypoints

(e): Intensity profiles are
classified into inner and cross
profiles

(f): Result of hierarchical
clustering with a customized
linkage method

cross
inner

Figure 5.1: A rough overview of the proposed supervised cell detection pipeline
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(a) Result of SIFT keypoint extraction: yellow indicates key-
points with DoGγ1 > 0 (dark appearance) while blue indicates
keypoints with DoGγ1 < 0 (bright appearance).

(b) Dominant blob type is determined by Eq. 5.1 to be the key-
points with positive DoGγ1. Keypoints with negative DoGγ1 are
thus discarded.

Figure 5.2: Illustration of automatic determination of the dominant blob type

In order to determine, whether cells in the training data tend to have a bright
or dark appearance, we perform a calibration step before the actual cell detection
procedure. An example of dark appearance can be seen in figures 4.1a, 4.1b, and
4.1c while bright appearance is exemplified in figures 4.1d and 4.1e. In this thesis, we
call a set of keypoints one-sided if all the keypoints in the set have positive DoGγ1

values or all of them have negative DoGγ1 values. In order to automatically detect
the keypoint type which fits the training data, we introduce the following measure:

BT = sign

(∑Nckp
j=1 σ(pj) |DoGγ1 (pj)|HS (DoGγ1 (pj))∑Nckp

j=1 σ (pj) |DoGγ1 (pj)|
− 1

2

)
, (5.1)
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0.3 σ

ϑ

Stencil sampling points

Figure 5.3: Illustration of the keypoint-based radial intensity stencil obtained by
adjusting fixed-size intensity stencils to SIFT keypoints. The stencil is aligned with
the keypoint orientation ϑ and the distance between two successive nodes is set to
0.3 σ, where σ is the keypoint scale.

where pj, j = 1 .. Nckp are the cell keypoints in the training data (background key-
points are not used), Nckp is their number, σ is the keypoint scale, sign is the sign
function (returns the sign of its operand), and HS is the Heaviside step function
defined as follows:

HS(%) = 1 when % > 0

= 0 otherwise. (5.2)

If BT evaluates to +1, one can conclude that the dominant blob type is the type
defined by DoGγ1 > 0 which describes the black-on-white blobs. The system thus
ignores keypoints with negative DoGγ1 values during training and detection. This case
is illustrated in Figure 5.2. On the other hand, when BT = −1, the system decides
for white-on-black keypoints and ignores keypoints with positive DoGγ1 values.

After that, the maximum |DoGγ1| in each training cell is computed and the first
percentile of all resulting maxima is considered a SIFT threshold. During training
and detection, SIFT keypoints which have lower |DoGγ1| than this threshold will be
discarded. The goal of this step is to eliminate instable keypoints.
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ϑ
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edge

Figure 5.4: Illustration of the keypoint-based ray features obtained by adjusting
standard ray features to SIFT keypoints. The figure is an adapted version of the
pixel-based ray features in [Smit 09]. Please refer to text for explanation.

5.3.1 Keypoint Features

SIFT keypoints in cell images result from cell structures, but also from debris, noise in
the background, and other image artifacts. It is possible to eliminate some irrelevant
keypoints by imposing a high DoGγ1 threshold which excludes weak structures or by
imposing a low PCR threshold which excludes elongated structures (cf. Section 3.1.4).
However, some cell keypoints may have high principal curvatures ratio because of cell
elongation. Other cell keypoints may have low DoG value due to cell adherence or
insufficient contrast of the considered image modality. Consequently, it is not always
possible to separate cell keypoints from non-cell keypoints reliably using these two
features. In order to achieve this separation in a reliable manner, we used several sets
of features from the literature and adjusted them. We utilized SIFT to make these
features scale- and orientation-invariant. Moreover, we made them invariant to local
shift of intensity. This local shift is simply a constant addition to the image intensity
in a small (and hence local) region. The importance of invariance to the local shift
of intensity can be clarified as follows: under the assumption that the illumination
field in a small region of the image can be approximated by a constant, invariance to
local intensity shifts contributes to illumination invariance.

At each keypoint, the following feature sets are extracted:
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Figure 5.5: Demonstration of SIFT descriptors with SIFT magnification factor
M = 1. Each descriptor is composed of 16 subregions with a histogram of gradi-
ent orientations of 8 bins in each of them. For clarity of the figure, only a subset of
descriptors are shown.

1. Intensity stencil: we computed intensity stencils [Jurr 10, Mitt 10] around each
keypoint. As shown in Figure 5.3, we align the stencil with the keypoint orien-
tation and measure the distance between sampling points in units of keypoint
scale σ instead of pixels. The result is a scale- and orientation-invariant stencil.
In order to make the stencil invariant to local shift of intensity, we subtract the
mean intensity of the stencil from all stencil nodes. The intensity values at the
stencil nodes after the aforementioned subtraction form the stencil feature set.

2. Ray features: in order to compute ray features [Smit 09] at a keypoint p (cf. Fig-
ure 5.4) in an image I, the closest edge point p′ along a direction Θl is found.
We discretize Θl in 8 values, i. e. l = 1 .. 8. For each keypoint p and direction
Θl, we extract the following features [Smit 09]:

• the distance Rayd(p,Θl) between p and p′.

• the gradient norm Rayn(p,Θl) at p′.

• the gradient angle at p′, i. e. Raya(p,Θl) = Θ′.

• the distance difference along two different directions Θl and Θl′ :
Raydd(p,Θl,Θl′) = |Rayd(p,Θl)− Rayd(p,Θl′)|.

Since eight values of the angle Θ are used, each of the first three items yields
8 features per keypoint. The fourth item involves each combination of two
different directions. It thus yields 8·7

2
= 28 features. In total, we obtain 8 · 3 +

28 = 52 ray features.

Ray features are well-designed but are sensitive to scale and orientation. In
order to make them orientation-invariant, we define all angles, i. e. the eight
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Θl angles and the gradient angle feature Raya(p,Θl), with respect to the key-
point orientation. In order to make ray features scale-invariant, we measure
the distances Rayd(p,Θl) and Raydd(p,Θl,Θl′) in terms of keypoint scale σ.
Furthermore, in order to make the gradient norm Rayn(p,Θl) scale-invariant,
we compute the gradient using the following equation for its x component:

∂I(p′)

∂x
= I(p′x + υσ(p), p′y)− I(p′x, p

′
y), (5.3)

where σ(p) is the scale of the keypoint at p. υ is a constant that we set to
1. A similar equation is used for the y component. Before applying Eq. 5.3,
the image is smoothed using a Gaussian kernel with a standard deviation equal
to 1. The edges for computing ray features are obtained using Canny edge
detection [Cann 86]. The thresholds were set to the default values in the Matlab
implementation of Canny.

3. Variance map: based on the variance map [Wu95], we created a keypoint-based
scale-invariant version by taking a variable-size neighborhood with a size pro-
portional to the keypoint scale. For each keypoint p, we extract three variance
map features VMap(p, 2), VMap(p, 4), and VMap(p, 6) which correspond to
variance map in a square neighborhood of side length 2σ(p), 4σ(p), and 6σ(p),
respectively. The map is by construction invariant to the local shift of intensity
as adding a constant to a set of values does not change the variance of this set.

4. SIFT descriptors: SIFT features were used according to the original publication
[Lowe 99], as they are inherently scale- and orientation-invariant and partially
illumination-invariant. We set the magnification factorM to 1 (cf. Section 3.1.5)
so that the dimensions of the SIFT descriptor are 4σ × 4σ. With this setting,
the descriptor area is not large and it is thus unlikely to span too many cells.
Figure 5.5 demonstrates descriptor features on cell images.

5. Other features: the values of the DoGγ1 and the principal curvatures ratio
PCR at each keypoint were also obtained from SIFT. As the DoGγ1 value
is a γ-normalized Gaussian derivative with γ = 1 (cf. Section 3.1.3), it can
be assumed scale-invariant. It is also rotation-invariant because the intensity
Laplacian, of which the DoGγ1 is an approximation, is the sum of the two
eigenvalues of the Hessian of image intensity. These eigenvalues are known
to be rotation-invariant. On the other hand, the PCR is dependent on the
eigenvalues ratio of the Hessian of DoGγ1. Therefore, it can be also assumed
scale- and orientation-invariant.

5.3.2 Keypoint Classifier

We chose the random forest [Brei 01] as a background/cell classifier. One motivation
for this selection is that random forests can be used without parameter tuning. In
addition, as mentioned in Section 3.2.2, they are robust against overfitting and prac-
tical in terms of training time. After [Khos 07], we set the number of trees NTr to 500
and the number of randomly selected features at each node NRand to NF/5, where
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NF is the number of features. Since it is not guaranteed that the two classes cell and
background are balanced, we chose to use a balanced random forest [Chen 04]. As
also mentioned in Section 3.2.2, the size of bootstrap replicate is set in this version
of random forest to the cardinality of minority class.

5.4 Profile Learning
The keypoints which were classified as background by the keypoint classifier are
discarded. The remaining ones are thus cell keypoints. The number of keypoints
inside each cell depends on noise level, cellular details level, defocus distance, cell
shape, and SIFT parameters (e. g. the number of scales per octave S). In a nutshell,
the goal of profile learning is to connect keypoints which belong to the same cell
together so that they are recognized as one cell.

In order to decide whether two cell keypoints belong to the same cell, we extract
an intensity profile prof(χ) between them, where χ = 1 .. NPPoints are the sampling
points along the profile, and NPPoints is the number of profile points. We then extract
profile features and use them to classify the profile as either inner or cross.

5.4.1 Profile Features and Classifier

The following features are extracted for each intensity profile prof(χ):

• Standard deviation, skewness, and kurtosis of the profile.

• Standard deviation, skewness, kurtosis, maximum, minimum, and mean of first
derivative dprof

dχ
and second derivative d2prof

dχ2 of the profile.

• Two other features:
V1 = max(prof)−min(prof) (5.4)

V2 = prof(1)− 2 max(prof) + prof(NPPoints) (5.5)

The profiles are sampled using a fixed number of points NPPoints = 50. The derivatives
are Gaussian derivatives with σProfile = 0.1 NPPoints. As the scale of derivative, i. e. the
previous σProfile, is measured in units of sampling points, not in pixels, the derivative
signal is to a large extent scale-invariant. Note that all profile features are also
invariant to the local shift of intensity and that the mean, maximum, and minimum
of the profile do not belong to the profile feature set because they are sensitive to
this shift.

As a classifier model, we employ a balanced random forest based on the same
justifications and using the same parameters mentioned in Section 5.3.2.

5.4.2 Learning to Extract Small-length Profiles

For the training of the profile classifier and during the detection (testing) phase, the
algorithm extracts a profile between two keypoints only if they are nearby. This
makes sense for three reasons:
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1. In Section 5.3, it was mentioned that the keypoint features were made invari-
ant to local shift of intensity in order to gain robustness against illumination
conditions. The assumption was that, in a local region, the illumination can
be assumed to be constant. We want to apply a similar principle for profile
features. For this reason, it is desired to have intensity profiles of short length
so that illumination can be approximated by a constant along the profile.

2. The goal of extracting intensity profiles is to rank keypoints whether they be-
long to the same cell or to different cells. This is, however, necessary only for
keypoints which belong to nearby cells.

3. In terms of runtime, it is more efficient to extract intensity profiles between
nearby keypoints instead of doing that for each keypoint pair in the considered
image.

In order to achieve this goal in a scale-invariant manner, the algorithm allows for
learning the maximum inner profile length from training data. Naturally, it is inap-
propriate to measure the profile length in pixels. We use the average scale LU(I)
of all cell keypoints inside an image I as a profile length unit for this image. The
unit LU(I) can be computed during training because cell keypoints are known from
ground truth. However, it can be also computed during testing (ground truth is
not available) since cell keypoints are obtainable as outcome of the cell/background
classification step.

In general, training images may have a scale which is different from the scale of
testing images. Additionally, training images themselves may have different scales.
Therefore, the unit LU(I) is computed independently for each training/testing image.

During training, the maximum inner profile length MaxLj in each training image
Ij is computed in terms of LU(Ij). Then the maximum of all the MaxLj values is
considered the maximum inner profile length in the training data:

MaxL = max(MaxLj), j = 1 .. NTraining,

where NTraining is the number of training images. Unlike LU, MaxL is a scale-invariant
measure. It is saved as output of the training and used during testing to decide
whether two keypoints are nearby. It is, however, needed also during training, as
only short-length profiles may be used for training the profile classifier.

More specifically, given a cell keypoint p1 in a training or testing image I, another
cell keypoint p2 in I is considered nearby if the Euclidean distance between the two
keypoints, in units of LU(I), is smaller than ζMaxL. The symbol ζ denotes a safety
parameter that we set to 2.

5.4.3 Profile Expansion

The image area which is sampled by a single intensity profile is actually very small.
It is thus plausible to expect an improvement in detection accuracy when a profile
captures information from a wider image area. Instead of extracting one profile
between the two considered keypoints, one could extract a set of profiles, i. e. several
parallel profiles as demonstrated in Figure 5.6. The geometry of the set can be
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Figure 5.6: Profile sets between different keypoints: only a subset of the profile sets
was drawn in order to preserve figure clarity.

described, for instance, in terms of maximum scale of the two keypoints. In Figure 5.6,
a profile set between two keypoints pl and pq contains five parallel profiles, one profile
every 0.75 ·σmax

lq . The symbol σmax
lq denotes the maximum scale of the two considered

keypoints pl and pq. This specific setup of the profile set is also the one which is used
later in our evaluation of cell detection performance under the use of profile sets.

Alternatively, smoothing is a well-known fast and simple means of information
consolidation. The natural question which arises here is about the smoothing scale.
We make smoothing scale adaptive by setting the standard deviation of the Gaussian
kernel which is used to smooth an image I to the mean scale of the one-sided (cf. Sec-
tion 5.3) keypoints σ̄ of I. We call this process scale adaptive smoothing (SAS). A
third approach is to combine the previous two ones. We use the SAS method for our
cell detection pipeline. The reasons behind this selection will become clear in the
evaluation section.

5.4.4 Handling Lack of Cross/Inner Profiles for Training

If the number of inner profiles in the training data is too small, the algorithm extracts
artificial inner profiles until the number of inner profiles in the training data is at
least NInner. This is done by sampling NInner inner intensity profiles even when there
is only one keypoint per cell. In this case, the extracted inner profile is started at a
cell keypoint from one side and terminated at cell border from the other side.

If the number of cross profiles in the training data is too small, the algorithm
generates artificial cross profiles until the number of cross profiles in the training
data is at least NCross. They are generated by shifting the considered training image
I by ςLU(I) and then overlaying the original and the shifted version. The parameter
ς was set to 6. Both NInner and NCross were set to 15 in our experiments.
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5.5 Hierarchical Clustering
In this section, we address the problem of combining the results of keypoint learn-
ing and profile learning in order to detect cells. One could employ a graph-based
approach: assume a graph GH with cell keypoints as nodes. Two nodes are con-
nected if the profile between them is an inner profile. The nodes of GH are obtained
from keypoint classification while the edges are obtained from profile classification.
Intuitively, each connected component in GH can be seen as a detected cell. This
technique will be referred to later in this chapter as the connected components (CC).

Utilization of the available information using CC is suboptimal. Alternatively,
one can think of clustering the keypoints in an agglomerative manner starting from
the most reliable ones: the agglomerative hierarchical clustering of the keypoints. As
mentioned in Section 3.3, AHC is characterized by a similarity measure and a linkage
method. Two cell keypoints pj and pl are similar if they belong to the same cell.
Thus, it is plausible to define the similarity between pj and pl as the probability
that the profile between them is an inner profile P̂inner(pj,pl). This is equivalent to
defining P̂cross(pj,pl) = 1− P̂inner(pj,pl) as a dissimilarity measure between the two
cell keypoints.

5.5.1 Customized Linkage Method

One plausible choice for the linkage method is the group average link (cf. Eq. 3.23).
In order to incorporate more information, we use a customized group average linkage
instead of the traditional one. According to this customized linkage, the dissimilarity
between two clusters A and B is:

ΠCustomized(A,B) =

|A|∑
j=1

|B|∑
l=1

ξjl
ΞA,B

π(pj,pl) (5.6)

π(pj,pl) = P̂cross(pj,pl) (5.7)

ξjl =
|DoGγ1(pj)|σ(pj)|DoGγ1(pl)|σ(pl)

‖pj − pl‖2
(5.8)

ΞA,B =

|A|∑
j=1

|B|∑
l=1

ξjl, (5.9)

where pj is a keypoint in the cluster A. pl is a keypoint in the cluster B. |A| and
|B| are the cardinalities of A and B, respectively. ξjl is the weight of the dissimilarity
between pj and pl. This weight is proportional to the scale and the absolute DoGγ1 of
the two points and inversely proportional to the squared Euclidean norm of the profile
‖pj − pl‖2. Indeed, ξjl is scale-invariant because the scale and the distance terms in
the numerator and the denominator have the same order. ΞA,B is the normalization
factor of the weights.

The obtained dissimilarity from this customized linkage is always in the range
[0, 1]. It can be interpreted as probability since it is a weighted sum of probabilities



5.5. Hierarchical Clustering 63

where the weights also sum up to 1. This clear interpretation makes it easy to select
a meaningful threshold for cutting the dendrogram: the final clusters are obtained
by cutting the dendrogram at a cutoff equal to 0.5.

5.5.1.1 Lance-Williams Coefficients

As mentioned in Section 3.3.1, in the combinatorial clustering strategies, the new
dissimilarities can be computed from the old ones using the Lance-Williams dissimi-
larity update formula [Lanc 66, Lanc 67] which we repeat here for convenience of the
reader: if A and B are merged into one cluster AB, then the dissimilarity between
any other cluster C and the cluster AB is given by:

Π(AB,C) = β1Π(A,C) + β2Π(B,C) + β3Π(A,B) + β4|Π(A,C)− Π(B,C)|, (5.10)

where β1, β2, β3, and β4 are the coefficients of this linear model. The values of these
coefficients for some standard linkage methods can be checked in Table 3.1. As we
use a customized linkage, we need to find the corresponding coefficient values. It can
be shown that the model coefficients for our customized linkage are:

βCustomized
1 =

ΞA,C

ΞA,C + ΞB,C
(5.11)

βCustomized
2 =

ΞB,C

ΞA,C + ΞB,C
(5.12)

βCustomized
3 = βCustomized

4 = 0 (5.13)

Proof: By using Eq. 5.6, Eq. 5.11, Eq. 5.12, and Eq. 5.13 in the right-hand side of
Eq. 5.10, we obtain LWR (Lance-Williams right-hand side):

LWR =
ΞA,C

ΞA,C + ΞB,C

|A|∑
j=1

|C|∑
q=1

ξjq
ΞA,C

π(pj,pq) +
ΞB,C

ΞA,C + ΞB,C

|B|∑
l=1

|C|∑
q=1

ξlq
ΞB,C

π(pl,pq)

=
1

ΞA,C + ΞB,C

|A|∑
j=1

|C|∑
q=1

ξjqπ(pj,pq) +
1

ΞA,C + ΞB,C

|B|∑
l=1

|C|∑
q=1

ξlqπ(pl,pq)

=
1

ΞA,C + ΞB,C

 |A|∑
j=1

|C|∑
q=1

ξjqπ(pj,pq) +

|B|∑
l=1

|C|∑
q=1

ξlqπ(pl,pq)


=

1

ΞA,C + ΞB,C

|C|∑
q=1

 |A|∑
j=1

ξqjπ(pq,pj) +

|B|∑
l=1

ξqlπ(pq,pl)

· (5.14)

In Eq. 5.14, for each element of C, there is inside the brackets an iteration over all
elements of A and B. Notice, however, that the term ξqjπ(pq,pj) depends on the
selection of the two keypoints pq and pj, but not on the clusters to which these
keypoints are assigned. Likewise, this applies to the term ξqlπ(pq,pl) as well. The
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aforementioned iteration over the elements of A and B is thus equivalent to an iter-
ation over the elements of their union AB. Consequently, Eq. 5.14 can be rewritten
as follows:

LWR =
1

ΞA,C + ΞB,C

|C|∑
q=1

|AB|∑
q′=1

ξqq′π(pq,pq′)· (5.15)

Moreover, based on Eq. 5.9, we can write:

ΞA,C + ΞB,C =

|C|∑
q=1

|A|∑
j=1

ξqj +

|C|∑
q=1

|B|∑
l=1

ξql

=

|C|∑
q=1

 |A|∑
j=1

ξqj +

|B|∑
l=1

ξql


=

|C|∑
q=1

|AB|∑
q′=1

ξqq′

= ΞC,AB· (5.16)

From Eq. 5.16 and Eq. 5.15, one can conclude directly that using the coefficients given
by Eq. 5.11, Eq. 5.12, and Eq. 5.13 in the right-hand side of the Lance-Williams model
yields the customized linkage distance between AB and C which is the left-hand side
of the model.

5.5.1.2 Monotonicity

As mentioned in Section 3.3.2, it is desirable to have monotonic clustering strategies
as the reversals caused by non-monotonic strategies are inconvenient and hard to
interpret [Murt 85, Morg 95]. We can give here a concrete example from the problem
domain of cell detection: assume two keypoints merged in one cluster with distance
0.7. Since this distance is more than 0.5, they will belong to different cells. In a
non-monotonic linkage, you may encounter a case where you merge a third keypoint
to the aforementioned cluster with distance less than 0.7, say 0.4. Consequently,
the cluster formed by the three keypoints will form a single cell. This result is not
consistent with the fact that the first two keypoints were dissimilar and it is thus
hard to know which of the two decisions is correct.

As also mentioned in Section 3.3.2, when β4 is zero, the linear model Π given by
Eq. 5.10 is monotonic under the condition β1 +β2 +β3 ≥ 1. Obviously, this is fulfilled
by our customized linkage and the trees built by ΠCustomized are thus monotonic.

5.5.2 Finding the Hit-point

Applying the hierarchical clustering will result in different clusters of keypoints. Each
cluster A represents a cell. In order to determine a single hit-point, we use the
following equation:

ph =
1∑|A|

j=1 rwj

|A|∑
l=1

rwlpl, (5.17)
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where |A| is the number of keypoints inside the considered cluster, pl is the keypoint
l in the cluster, and rwl is a reliability weight that we set to |DoGγ1(pl)|.

5.6 System Training

Equipped with the previously described methods, one is now able to train the pro-
posed system from a given set of images and their cell segmentation (ground truth).
First, the system is calibrated to detect bright or dark cells according to Eq. 5.1.
Depending on the result of this step, the keypoints with positive or negative DoGγ1

values will be discarded. After that, a SIFT threshold is learned from the training
data and then applied as described in Section 5.3. Using the remaining set of key-
points, the mean keypoint scale σ̄ is computed and SAS is applied as described in
Section 5.4.3. Next, keypoints are detected in all training images and their respec-
tive features are extracted. Based on the ground truth, the class of each keypoint
can be determined. Using this information a balanced random forest is trained on
the keypoint features. These steps enable the system to automatically extract stable
keypoints and to determine whether they belong to a cell or the background.

Based on the cell keypoints, the profile learning process can then be started. As
a first step, we compute the maximum inner profile length MaxL from the training
images and their ground-truth masks as described in Section 5.4.2. Next, we train
a balanced random forest using the profile features. As classes, we use inner profile
and cross profile. This yields a system that is automatically able to distinguish these
two types of profiles.

For the hierarchical clustering, no training is required. The method can be applied
directly on the probabilistic output of the profile random forest.

5.7 Evaluation Measures

We use the following measures to evaluate detection quality: precision, recall, detec-
tion error, F-measure, detection time, and centeredness error. Recall addresses the
following question: from 100 cells, how many of them are detected? On the other
hand, precision answers the question: from 100 hit-points (cf. Eq. 5.17), how many
of them are correct? A question which arises in this regard is how to deal with
over-detected cells, i. e. cells which are detected by several hit-points? Does an over-
detected cell count when calculating the recall, i. e. do we consider it detected? On
the other hand, assuming an answer “no” to the previous question, should these over-
detection points (inside an over-detected cell) reduce precision as well? Typically, the
over-detection points may not be counted twice. In other words, they should degrade
either precision or recall but not both. The concept of precision, however, is more
appropriate to quantify over-detection, and it is thus usually used for this purpose.
In summary, an over-detected cell will be considered detected when computing the
recall, but its over-detection points will reduce precision.
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Detection error of a cell detection algorithm applied on image I is defined in this
thesis as the arithmetic average of the precision loss and the recall loss:

Detection error(I) =
1

2

(
NU
C

NC

+
NB
H +NO

H

NH

)
, (5.18)

where NH is the total number of hit-points. NB
H is the number of hit-points in the

background. NO
H is the number of over-detection hit-points. For instance, if five

hit-points were detected in one cell, then one of them is considered correct and the
other four are considered over-detection hit-points. NC is the total number of cells
in the considered image I. NU

C is the number of undetected cells, i. e. the cells which
contain no hit-points.

On the other hand, F-measure is obtained by computing the harmonic mean of
precision and recall instead of computing the arithmetic mean of their losses. If
one of the values of precision or recall is low, then the harmonic mean is closer to
the minimum than the arithmetic average. In general, however, when the values of
precision and recall are available, it does not matter much which of the two averages
to use. Later on in this chapter and in the next two chapters, we compare our
algorithms with other methods in literature. We choose the appropriate measure so
that it conforms to the available published results by the other methods.

Since a hit-point can lie anywhere inside a cell mask, a measure is needed in order
to evaluate the centeredness of the hit-point inside a detected cell. For this purpose,
we define a new measure:

Centeredness error(I) =
1

NC
C

NC
C∑

j=1

‖pjh − pjm‖
κj

, (5.19)

where NC
C is the number of correctly detected cells, i. e. the cells which were detected

by only one hit point. Therefore, over-detected cells are not considered by this
measure. The numerator is the Euclidean distance between pjh the hit-point inside
the cell j and pjm the center of mass of this cell. The denominator κj is the major
axis length of the ellipse which represents the covariance matrix of the binary mask
of the cell j. This normalization is important in order to make the centeredness error
independent of cell size.

5.8 Evaluation
In Section 5.8.1, all cell lines of Table 4.1 were used to evaluate the detection accuracy.
The real cell lines were used in Section 5.8.2 to assess the contribution of the different
components of our algorithm to the overall detection accuracy. In Section 5.8.3, we
perturb the three real cell lines with orientation, scale, and illumination changes in
order to assess the system’s invariance to these factors. Detection time was evaluated
in Section 5.8.4. In Section 5.8.5, we compare our system with two other approaches
on bright field microscopy. For this comparison, the CHO cell line was used first as
is, and then perturbed with illumination and scale changes. In Section 5.8.6, we show
qualitative evaluation on images produced by COSIR hardware. The ability of the
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algorithm to learn to detect cells when the training data contains several cell lines
was evaluated in Section 5.8.7. Lastly, we apply the proposed algorithm on phase
contrast datasets in Section 5.8.8.

Precision Recall Detection error Centeredness error
CHO 77.7 ± 8.0 92.9 ± 3.0 0.147 ± 0.03 0.477 ± 0.13
L929 82.8 ± 4.4 92.6 ± 2.9 0.123 ± 0.01 0.377 ± 0.07
Sf21 97.3 ± 0.9 96.4 ± 3.2 0.031 ± 0.01 0.164 ± 0.02

Simulated A 98.9 ± 0.7 99.4 ± 0.7 0.008 ± 0.01 0.173 ± 0.10
Simulated B 95.4 ± 2.1 96.5 ± 1.6 0.040 ± 0.01 0.222 ± 0.11

Table 5.1: Cross-validation estimates of cell detection accuracy on different cell lines:
one image per cell line is used for training and the other images of the same cell line
are used for testing. This was repeated for each image in the real cell lines and five
times in the simulated cell lines.

5.8.1 Evaluation of the Overall Detection Accuracy

We evaluated detection accuracy of the proposed system on the five cell lines given
in Table 4.1. For each cell line, only one image was used for training and the others
were used for testing. For the real cell lines, this was repeated for each image. For
the simulated cell lines, this was repeated five times. Table 5.1 shows the results of
this cross validation.

Table 5.1 shows that the error was close to zero for the high SNR simulated
images. Even under severe Gaussian noise conditions with SNR ≈ 0.07, the error was
only 4 %. It is also clear from the table, that the system achieved higher detection
rates with suspension cells compared to adherent cells. This is plausible, as the latter
have considerably lower contrast than suspension cells.

5.8.2 Evaluation of the System Components

We also evaluated the contribution of specific components of the system to the de-
tection accuracy. Tables 5.2, 5.3, and 5.4 summarize this evaluation on the L929,
CHO, and Sf21, respectively. In the first row, the outputs of the two random forests
were combined using the connected components as described in Section 5.5. The
same was done in the second row but the keypoints were thresholded according to
Section 5.3. This thresholding is also used in rows 3 to 8. In the third row, the ag-
glomerative hierarchical clustering with the group average linkage was used instead
of the connected components. In the fourth one, our customized linkage method was
used instead. This customized linkage is also used in rows 5 to 8. In the fifth row,
Eq. 5.17 was used to find the hit-points instead of the simple arithmetic average of
the coordinates of the keypoints inside each cluster. Eq. 5.17 is also used in rows 6 to
8. In the profile expansion rows, three strategies were tested: 1) using parallel profile
sets, 2) SAS, 3) using profile sets together with SAS.

The estimates in tables 5.2, 5.3, and 5.4 are cross validation estimates, where one
image per cell line is used for training and the remaining ones are used for testing.
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Precision Recall Detection error Centeredness error
CC 67.1 ± 4.2 66.2 ± 5.9 0.334 ± 0.04 0.528 ± 0.08

SIFT threshold 76.8 ± 4.2 73.2 ± 3.4 0.250 ± 0.01 0.381 ± 0.09
AHC average 72.6 ± 5.1 91.0 ± 4.5 0.182 ± 0.01 0.484 ± 0.11
AHC custom 76.0 ± 4.5 90.2 ± 4.4 0.169 ± 0.01 0.406 ± 0.08
Weighted avg. 76.9 ± 4.4 91.0 ± 4.6 0.161 ± 0.01 0.382 ± 0.07

P
ro
fil
e
ex
pa

ns
io
n Profile sets 78.9 ± 5.1 91.7 ± 4.0 0.147 ± 0.02 0.382 ± 0.07

SAS 82.8 ± 4.4 92.6 ± 2.9 0.123 ± 0.01 0.377 ± 0.07

Both 83.4 ± 4.0 92.6 ± 3.0 0.120 ± 0.01 0.369 ± 0.07

Table 5.2: Contribution of the different system components to detection accuracy
(L929). The estimated measures are obtained as follows: one image is used for
training and the other images are used for testing. This is then repeated for each
image in a cross-validation loop.

Precision Recall Detection error Centeredness error
CC 70.5 ± 5.3 58.7 ± 6.4 0.354 ± 0.05 0.472 ± 0.20

SIFT threshold 76.8 ± 5.9 65.5 ± 4.7 0.288 ± 0.04 0.432 ± 0.07
AHC average 68.5 ± 10.7 91.4 ± 3.9 0.201 ± 0.03 0.652 ± 0.24
AHC custom 73.4 ± 8.8 90.1 ± 4.4 0.183 ± 0.02 0.503 ± 0.14
Weighted avg. 74.0 ± 8.6 90.7 ± 4.8 0.177 ± 0.02 0.501 ± 0.14

P
ro
fil
e
ex
pa

ns
io
n Profile sets 76.4 ± 8.4 91.9 ± 4.3 0.159 ± 0.02 0.455 ± 0.10

SAS 77.7 ± 8.0 92.9 ± 3.0 0.147 ± 0.03 0.477 ± 0.13

Both 78.8 ± 7.8 93.1 ± 3.2 0.141 ± 0.03 0.446 ± 0.11

Table 5.3: Contribution of the different system components to detection accuracy
(CHO). The estimated measures are obtained as follows: one image is used for train-
ing and the other images are used for testing. This is then repeated for each image
in a cross-validation loop.
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Precision Recall Detection error Centeredness error
CC 89.0 ± 2.2 78.6 ± 2.4 0.162 ± 0.02 0.132 ± 0.00

SIFT threshold 93.1 ± 1.9 83.3 ± 4.1 0.118 ± 0.03 0.180 ± 0.01
AHC average 90.9 ± 1.6 95.8 ± 0.9 0.066 ± 0.01 0.216 ± 0.01
AHC custom 94.1 ± 0.9 95.1 ± 0.9 0.054 ± 0.00 0.189 ± 0.02
Weighted avg. 94.3 ± 0.8 95.2 ± 1.2 0.053 ± 0.01 0.163 ± 0.01

P
ro
fil
e
ex
pa

ns
io
n Profile sets 95.0 ± 1.5 96.3 ± 1.1 0.043 ± 0.01 0.157 ± 0.01

SAS 97.3 ± 0.9 96.4 ± 3.2 0.031 ± 0.01 0.164 ± 0.02

Both 97.4 ± 0.9 96.8 ± 3.1 0.029 ± 0.01 0.162 ± 0.02

Table 5.4: Contribution of the different system components to detection accuracy
(Sf21). The estimated measures are obtained as follows: one image is used for training
and the other images are used for testing. This is then repeated for each image in a
cross-validation loop.

Cell line Keypoint features Profile features
CHO Rayn(p, 180◦) mean(d

2prof
dχ2 )

L929 SIFT descriptor feature V2

Sf21 SIFT descriptor feature V2

Simulated A Stencil feature mean(d
2prof
dχ2 )

Simulated B VMap(p, 6) V2

All DoGγ1 mean(d
2prof
dχ2 )

Table 5.5: Highest ranked features according to the following measure: OOB error
increase induced by random permutation of feature values. For each cell line, a
random forest was trained using a randomly chosen image from the considered cell
line. In the last row, the five randomly chosen images (image from each cell line)
were used for training.
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An important result of these tables is that SAS achieves higher detection scores
than the profile set. On the other hand, using SAS together with the profile set
delivers a bit higher detection rate than using SAS alone. Nevertheless, we sacrifice
this small improvement in the detection rate in favor of better detection times. All
other experiments in this thesis were done with SAS alone. Therefore, the SAS rows
in tables 5.2, 5.3, and 5.4 correspond to the estimates in Table 5.1.

As shown in Figure 4.1, simulated cells tend to form negative DoGγ1 blobs,
whereas real cells tend to form positive DoGγ1 blobs in the positively defocused
images. The system was able to automatically detect the right type of blobs in each
case using Eq. 5.1.

We did not conduct a thorough analysis of feature importance. However, the
random forest has an internal mechanism to rank its features: the OOB error increase
due to random permutation of feature values (cf. Section 3.2.2). A random image
from each cell line was used to train the system and the feature with the highest rank
was recorded. Table 5.5 shows the results. The last row displays the highest ranked
feature when the previous five images (image from each cell line) are used together
to train the system. According to this table, at least one keypoint feature from each
of the five keypoint feature sets was ranked the best. This does not imply that all
feature sets are necessary to obtain the detection rate reported in Table 5.1. However,
it gives an indicator that all keypoint feature sets are informative. Regarding profile
features, Table 5.5 shows that the mean value of the second derivative and V2 (cf.
Eq. 5.5) are the two highest ranked features.

5.8.3 Evaluation of Illumination, Orientation, and Scale In-
variance

The simulation software in [Lehm07] can generate illumination artifacts on simulated
images. In order to make the experiment more realistic, we applied the simulated
illumination field on our real cell lines. Figure 5.7 shows how the detection error
changes with the illumination scale, i. e. the ratio between illumination energy and
image energy. Figure 5.8 shows the difference between an image at illumination scale
zero and another one at illumination scale 100. The detection error change between
these two extreme cases, as shown in Figure 5.7, was 8% in the worst case.

Only one image (randomly chosen) in each cell line was used for training. It is
an image at illumination scale zero. The other images in the cell line were used for
testing at each of the following illumination scales: 0, 20, 40, 60, 80, and 100.

Figure 5.9 depicts the system’s invariance to image scale. In this experiment,
the system was trained using one randomly chosen image per cell line and tested on
other up- or down-sampled images from the same cell line. The figure shows that
the detection error change is in the range of 4% excluding a sudden increase in the
detection error of Sf21 at scale 0.5. This reduction in detection error at scale 0.5 is,
in fact, a reduction in recall only (not shown in the figure). This indicates that scale
invariance is limited from the bottom. The reason is that downsampling reduces the
number of SIFT keypoints due to structure degradation which causes a deterioration
in detection recall.
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Figure 5.7: Illumination invariance: for each cell line, an image (randomly chosen) at
illumination scale 0 was used for training and the other images of the same cell line
were used for testing at different illumination scales.

Finally, Figure 5.10 shows the degree of invariance with respect to cell orientation.
Rotating the images in order to test the system invariance to the orientation change
is not the best choice because of the diversity of cell orientations in each image.
Therefore, we simulated cell images so that all cells inside the same image have the
same orientation. The shape model in the simulation software [Lehm07] cannot
generate elongated cells with dominant orientation. Therefore, for this experiment,
we replaced its shape model with an elliptical one. The system was trained using one
randomly chosen image at orientation zero and tested on other five images at each of
the following orientations: 0◦, 30◦, 60◦, 90◦, 120◦, and 150◦. Each image contained
150 simulated cells.

5.8.4 Evaluation of the Detection Time

In order to investigate the feasibility of the algorithm, we measured the detection
time for all cell lines. The evaluation was done on a Dell laptop with 8 GB RAM
and an Intel Core i7-2720QM processor with clock speed 2.20 GHz. The implemen-
tation details are as follows: the feature extraction was implemented in Matlab, the
classification was done using the R package randomForest [Liaw 02], the agglomer-
ative hierarchical clustering step was implemented in Java, and SIFT features were
obtained from VlFeat [Veda 08] (C with Matlab interface). All modules were put
together in a single Matlab application.
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(b) CHO image at illumination scale = 100

Figure 5.8: Illumination invariance example: the upper figure exemplifies a training
image in the illumination invariance experiment, whereas the lower one is an example
of a testing image. In both figures, the intensity is plotted as a function of the spatial
dimensions x and y.
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Figure 5.9: Scale invariance: for each cell line, an image (randomly chosen) at scale 1
was used for training and the other images of the same cell line were used for testing
at different scales.

Original images Subsampled images
Detection time Detection error Detection time Detection error

CHO 45.88 ± 13.60 0.147 ± 0.03 13.75 ± 2.11 0.128 ± 0.01
L929 36.69 ± 5.59 0.123 ± 0.01 12.68 ± 0.93 0.112 ± 0.01
Sf21 40.65 ± 7.13 0.031 ± 0.01 8.97 ± 1.07 0.071 ± 0.02

Simulated A 30.47 ± 0.33 0.008 ± 0.01 7.91 ± 0.34 0.009 ± 0.00
Simulated B 31.00 ± 1.88 0.040 ± 0.01 4.93 ± 0.26 0.043 ± 0.00

Table 5.6: Evaluation of the detection time (in seconds per image): resolution of
CHO, L929, and Sf21 images is 1280 × 960 pixels. Resolution of Simulated A and
Simulated B is 1200 × 1200 pixels. All resolutions are given before subsampling.
Estimates are generated using a cross-validation loop compatible with Table 5.1.
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Figure 5.10: Orientation invariance: an image (randomly chosen) at orientation 0
was used for training and other five images at each orientation were used for testing.
Each image contains 150 cells simulated under an elliptical shape model.

The system was trained and tested as described in Section 5.8.1. The detection
times are reported at the left-hand side of Table 5.6. The right-hand side of the
table shows the results when the same experiment was applied on subsampled images
(subsampling factor 0.5). As can be seen in the table, the detection time is approxi-
mately in the range [30, 46] seconds per image and drops to the range [5, 14] seconds
per image after subsampling.

5.8.5 Comparison with Other Approaches in Bright Field Mi-
croscopy

We compared our system with [Beca 11] and [Ali 12] which were developed specifically
for bright field microscopy (cf. Section 1.2). Table 5.7 summarizes the required input
for each approach. In [Ali 12], there is a well-developed segmentation approach. It is,
however, worth pointing out that only the detection part is used in the comparison.
[Beca 11] utilizes three algorithms at three different focus levels and combines the
results. In our evaluation, instead of combing the results of these three algorithms,
we select the one which has the minimum error. This strategy gave better results on
our images.

Due to the difficulty of the manual parameter tuning, this comparative evaluation
was performed using only one cell line, CHO, and without cross validation. One
image was randomly chosen and used to train our system. The same image was used
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for parameter tuning of [Beca 11] and [Ali 12]. The rest of the images were used for
testing.

The software of [Beca 11] was obtained from its authors while we implemented the
cell detection part of [Ali 12] ourselves. The optimal value of the single parameter of
[Ali 12] was found by scanning the parameter domain and selecting the value which
minimizes the detection error. On the other hand, we optimized the parameters
of [Beca 11] manually. The result of the comparison is shown in the upper part of
Table 5.8.

In order to investigate how the three approaches perform under illumination and
scale change, we did the following experiment: the comparison was applied on the
CHO cell line, but after perturbing the images. An illumination field was applied
on all CHO images. The same field was applied on all testing and training images.
In addition, the testing images were resampled using the following scales: 0.5, 0.75,
1, 1.25, and 1.5. Training of the proposed approach and parameter fine-tuning of
[Beca 11] and [Ali 12] were performed again on the perturbed training image. The
results are shown in the lower part of Table 5.8.

[Ali 12] [Beca 11] Our approach
Required number of images 2 3 1
Manually tuned parameters 1 > 9 0

Table 5.7: Input requirements for [Ali 12], [Beca 11], and the proposed supervised
approach

Precision Recall Detection Centeredness
error error

C
H
O

Proposed method 88.1 ± 2.3 87.6 ± 4.2 0.122 ± 0.02 0.373 ± 0.34

[Ali 12] 56.1 ± 11.1 91.8 ± 3.5 0.260 ± 0.07 0.552 ± 0.40

[Beca 11] 80.9 ± 3.2 61.3 ± 9.3 0.288 ± 0.04 0.495 ± 0.58

C
H
O

pe
rt
ur
be

d Proposed method 80.8 ± 3.7 91.4 ± 2.5 0.138 ± 0.02 0.469 ± 0.28

[Ali 12] 81.0 ± 12.7 36.5 ± 18.9 0.412 ± 0.06 0.665 ± 0.73

[Beca 11] 43.0 ± 16.2 23.4 ± 10.6 0.668 ± 0.04 1.350 ± 2.03

Table 5.8: Comparison with other approaches specifically developed for bright field
microscopy: in the upper part of the table, all approaches were applied to the CHO
images. In the lower part of the table, the same experiment was repeated after
perturbing the images by illumination and scale changes.
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5.8.6 Qualitative Evaluation on COSIR Images

As mentioned in the introduction of this thesis (cf. Section 1.1), our research was
conducted in context of the interdisciplinary research project COSIR. In this section,
we show a qualitative evaluation of our supervised cell detection pipeline on COSIR
images. These images were described in Section 4.2. The algorithm was trained
using one image (cf. Figure 5.11) acquired from an arbitrarily-chosen channel of the
24 channels of a COSIR system. The trained algorithm was then applied on images
obtained from other channels. Figure 5.12 exemplifies detection results.

(a) The COSIR image which was used for
training

(b) Ground truth of the image at the left-
hand side

Figure 5.11: Evaluation on COSIR images: a COSIR image and its ground-truth
mask were used to train the proposed supervised cell detection pipeline.

5.8.7 Evaluation of the Generalization on Multiple Cell Lines

In Section 5.8.1, the system was trained separately for each cell line. In fact, it is
more challenging to learn to detect cells when images from different cell lines are
used in the training. In this experiment, one image from each cell line was randomly
chosen. The five chosen images were used to train the system. The rest of the images
were used for testing. This process was repeated five times. As the images are of
different dynamic ranges and/or modalities, each image was normalized to [0, 1]. The
simulated images were also inverted in order to have one-sided cell keypoints in the
training data. Table 5.9 shows the results. Comparing Table 5.9 to Table 5.1, one can
see a relatively considerable increase of the detection error for Sf21 and Simulated B.
Nevertheless, the maximum detection error is still 15.5%.

In order to investigate whether similar cells are more suited for joint training,
we conducted two additional experiments. Table 5.10 shows the results of the same
process described above, but training and testing were applied only on the adherent
cell lines. The same applies for Table 5.11, but for the simulated cell lines. The
detection error in both tables is very close to the detection error in Table 5.1.
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Figure 5.12: Evaluation on COSIR images: the algorithm, after training on one image
(cf. Figure 5.11) obtained from an arbitrarily-chosen channel, was applied on images
acquired from other channels.



78 Chapter 5. Supervised Cell Detection

Precision Recall Detection error Centeredness error
CHO 77.7 ± 7.2 92.2 ± 4.3 0.150 ± 0.02 0.498 ± 0.08
L929 79.6 ± 8.0 89.4 ± 6.6 0.155 ± 0.01 0.438 ± 0.12
Sf21 73.2 ± 2.4 99.7 ± 0.1 0.136 ± 0.01 0.179 ± 0.04

Simulated A 98.9 ± 0.1 98.3 ± 0.4 0.014 ± 0.00 0.177 ± 0.00
Simulated B 81.8 ± 5.7 97.6 ± 0.3 0.103 ± 0.03 0.256 ± 0.01

Table 5.9: Joint training: five images were randomly chosen, one from each cell line.
They were used to train the system and the rest were used for testing. This process
was repeated five times.

Precision Recall Detection error Centeredness error
CHO 76.8 ± 5.0 94.3 ± 2.2 0.145 ± 0.01 0.497 ± 0.13
L929 80.7 ± 5.1 92.0 ± 3.6 0.137 ± 0.01 0.462 ± 0.06

Table 5.10: Joint training: two images were randomly chosen, one from CHO and
another one from L929. They were used to train the system and the rest were used
for testing. This process was repeated five times.

Precision Recall Detection error Centeredness error
Simulated A 98.8 ± 0.2 98.1 ± 0.4 0.015 ± 0.00 0.173 ± 0.00
Simulated B 93.3 ± 1.0 97.0 ± 0.3 0.048 ± 0.00 0.229 ± 0.01

Table 5.11: Joint training: two images were randomly chosen, one from Simulated A
and another one from Simulated B. They were used to train the system and the rest
were used for testing. This process was repeated five times.
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5.8.8 Evaluation on Phase Contrast Datasets

F-measure (%) Time (seconds) Centeredness error
Pan et al. [Pan 10]

Trained on all TIs 94.4 900.0 -
Our approach

Trained on 1st TI 89.4 ± 2.0 7.75 ± 0.98 0.137 ± 0.009
Trained on 2nd TI 89.6 ± 2.2 7.56 ± 1.17 0.136 ± 0.007
Trained on all TIs 90.4 ± 2.1 7.66 ± 1.18 0.132 ± 0.005

Our approach with upsampling
Trained on 1st TI 90.6 ± 1.8 10.26 ± 1.24 0.136 ± 0.009
Trained on 2nd TI 92.8 ± 1.7 10.60 ± 1.27 0.138 ± 0.011
Trained on all TIs 92.1 ± 1.2 13.24 ± 1.84 0.148 ± 0.014

Table 5.12: Comparison of the proposed supervised pipeline with [Pan 10] on the
Bovine phase contrast dataset. TI is an abbreviation of Training Image. In this
experiment, training images belong to a single temporal image sequence.

Table 4.2 contains a summary of the available phase contrast datasets. It is not
possible to train our supervised approach on the dataset given by [Arte 12] because
its ground truth contains only cell centers (no border delineation). Therefore, only
the dataset given in [Pan 10] (cf. Table 4.2) was used in this section. The first row
of Table 5.12 shows detection accuracy of the cell detection approach published in
[Pan 10]. These results were obtained by training the approach on 10 images and
testing it on other 10 images (the 10 Bovine images in Table 4.2). We do not have
access to the software of [Pan 10]. Therefore, in order to compare it with our approach,
we used the same training and testing images used in [Pan 10]. The set of training
images is an image sequence, i. e. it contains images of the same cell culture acquired
at successive time steps. Instead of training our approach with the entire training
dataset, we trained it on the first image of the training image sequence and discarded
the rest of the training images. The resulting model was then applied on the test
image set, i. e. on the 10 Bovine images of Table 4.2. The results are shown in the
second row of Table 5.12. In the third row of Table 5.12, we see the results of the
same procedure, but the first two images of the training image sequence are used for
training. In the fourth row, the entire training dataset was employed for training.

We noticed that part of the detection error in our approach is due to the fact
that there are small cells, i. e. cells with very few pixels, in which SIFT was unable to
detect any keypoint. This conforms to the results of the scale-invariance experiment in
Section 5.8.3, in which insufficient resolution degraded the detection recall. Therefore,
we repeated the evaluation of our approach on the phase contrast dataset, but on
upsampled versions (upsampling factor is 2) of the training and testing images. The
results are shown in the lower part of Table 5.12, i. e. in the fifth, sixth, and seventh
row. We point out that in some SIFT implementations, this upsampling is provided
as an option by which it is possible to detect fine structures which are undetectable
when the Gaussian pyramid is started from the original resolution. See, for instance,
the first octave option in VlFeat [Veda 08].



80 Chapter 5. Supervised Cell Detection

The results show that our F-measure is, although improved with upsampling, but
still slightly inferior to the results obtained by [Pan 10]. Our approach is, however,
able to achieve a decent F-measure value even when trained with a single image.
Moreover, the proposed approach seems to be much more efficient in terms of detec-
tion time as it is about two orders of magnitude faster than [Pan 10].

5.9 Discussion
As mentioned in Section 1.2, several approaches [Ali 12, Ali 07, Beca 11] utilize, though
in different ways, images at two or three focus levels to improve contrast. This
is appealing as it is possible to get considerably higher contrast from the intensity
change with the defocus distance. The drawback is that at least two images are
needed. As this is not always available, the algorithm presented in this chapter
was developed to work with a single defocused image. In fact, using one image has
another important advantage: it facilitates extending the algorithm in the future
for more image modalities which are, in general, not expected to expose the same
behavior of bright field microscopy with defocussing. Nevertheless, in Chapter 6, we
will see how we can go further by utilizing multiple images.

The approach in [Pan 10] on phase-contrast microscopy has a partial conceptual
similarity with the algorithm presented in this chapter. This similarity lies in the use
of two classifiers which have goals analogous to the goals of our keypoint and profile
classifiers. However, our features were carefully designed and heavily tested for the
rotation-, scale-, and illumination-invariance. Another difference is that the whole
system is fully automatic and its internal details, e. g. learning the maximum inner
profile length, were designed for automation and invariance. In addition, the proposed
approach is more efficient with respect to runtime as it is about 2 orders of magnitude
faster. Moreover, the use of hierarchical clustering in order to optimally aggregate
the second classifier results was a novel contribution which proved to be effective,
especially using our customized linkage method. Lastly, the system is adapted to low
contrast bright field microscopy. In fact, compared to the bright field approaches in
[Beca 11] and [Ali 12] which need both multiple images and manual parameter tuning,
our approach delivered higher detection accuracy and more robustness with respect
to illumination and scale changes.

Before using the classifiers, the system must be trained. For the training, a set of
images with ground truth is required. Due to the invariance of the extracted features
and the use of random forests, the system can learn from a relatively small amount of
training data. Only one image per cell line was used for training in our experiments.

Cell keypoints have either positive or negative DoGγ1 values when they form
valley-like or mountain-like structures, respectively. One can also notice that key-
points at cell boundaries and keypoints in cell interiors tend to have opposite DoGγ1

signs (cf. Figure 5.2a). For the cell detection problem, however, cell interior key-
points are of main concern. We found in preliminary experiments (data not shown)
that using one-sided keypoints leads to a better profile learning. For this reason, we
consider either the positive DoGγ1 keypoints or the negative, but not both.

In [Jurr 10], the intensity is sampled using a stencil instead of a patch and used
for neuron detection in electron microscopy. A similar idea was used in a completely
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different field [Mitt 10], where a radial sampling pattern was employed to sample 3D
vessels. Both methods used fixed-size stencils. In our case, the scale and orientation
of the keypoint deliver additional information. This can then be used to make the
stencil scale- and orientation-invariant. In order to make it invariant to the local shift
of intensity, one can subtract the minimum or the mean intensity of the stencil from
all stencil nodes. We chose the mean because it is less sensitive to outliers.

In [Smit 09], it was shown that ray features are better than Haar-like features for
cell recognition. Thus, we used ray features in our work. Our contribution to this
feature set is that we made it scale- and orientation-invariant. In order to achieve
scale-invariance for such features, computing the distances with respect to scale is
insufficient. In fact, the gradient computation has to be additionally performed with
respect to scale. If the gradient is computed using conventional kernels like Sobel or
Prewitt, its norm Rayn will be scale-dependent. We use a gradient computation that
handles this issue correctly.

In [Wu95], it was shown that variance maps can distinguish cells from back-
ground. The variance map value at a pixel is simply the variance of intensities in a
neighborhood centered at this pixel. The neighborhood size is fixed and based on the
cell size [Wu95]. We extended this concept and made it scale-invariant.

If cells are circular and noise-free, we may get almost one keypoint per cell. There-
fore, in such case, we will get very few or even zero inner profiles for training. If the
cells are too far from each other, we may get very few or even zero cross profiles for
training. This occurs because the algorithm extracts profiles between nearby key-
points only. Both cases occurred in some preliminary experiments (data not shown).
The algorithm handles these two cases which makes the training robust against odd
situations in the training data.

A main disadvantage of using a set of profiles is the computational cost. Further-
more, it turned out that SAS leads to a higher detection rate as shown in the results
section. This is, probably, due to the fact that SAS serves also as a preprocessing
step. For instance, we noticed that the SAS improved the edges drastically. Con-
sequently, the edge-based features such as ray features, gained higher discriminative
power.

In our experiments, we achieved robustness to low frequency changes in illumi-
nation by using features that are locally invariant to an offset in intensity. In a
small region of an image, this local shift of intensity can be interpreted as a con-
stant. We regard this as an important feature of our system, as many real world
images, including images acquired by COSIR hardware, suffer from inhomogeneous
illumination. The algorithm’s robustness with respect to illumination was shown in:
1) quantitative evaluation on standard bright field images with simulated illumina-
tion fields, 2) qualitative evaluation on COSIR images with real-world illumination
artifacts. It is worth pointing out that images with illumination artifacts should be
used without normalization, because the image measures which are usually used in
normalization like mean, standard deviation, maximum, and minimum of the image
intensity depend on the illumination information.

If the distance between the two keypoints of a profile is large, then the illumination
artifacts at this profile cannot be approximated by a constant. In other words, the
invariance to local-intensity shift is beneficial only if the profiles are extracted between
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nearby keypoints. Therefore, the proposed approach should somehow avoid extracting
profiles between far keypoints. In order to achieve this goal, the algorithm learns the
maximum inner profile length MaxL in a scale-independent manner from training
data. This contributes to the partial illumination invariance of the profile learning
and reduces both detection and training times. In fact, learning MaxL is particularly
useful because this length is a cell characteristic. Whereas, for instance, learning the
cross profile length does not make sense because it depends on the distribution of
cells in the cell culture.

We used random forest as a classifier model for both keypoint and profile learning.
As mentioned earlier, the random forest does not need parameter tuning which is one
of our design goals. It is also inherently a multi-class classifier. This makes extending
the keypoint learning in further research for debris and agglomeration detection easier.
The previous two points can be considered as advantages of the random forest over
some other state-of-the-art classifiers such as the SVM. In fact, some empirical studies
[Khal 11, Khos 07] showed that the random forest outperformed the SVM in terms
of area under ROC (AUC) on imbalanced data, even though that was not always
the case [Meye 03]. Moreover, the immunity of the random forest against overfitting
grants the system the ability to learn from small training data sizes. This last point
makes it favorable over classifiers such as probabilistic boosting trees [Tu 05].

There is, in general, no guarantee that the cell and background classes are bal-
anced. The same applies for the inner and cross classes in the profile learning. The
imbalance problem can be solved by using a balanced random forest or a weighted
random forest [Chen 04]. They tend to produce similar ROC curves. We chose to
use the balanced version as it is computationally more efficient and less vulnerable
to noise [Chen 04].

The output of the two classifiers can be seen as a graph whose nodes are the
cell keypoints and whose edges are the inner profiles. Therefore, the connected com-
ponents of this graph can be regarded as the detected cells. However, our results
show that higher detection rates can be achieved when the probabilistic output of
the profile classifier is utilized as a similarity measure in an AHC step. Moreover,
detection rate was further improved by using our customized linkage method where
more application-specific information was involved. In fact, it is plausible to expect
that the AHC is more robust than the CC because it starts aggregating the most
reliable cases. Furthermore, the decision about the less reliable cases does not de-
pend on a single classification but on the average of several profile classifications. In
the customized linkage, keypoints information is incorporated in order to make this
averaged decision even more robust.

We pointed out in the motivation to this chapter (cf. Section 5.1) that a good
cell detection approach should facilitate tracking when the latter is required. The
output of our system after the clustering stage is a set of keypoints where each one is
assigned to a cell and equipped with a set of features. A subgroup of these features
has been used in tracking applications. See, for example, the use of SIFT descriptor
for tracking in [Jian 10].

We evaluated the system with respect to runtime on our standard bright field
image database and on a subsampled version of it. We noticed that, on this data, the
detection time of the subsampled images was 3-4 times shorter than the detection
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time of the original images. Since subsampling reduces the number of pixels to
25 % of their original number, the obtained result suggests that detection time is
proportional to the number of pixels in the considered image. Moreover, with the
exception of Sf21, the detection error was not increased by subsampling. In fact, for
the adherent cell lines, it was decreased. This is probably caused by the sampling-
induced smoothing of the cellular details which could otherwise mislead the detection
algorithm and degrade its precision. However, this observation cannot be generalized
without taking the original image resolution into account. In our experiments, the
real cell line images before subsampling had a resolution 0.49 µm/pixel.

The system was also tested for its generalization ability. The results show that it
can learn to detect cells even when several cell lines of different visual appearance are
used for training. However, the detection error was smaller when only similar cell lines
are used. It is thus beneficial to train the algorithm independently on each cell line or
on each group of similar cell lines. In the next chapter, we clarify the importance of
generalization ability and introduce an elegant solution using phase-based features.
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Chapter 6

Improving Supervised Cell Detection
Using Phase-based Features

Considerable parts of this chapter were already published in the following papers:
F. Mualla, S. Schöll, B. Sommerfeldt, S. Steidl, R. Buchholz, and J. Hornegger. “Im-
proving joint learning of suspended and adherent cell detection using low-pass mono-
genic phase and transport of intensity equation”. In: Biomedical Imaging (ISBI), 2014
IEEE 11th International Symposium on, pp. 927–930, Beijing, China, April 2014.
F. Mualla, S. Schöll, B. Sommerfeldt, A. Maier, S. Steidl, R. Buchholz, and J. Horneg-
ger. “Using the low-pass monogenic signal framework for cell/background classifica-
tion on multiple cell lines in bright-field microscope images”. International Journal
of Computer Assisted Radiology and Surgery, Vol. 9, No. 3, pp. 379–386, May 2014.
F. Mualla, S. Schöll, B. Sommerfeldt, and J. Hornegger. “Using the monogenic signal
for cell-background classification in bright-field microscope images”. In: Proceedings
des Workshops Bildverarbeitung für die Medizin 2013, pp. 170–174, Heidelberg, Ger-
many, March 2013.

6.1 Motivation

We mentioned in Section 1.2, that the low-pass monogenic signal was used as a
boundary potential for cell segmentation in bright field microscopy. We also pointed
out that the TIE was utilized for thresholding of bright field images and that the two
concepts, i. e. the TIE and the low-pass monogenic signal, were linked in [Ali 10]. In
this chapter, we explain this link in detail. We then show that local phase of the low-
pass monogenic signal, which is not well-investigated in literature so far, improves
the cell/background pixelwise classification. Afterwards, we employ both monogenic
signal and TIE to improve joint learning, i. e. generalization ability (cf. Section 5.8.7),
of our supervised approach presented in Chapter 5.

Section 5.8.7 conveys the message that the detection error of our supervised ap-
proach when trained using both suspended and adherent cell lines is higher compared
to the case when the algorithm is trained separately for each cell line. This is proba-
bly due to differences in contrast and cellular details between adherent and suspended
cells (cf. Figure 6.1). In this chapter, we show that it is possible to considerably im-
prove the joint training of adherent and suspended cell lines, if a TIE-solution image

85
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(a) Image of suspended Sf21 cells at de-
focus distance 15 µm

(b) Image of adherent CHO cells at defo-
cus distance 30 µm

Figure 6.1: Illustration of differences in contrast and visual appearance between
suspended and adherent cells. Defocus distances were experimentally chosen so that
contrast is maximized. Original contrast was kept in this figure in order to show the
difference in dynamic range.

Figure 6.2: Illustration of coexistence of adherent and suspended cells in a cell culture

and/or local phase of the low-pass monogenic signal framework are used for feature
extraction instead of a defocused image.

One may question the importance of this generalization ability as follows: it does
not hurt to train the system on adherent cells alone and then applying the trained
model on new images which contain only adherent cells. Similarly, this can be done
for suspended cells. In fact, that what we did in all of our evaluations in Chapter 5
except Section 5.8.7. However, in general, suspended and adherent cells coexist in
cell cultures (cf. Figure 6.2), even though this is not very well reflected in our image
materials. Moreover, suspension and adherence can be seen as two terminal cases
with shades of gray between them. Therefore, improving joint learning has a real
practical importance.

The rest of this chapter is organized as follows: in Section 6.2, the closed-form
expression of physical light phase as solution of the TIE after [Paga 98] is presented.
In Section 6.3, the concept of local phase is explained at two levels: 1) analytic
signal in one dimension, 2) monogenic signal in two dimensions. We show then in
Section 6.4 how the monogenic signal was employed in [Ali 10] to approximate the
TIE solution. In Section 6.5, we employ the TIE and monogenic signal to extend
the supervised approach presented in Chapter 5 so that its joint learning capability
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is improved. The evaluation is split in two main parts: Firstly, in Section 6.7.1,
we compare the discriminative power of monogenic outputs with the discriminative
power of defocused images. Secondly, in Section 6.7.2, we show that the pipeline
suggested in Section 6.5 improves joint learning of suspended and adherent cells.
The chapter is concluded by a discussion in Section 6.8.

6.2 Transport of Intensity Equation

As mentioned in Section 2.6, and repeated here for reader’s convenience, TIE is a
relation between the physical phase of light φ and the axial intensity derivative ∂I

∂z

[Teag 83]:

− 2π

λ

∂I(x, y)

∂z
= ∇⊥ · (I(x, y)∇⊥φ(x, y)) , (6.1)

where λ is the wavelength of light, z is the axial distance to the focus position, I is the
intensity image at focus, ∇⊥ is the gradient operator in the two lateral dimensions x
and y, i. e. inside the image plane, and ∇⊥· is the corresponding divergence operator.

The reader is referred to Section 2.6 for understanding the relation between φ and
physical properties of the imaged objects. Based on [Paga 98], TIE can be analytically
solved for φ as follows:

φ = −2π

λ
∇−2
⊥

(
∇⊥ ·

(
1

I
∇⊥∇−2

⊥
∂I

∂z

))
, (6.2)

where ∇−2
⊥ is the inverse Laplacian operator.

6.3 Monogenic Signal

6.3.1 One-dimensional case:

The monogenic signal is a 2D generalization of a fundamental concept in signal pro-
cessing called analytic signal [Fels 01]. The latter is defined for a real-valued one-
dimensional signal g(x) by the following equation [Poul 10]:

ga(x) := g(x) + igh(x), (6.3)

where i2 = −1 and gh(x) is the Hilbert transform of g(x):

gh(x) := H(g(x)) := g(x) ∗ 1

πx
=

1

π
CPV

∫ +∞

−∞

g(%)

x− %
d%, (6.4)

where CPV stands for the Cauchy principal value of the improper integral. In Fourier
domain, it can be shown that Eq. 6.4 is equivalent to:

Gh(ω) = −i sign(ω)G(ω). (6.5)
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As can be seen in Eq. 6.5, the Hilbert transform of a signal is a phase shift of its
frequency components by ±π

2
. Therefore, a signal and its Hilbert transform are

commonly termed quadrature pair. Combining Eq. 6.3 and Eq. 6.5 yields:

Ga(ω) = G(ω) + iGh(ω)

= G(ω) + sign(ω)G(ω)

= (1 + sign (ω))G(ω)· (6.6)

In other words, the analytic representation of g(x) can be obtained by discarding its
negative frequency components. Moreover, due to the fact that Hilbert transform of
a real signal is also real, Eq. 6.3 can be written in Euler form as:

ga(x) = α(x)eiϕ(x), (6.7)

where
α(x) =

√
g2(x) + g2

h(x)

is the local energy (or local amplitude) and

ϕ(x) = arctan
gh(x)

g(x)

is the local phase. In practice, the analytic signal, and hence the local phase and
energy, are computed for a band-passed version of g(x) in order to improve the
frequency localization and make the result invariant to the signal energy (by removing
the DC) [Bouk 04]. In addition, the band-pass filter is usually designed as an even
filter e(x) because it has a constant phase, and thus, it does not change the phase
information of the original signal g(x) [Bouk 04]. Based on these justifications, the
analytic signal is computed in practical applications by the following equation:

ĝa(x) = g(x) ∗ e(x) + iH(g(x) ∗ e(x))· (6.8)

According to the convolution property [Poul 10] of Hilbert transform:

ĝa(x) = g(x) ∗ e(x) + ig(x) ∗ H(e(x))

= g(x) ∗ (e(x) + ieh(x))

= g(x) ∗ ea(x)· (6.9)

In other words, finding the analytic representation of the signal filtered by e(x) is
equivalent to convolving this signal with a quadrature filter ea(x) which is the analytic
representation of e(x). Furthermore, the Hilbert transform of a real even function is
a real odd function o(x). Accordingly, one can write:

ĝa(x) = g(x) ∗ (e(x) + io(x))· (6.10)

Consequently, the local energy and phase are computed in practice as:

α̂(x) =
√

(g(x) ∗ e(x))2 + (g(x) ∗ o(x))2 (6.11)

ϕ̂(x) = arctan
g(x) ∗ o(x)

g(x) ∗ e(x)
· (6.12)

Several band-pass filters have been considered in the literature: Gabor, Gaussian
derivatives, difference of Gaussians, and others. A thorough discussion about the
choice of quadrature filters can be found in [Bouk 04].
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6.3.2 Two-dimensional case:

Real axis

Riesz component 1

Riesz component 2

ĝm(x, y)

Riesz transform

ge ∗ rz1(x, y)

ge ∗ rz2(x, y)

ge(x, y)

ϕ̂
(x
, y

)

α̂(x, y) = ||ĝm(x, y)||

θ̂(x, y)

Figure 6.3: Illustration of the monogenic representation of a two-dimensional signal
g(x, y) at an arbitrary spatial point. In practice, a band-passed version of g(x, y) is
used: ge(x, y) = g(x, y) ∗ e(x, y). The monogenic signal value ĝm(x, y) can be seen
as a quaternion whose real part is the signal value ge(x, y) and its vector part is the
Riesz transform of ge at (x, y). The monogenic features describe this quaternion as
follows: local amplitude α̂(x, y) is the magnitude of the quaternion, local orientation
θ̂(x, y) describes the direction of the quaternion’s vector part, and local phase ϕ̂(x, y)
describes the ratio between the magnitude of the quaternion’s vector part and the
quaternion’s real part.

The Riesz transform generalizes the Hilbert transform for n-dimensional signals
[Stei 70]:

R(g(x)) := (R1(g(x)), . . . ,Rn(g(x)))T (6.13)

Rl(g(x)) := rzl(x) ∗ g(x), l = 1, . . . , n (6.14)

rzl(x) :=
Γ((n+ 1)/2)

π(n+1)/2

xl

‖x‖n+1 (6.15)
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where Γ is the Gamma function [Poul 10], and x = (x1, . . . , xn). Eq. 6.15 can be
written in Fourier domain as:

RZl(u) = i
ul
‖u‖

(6.16)

where u = (u1, . . . , un) is the n-dimensional frequency vector. For n = 1, this transfer
function expresses the Hilbert transform1.

Without loss of generality, the monogenic signal is defined for two-dimensional
signals g(x, y) as:

gm(x, y) = g(x, y) + irz1(x, y) ∗ g(x, y)

+írz2(x, y) ∗ g(x, y)· (6.17)

The filters rz1 and rz2 are given by Eq. 6.15. gm(x, y) is defined in a quaternion
space [Hami 44] whose imaginary units are i, í, and ´́i (i2 = í2 = ´́i2 = −1) and the ´́i-
component is zero. One can see the monogenic signal of the two-dimensional function
g(x, y) as a quaternion-valued function whose real part is the signal itself and whose
vector part is the Riesz transform of the signal.

Similar to the one-dimensional case, in practice, a band-passed version of the
signal is used:

ĝm(x, y) = e(x, y) ∗ g(x, y) + irz1(x, y) ∗ e(x, y) ∗ g(x, y)

+írz2(x, y) ∗ e(x, y) ∗ g(x, y)· (6.18)

This can be reformulated as follows:

ĝm(x, y) = g(x, y) ∗ (e(x, y) + irz1(x, y) ∗ e(x, y)

+írz2(x, y) ∗ e(x, y))

= g(x, y) ∗ em(x, y)· (6.19)

This equation is similar to Eq. 6.9 in the one-dimensional case. It states that com-
puting the monogenic representation of g(x, y) filtered with e(x, y) is equivalent to
convolving the signal with a 2D quadrature filter given by the monogenic represen-
tation of e(x, y).

Local energy is defined as the magnitude of the monogenic quaternion:

α̂(x, y) =
√

(ge)2 + (ge ∗ rz1)2 + (ge ∗ rz2)2, (6.20)

where ge := g(x, y) ∗ e(x, y). The specification of the domain (x, y) was omitted in
order to simplify the notation. The local phase is defined as the angle between the
vector part and the real part of the monogenic quaternion:

ϕ̂(x, y) = arctan

√
(ge ∗ rz1)2 + (ge ∗ rz2)2

ge
· (6.21)

Unlike the one-dimensional case, the Riesz transform is a vector and it thus has a
direction in the domain of ge(x, y):

θ̂(x, y) = arctan
ge ∗ rz2

ge ∗ rz1

· (6.22)

1There is a minus sign difference due to the incompatibility of definitions between different
authors [Poul 10, Fels 01]. This incompatibility, however, is irrelevant for the discriminative power.
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The angle θ̂ is called local orientation in the terminology of monogenic representation.
Looking at the Riesz transform kernels given in Eq. 6.15, one can see that they
partially resemble derivative computation [Koth 05]. Local orientation can be thus
understood as the direction of maximal change. This change is, however, defined in
a way given by Riesz kernels rather than traditional gradient kernels.

In short, for a two-dimensional signal, the monogenic signal can be represented
by a quaternion at each domain point (x, y). Since the vector part of this quaternion
is two-dimensional, the quaternion can be represented in three dimensions. This
representation is illustrated in Figure 6.3.

6.4 Approximating TIE’s Solution Using
Monogenic Signal

Typically, in order to compute the monogenic features of an image I(x, y), one needs
to set ge in Eq. 6.20, Eq. 6.21, and Eq. 6.22 to I(x, y) ∗ e(x, y), where e(x, y) is an
even band-pass filter.

According to [Ali 10], it is possible to use the monogenic signal framework to ap-
proximate the solution of Eq. 6.1 under two conditions: Firstly, the derivative image,
i. e. the left-hand side of Eq. 6.1, is used as an input of the monogenic framework
instead of the image itself. Secondly, a low-pass filter IL(x, y) which resembles the
inverse Laplacian, is used in the monogenic framework instead of the typically-used
band-pass filter. More specifically, one needs to set ge in Eq. 6.20, Eq. 6.21, and
Eq. 6.22 to ∂I

∂z
(x, y) ∗ IL(x, y) instead of I(x, y) ∗ e(x, y).

Under this setup, the low-pass monogenic local phase is given by the following
equation:

ϕ̂lowpass(x, y) = arctan

√
(∂I
∂z
∗ IL ∗ rz1)2 + (∂I

∂z
∗ IL ∗ rz2)2

∂I
∂z
∗ IL

· (6.23)

Moreover, the low-pass monogenic local amplitude is given as:

α̂lowpass(x, y) =

√
(
∂I

∂z
∗ IL)2 + (

∂I

∂z
∗ IL ∗ rz1)2 + (

∂I

∂z
∗ IL ∗ rz2)2· (6.24)

The specification of the domain (x, y) was again omitted from Eq. 6.23 and Eq. 6.24
in order to simplify the notation. The employed low-pass filter in [Ali 10] was a
Mellor-Brady filter [Mell 05] given by the following equation in the spatial domain:

Ω(x, y, ν1, ν2) :=
1

(x2 + y2)
ν1+ν2

2

− 1

(x2 + y2)
ν1−ν2

2

, (6.25)

where ν1 and ν2 are the filter parameters. Depending on these parameters, Ω behaves
either as a low-pass or a band-pass filter. This tunability facilitates suppressing the
low-frequency noise which usually perturbs TIE-solution images. For approximating
the TIE’s solution, a low-pass filter which resembles the inverse Laplacian was em-
ployed corresponding to ν1 = ν2 = 0.25. Therefore, IL in Eq. 6.23 and Eq. 6.24 was
set to Ω(x, y, 0.25, 0.25).
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Physical phase vs. local phase: Eq. 6.23 computes the monogenic local phase
of ∂I

∂z
∗ IL. The connection to TIE becomes clear in the special case when I can be

considered uniform in the lateral plane (cf. Section 2.6). Under this condition, an
expression simpler than Eq. 6.2 for physical light phase φ can be directly derived
from Eq. 2.23:

φ̌ = C0∇−2

(
∂I

∂z

)
, (6.26)

where C0 is a constant related to wavelength and the uniform intensity value. There-
fore, Eq. 6.23 computes the local phase of an approximation of physical light phase.

Note about terminology: in this thesis, all cell images of local phase and lo-
cal amplitude were generated under the specific setup described above. Accordingly,
in the remaining text, the term local phase refers to Eq. 6.23 while local energy and
local amplitude refer to Eq. 6.24. On the other hand, physical phase and TIE solution
both refer to Eq. 6.2.

6.5 Cell Detection Pipeline Customized
for Joint Learning

Hierarchical clustering

Profile learning

Keypoint learning

SIFT

z = +∆zz = −∆z

z

z = 0

Physical/Local

Parameter learning

Defocused image

phase

Figure 6.4: Extending the cell detection pipeline of Chapter 5 using phase-based
features for improving joint learning

We here extend the pipeline of our supervised approach presented in Chapter 5.
Similar to Chapter 5, we use a defocused image for keypoint extraction and parameter
learning. However, in contrast to Chapter 5, we extract the keypoint features and
the profile features from a TIE solution or local phase image instead of a defocused
image. Figure 6.4 clarifies the structure of the proposed pipeline.
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A difference of two defocused images at distances ±∆z is used as an estimation
of axial derivative. Local phase is then computed directly using Eq. 6.23. The exact
values of ∆z for each cell line are given in Section 6.6. The estimated axial derivative
and the image at-focus are used to compute the TIE solution using Eq. 6.2. Inversion
of the Laplacian in Eq. 6.2 is performed by applying a Fourier-based method [Volk 02].
Usually, the resulting solution is contaminated with a low-frequency bias field. The
latter is estimated using a thin-plate smoothing spline approach and subtracted from
the TIE solution.

6.6 Generating TIE and Monogenic Images

In this section, we describe the use of images in the real cell lines of Table 4.1 for
generating low-pass monogenic outputs and TIE-solution images. Simulated cell lines
were not used because defocusing was not included in the applied simulation model.
As described in Table 4.1, we use three real cell lines containing together 16 image
sets. Each image set is composed of a negatively defocused image at defocus distance
−∆z (Figure 6.5a), an image at focus (Figure 6.5b), and a positively defocused image
at defocus distance +∆z (Figure 6.5c). The used ∆z values are, as mentioned earlier
in Section 4.1.2, 30 µm for the adherent cell lines and 15 µm for the suspension cell
line. The software package SePhaCe [Ali 12] was utilized to generate a local energy
image (Figure 6.5d), a local phase image (Figure 6.5e), and a TIE-solution image for
each image set. SePhaCe was also used for the bias correction step (cf. Section 6.5).
A thin-plate smoothing spline was estimated for each TIE-solution image (1280×960
pixels) over a grid of 50 × 50 points. Figure 6.5f exemplifies the TIE solution after
subtracting the bias field.

6.7 Evaluation

This section is composed of two main parts: in Section 6.7.1, the discriminative
power of low-pass monogenic outputs for the cell/background separation problem
is compared to the discriminative power of defocused images. In Section 6.7.2, the
phase-based cell detection pipeline proposed in Section 6.5 is evaluated and compared
to the pipeline presented in Chapter 5.

6.7.1 Evaluation of the Discriminative Power of Low-pass Mono-
genic Signal for Cell/Background Separation

6.7.1.1 Cell/Background Pixelwise Classification

We employ machine learning to investigate the discriminative power of the local phase
as defined in Eq. 6.23 in the cell/background separation problem. Obviously, it is
possible to measure the difference in the discriminative power of two features by
learning a classifier for each of them and then comparing the test errors.

As classifier features, patches of size 5× 5 pixels are used. Cell areas in our data
are considerably larger than the area of the chosen patch. The advantage of using
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(a) Negatively defocused (b) At focus (c) Positively defocused

(d) Local energy (e) Local phase (f) TIE solution after bias
correction

Figure 6.5: Patches extracted from an L929 image set. The histogram of each patch
was linearly stretched in the range [0, 255] for clarity.

a small patch size is reducing the sensitivity of the extracted feature vectors to the
variability of cell orientation. Analysis of the effect of patch size is conducted in
Section 6.7.1.5.

As a classifier model, we use SVM and RF (random forest). Two kernels were
utilized for the SVM: the radial basis function (RBF) and the linear kernel. The
SVM cost parameter and the RBF width parameter were set to the default values of
LibSVM [Chan 11]. The number of trees NTr in the random forest and the number of
randomly selected variables NRand at each node were set after [Khos 07] to 500 and
NF/5, respectively, where NF is the number of features. The data was z-scored for
the SVM, while it was used without normalization for the random forest.

One can extract a patch at each pixel from all images. However, this is compu-
tationally expensive. Therefore, only NP patches are randomly sampled from each
training/testing image. Unless otherwise specified, NP is set to 100. In order to
achieve balanced learning, one-half of the NP patches are sampled from background
while the other half sampled from cells. The class of each patch is obtained from the
ground-truth masks. The ground truth for inhomogeneous patches, i. e. patches which
contain both labels (usually near cell boundary), is not reliably known. Consequently,
unless otherwise stated, these patches are discarded.
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Defocused (%) At-focus (%) Phase (%) Energy (%)
Linear SVM 67.7 ± 0.5 51.2 ± 1.0 82.4 ± 1.1 64.2 ± 1.3
RBF SVM 68.2 ± 1.5 56.2 ± 1.5 81.7 ± 0.9 64.5 ± 1.9

RF 68.1 ± 1.1 54.9 ± 0.9 80.3 ± 1.1 60.6 ± 1.3

Table 6.1: L929: comparison between local phase, local energy, at-focus signal, and
defocused signal using the cell/background classification rate

Defocused (%) At-focus (%) Phase (%) Energy (%)
Linear SVM 82.5 ± 1.2 59.6 ± 1.2 94.9 ± 0.7 88.5 ± 0.5
RBF SVM 84.1 ± 0.8 73.8 ± 2.0 94.9 ± 0.6 88.8 ± 0.8

RF 87.4 ± 1.3 70.8 ± 2.9 94.6 ± 0.7 88.4 ± 1.1

Table 6.2: Sf21: comparison between local phase, local energy, at-focus signal, and
defocused signal using the cell/background classification rate

Defocused (%) At-focus (%) Phase (%) Energy (%)
Linear SVM 60.9 ± 1.2 49.8 ± 0.8 68.5 ± 1.7 57.4 ± 1.9
RBF SVM 61.7 ± 0.9 52.4 ± 0.6 68.0 ± 2.4 55.7 ± 1.3

RF 61.1 ± 1.5 52.5 ± 0.5 63.7 ± 1.5 54.8 ± 0.9

Table 6.3: CHO: comparison between local phase, local energy, at-focus signal, and
defocused signal using the cell/background classification rate

6.7.1.2 Comparison Between Local Phase, Local Energy, At-focus Signal,
and Defocused Signal

One of the five defocused L929 images Il was used to train three classifiers: linear
SVM, RBF SVM, and random forest. The learned models were then applied on the
other defocused images in the same cell line and the average classification rate CRl

over these test images was computed. This was repeated for each defocused L929
image, i. e. for each l value, and the mean of the CRl values was obtained.

The previous experiment was repeated 10 times with one mean classification rate
obtained from each repetition. The mean and the standard deviation of all these mean
classification rates can be seen in the first column of Table 6.1. The second, third,
and fourth column of the same table show the results when the same process was
applied on the at-focus, local phase, and local energy images, respectively. Table 6.2
and Table 6.3 show the results of the same procedure applied on Sf21 and CHO.

Tables 6.1, 6.2, and 6.3 reveal that the four features can be sorted by increasing
discriminative power as follows: at-focus signal, local energy, defocused signal, local
phase. The only exception for this order is that local energy is more discriminative
than defocused signal for suspended cells (Sf21).

6.7.1.3 Comparison Between the Input Space and the Output Space of
the Monogenic Signal

In this section, we assess the use of the two monogenic outputs together for cell/background
classification and compare it with the joint use of the two monogenic inputs. In this
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At-focus and defocused (%) Phase and energy (%)
Linear SVM 72.8 ± 1.2 81.6 ± 1.1
RBF SVM 71.4 ± 1.7 81.5 ± 0.8

RF 73.2 ± 1.5 79.1 ± 1.9

Table 6.4: L929: comparison between the input space and the output space of the
monogenic signal using the cell/background classification rate

At-focus and defocused (%) Phase and energy (%)
Linear SVM 84.9 ± 1.0 96.2 ± 0.6
RBF SVM 86.1 ± 1.5 97.1 ± 0.6

RF 87.2 ± 2.4 95.7 ± 0.6

Table 6.5: Sf21: comparison between the input space and the output space of the
monogenic signal using the cell/background classification rate

case, at a given pixel, a patch from a local phase image and another patch at the
same pixel position from its corresponding local energy image are extracted. The
values of the two patches are then concatenated. Therefore, the dimensionality of
the resulting feature space is 25 + 25 = 50. The discrimination power of this fea-
ture space was compared with another 50-dimensional feature space: the monogenic
input space. The latter is formed by using an at-focus image and its corresponding
defocused image together for patch extraction instead of the local phase and energy
images.

The first column of Table 6.4 shows the cell/background classification rate on
L929 when both an at-focus image and a defocused image are used together to train
the classifiers. The second column shows the classification rate when both local phase
and local energy are used to train the classifiers. The same can be seen in Table 6.5
for Sf21 and Table 6.6 for CHO. The classification rate was estimated in a way similar
to the evaluation procedure in Section 6.7.1.2. However, compared to Section 6.7.1.2,
the dimensionality of the feature space is 50 instead of 25. Tables 6.4, 6.5, and 6.6
reveal that the compound signal of local phase and local energy is more discriminative
than the compound signal of an at-focus image and a defocused image.

At-focus and defocused (%) Phase and energy (%)
Linear SVM 58.0 ± 1.2 67.6 ± 1.4
RBF SVM 55.7 ± 0.6 67.0 ± 1.7

RF 57.1 ± 1.6 65.0 ± 1.6

Table 6.6: CHO: comparison between the input space and the output space of the
monogenic signal using the cell/background classification rate
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Figure 6.6: Comparison between learning curves of a RBF SVM on L929 using two
feature spaces: 1) local phase 2) monogenic input space

6.7.1.4 Comparison Between Local Phase and the Input Space of the
Monogenic Signal

Figure 6.6 shows a comparison between the learning curve of a RBF SVM trained
using both a defocused image and an at-focus image compared to the learning curve
of the same classifier model trained using a local phase image. For each point in
the curve, i. e. for each number of patches NPq = 100q2, q = 1..10, the classifica-
tion rate was estimated in a cross-validation loop similar to the loop described in
Section 6.7.1.2. The learning curve shows that a local phase image is more discrimi-
native than the two images which were used to generate it even when more training
data is incorporated in order to compensate for the increased dimensionality of the
feature space.

6.7.1.5 Patch Size Analysis

All experiments in our evaluation were performed so far with 5× 5 sized patches. In
this section, we investigate other patch sizes. Table 6.7 shows the classification rate
of a RBF SVM classifier on L929 employing the same evaluation scheme described
in Section 6.7.1.2 but using 23 × 23, 33 × 33, and 43 × 43 sized patches. In order
to give the reader a feeling about the ratio between these patch dimensions and cell
dimensions, we point out that the length of minor axis of the L929 cells in our data
is 32.95± 10.72 pixels.
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Defocused (%) Phase (%)
5 × 5 68.2 ± 1.5 81.7 ± 0.9
23 × 23 63.4 ± 1.3 89.3 ± 0.8
33 × 33 56.5 ± 1.8 88.8 ± 0.6
43 × 43 52.2 ± 1.9 86.7 ± 1.7

Table 6.7: The effect of patch size on the cell/background classification rate. The
cell line is L929, the classifier model is RBF SVM, and the number of patches per
training/testing image is 100.

Defocused (%) Phase (%)
5 × 5 68.6 ± 0.4 82.4 ± 0.3
23 × 23 65.6 ± 0.4 89.8 ± 0.4
33 × 33 58.9 ± 0.7 87.9 ± 0.4
43 × 43 53.8 ± 0.6 82.4 ± 1.0

Table 6.8: The effect of patch size on the cell/background classification rate. The
cell line is L929, the classifier model is RBF SVM, and the number of patches per
training/testing image is 900.

Increasing the patch size increases the dimensionality of the corresponding fea-
ture space, and consequently, the number of samples needed for training. Table 6.8
shows the same experiment reported in Table 6.7, but with 900 random patches per
training/testing image instead of 100.

As stated in Section 6.7.1.1, only homogeneous patches are used in training and
testing. This is a plausible choice when the patch’s area is small compared to cell’s
area (e. g. 5× 5 sized patches). However, with larger patches, this will exclude more
cell pixels from the evaluation scheme and hence degrade the generalizability of the
derived conclusions. Table 6.9 shows the results when no patches are excluded from
the evaluation. In this case, the label of the patch’s center is considered.

Tables 6.7, 6.8, and 6.9 reveal that the superiority of local phase over defocused
signal holds for larger patches even when more samples are employed in training.
On the other hand, unlike the discriminative power of local phase, the discriminative
power of defocused signal benefits from employing near-boundary patches in training.

Defocused (%) Phase (%)
5 × 5 65.2 ± 1.5 76.9 ± 0.7
23 × 23 66.2 ± 1.3 77.3 ± 1.0
33 × 33 65.5 ± 1.9 76.9 ± 0.8
43 × 43 67.7 ± 1.3 76.1 ± 1.3

Table 6.9: The effect of patch size on the cell/background classification rate. The
cell line is L929, the classifier model is RBF SVM, and the number of patches per
training/testing image is 100. Inhomogeneous patches are included in training and
testing.
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6.7.2 Evaluation of the Phase-based Cell Detection Pipeline

In this section, we compare the joint learning performance between our supervised
approach in Chapter 5 (referred to as original pipeline in this section) and its extended
version presented in Section 6.5. In order to evaluate the original pipeline for joint
learning of Sf21 and L929, a positively defocused image of each of the two cell lines
was randomly chosen. The two images were used to train the system. The trained
system was then tested on the rest of the positively defocused images in L929 and
Sf21 and a mean F-measure value was obtained. This process was repeated five times
with a mean F-measure value obtained from each repetition. The average and the
standard deviation of these five mean F-measure values can be seen at the left-hand
side of the first row of Table 6.10. Since adherent and suspended cell images have
different dynamic ranges, each image was normalized to [0, 1] before being used for
training or testing.

The right-hand side of the first row shows F-measure results for separate training.
In this case, one image is used for training in each cell line and tested on the other
images of the same cell line. This is repeated in a cross-validation loop.

We evaluated the extended pipeline for joint and separate training in the same
manner as described above. The second row of Table 6.10 shows the F-measure
results when TIE solution is used for keypoint and profile feature extraction. The
third row shows the results when local phase images are used for feature extraction.
And lastly, the fourth row is dedicated to the case when TIE solution is used for
keypoint feature extraction while local phase is used for profile feature extraction.

In Table 6.11, the same experiment was performed but with CHO as adherent cell
line instead of L929. It is possible to average the results obtained from Table 6.10
and Table 6.11 and shape the figures in terms of suspended and adherent cell lines.
This can be seen in Table 6.12. In this table, one can notice that the F-measure on
suspended cells using the original pipeline was reduced from 97.0 in separate training
to 86.6 in joint training. When, for instance, TIE solution was employed for keypoint
and profile feature extraction, F-measure on suspended cells was recovered to 95.7
while F-measure on adherent cells degraded with a very small amount (from 84.2
to 83.6). In order to draw conclusions more easily, in Table 6.13 we aggregate the
results of Table 6.12 in terms of total loss in F-measure, i. e. the loss in F-measure on
adherent cells added to the F-measure loss on suspended cells. One can see that the
minimum loss in joint training is obtained when TIE solution is used for keypoint
feature extraction and local phase is used for profile feature extraction. The other
two cases (TIE alone or local phase alone) were a bit inferior to TIE with local phase,
but very close to it. On the other hand, in separate training, the difference between
all four cases was small. Nevertheless, the extended pipeline achieved a bit higher
separate-learning F-measure compared to the original pipeline.

6.8 Discussion

It was empirically shown that the pixelwise cell/background classification yields con-
siderably better results when local phase as obtained in [Ali 10] is used instead of
a defocused image. More generally, the feature images can be sorted by increasing
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Joint learning Separate learning
L929 Sf21 L929 Sf21

Original pipeline 85.3 ± 2.1 86.7 ± 2.4 86.5 ± 1.3 97.0 ± 1.2
KFI = PFI = TIE 84.5 ± 2.1 95.7 ± 0.4 87.1 ± 1.7 97.7 ± 0.9
KFI = PFI = local phase 83.6 ± 1.9 95.5 ± 1.5 85.7 ± 1.9 98.2 ± 0.7
KFI = TIE, PFI = local phase 84.2 ± 2.2 96.5 ± 0.6 86.9 ± 1.7 97.8 ± 0.9

Table 6.10: F-measure values of the original and extended approaches for L929 and
Sf21. KFI denotes the image used for keypoint feature extraction while PFI denotes
the image used for profile feature extraction.

Joint learning Separate learning
CHO Sf21 CHO Sf21

Original pipeline 83.1 ± 4.0 86.5 ± 3.3 84.2 ± 3.4 97.0 ± 1.2
KFI = PFI = TIE 82.7 ± 3.4 95.7 ± 1.4 84.4 ± 2.5 97.7 ± 0.9
KFI = PFI = local phase 81.6 ± 2.7 94.5 ± 1.8 83.9 ± 2.3 98.2 ± 0.7
KFI = TIE, PFI = local phase 83.0 ± 3.6 96.1 ± 1.1 84.1 ± 2.5 97.8 ± 0.9

Table 6.11: F-measure values of the original and extended approaches for CHO and
Sf21. KFI denotes the image used for keypoint feature extraction while PFI denotes
the image used for profile feature extraction.

discriminative power as follows: at-focus signal, local energy, defocused signal, lo-
cal phase. The only exception to this order was the superiority of local energy over
defocused signal for suspended cells.

In addition, we showed that the monogenic output space is more discriminative
than the monogenic input space. This is probably due to the following reason: the
monogenic output delivers information about the physical light phase represented in
a way which describes signal features. In fact, there is a relation between the signal
features, e. g. edges and blobs, and the local phase and energy of this signal. Local
energy is high at distinctive signal features while local phase determines the feature
type [Morr 86].

In the pixelwise cell/background classification experiments, a local phase image
is an output of the low-pass monogenic signal framework with an at-focus image
and a defocused image used as inputs. The natural question which arises here is
whether using both input images together could deliver the same discriminative power
obtained by the local phase image. Due to the difference in dimensionality between
the two feature spaces, more samples need to be provided for the higher dimensional
feature space in order to achieve a fair comparison. For this reason, the learning
curve was utilized to compare local phase with the input of the monogenic signal
framework. The results show that by increasing the size of training data, local phase
is still more discriminative than the monogenic input.

As stated in [Ali 10], the use of low-pass filters for computing local phase and
energy is “against the accepted theory”. We think, however, that there is a kind
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Joint learning Separate learning
Adherent Suspended Adherent Suspended

Original pipeline 84.2 86.6 85.3 97.0
KFI = PFI = TIE 83.6 95.7 85.7 97.7
KFI = PFI = local phase 82.6 95.0 84.8 98.2
KFI = TIE, PFI = local phase 83.6 96.3 85.5 97.8

Table 6.12: F-measure values of the original and extended approaches averaged from
Table 6.10 and Table 6.11. KFI denotes the image used for keypoint feature extraction
while PFI denotes the image used for profile feature extraction.

Joint learning Separate learning
Original pipeline 29.2 17.6
KFI = PFI = TIE 20.7 16.5
KFI = PFI = local phase 22.4 17.0
KFI = TIE, PFI = local phase 20.1 16.7

Table 6.13: Total F-measure loss of the original and extended approaches. KFI
denotes the image used for keypoint feature extraction while PFI denotes the image
used for profile feature extraction.

of DC subtraction implicitly injected as follows: approximating the axial derivative
involves subtracting the image at focus from a defocused image. For thin cells, there
is almost no information at focus. Therefore, the difference of the two images partially
resembles a subtraction of the DC component.

The ground truth was defined by delineating cell borders in the defocused images
(cf. Section 4.1). The latter are blurred compared to the at-focus images and defo-
cused cells tend to occupy larger area (cf. Figure 6.5b and Figure 6.5c). Therefore,
comparing the accuracy of pixelwise classification between a defocused image and an
at-focus image is slightly biased. This bias is small because the random sampling
and the exclusion of inhomogeneous patches make the probability of selecting a pixel
which belongs to a defocused cell but not to the corresponding at-focus cell very low.
In addition, as mentioned in Chapter 1, the superiority of the defocused image over
the at-focus image in the cell/background separation is already known in literature,
and hence it is not a main concern in the evaluation.

We then employed physical phase and local phase for improving joint learning of
adherent and suspended cell detection. It was shown that joint learning capability
of the cell detection approach introduced in Chapter 5 can be substantially improved
by using a TIE-solution image or local phase image for feature extraction. However,
compared to the pipeline presented in Chapter 5, the extended phase-based pipeline
presented in this chapter is less general as it is based on the image formation model
in bright field microscopy.

One might criticize the evaluation as being done using a fixed defocus distance,
i. e. the distance of 30 µm or 15 µm described in Section 6.6. Our dataset does not
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contain focus stacks. Therefore, no evaluation of the effect of defocus distance se-
lection on pixelwise classification or joint learning of cell detection was performed.
The selection of defocus distance is, however, not arbitrary. The very short distances
do not deliver sufficient contrast. On the other hand, very long distances smear the
image information due to the excessive blurring by point spread function of the op-
tical system. Therefore, there is an optimal distance which maximizes the contrast.
During the image acquisition, we tried to select this optimal distance experimentally.
However, this was judged subjectively. Automatic methods to choose this distance
objectively need thus to be developed in future. Compared to published phase re-
trieval results for cell segmentation [Curl 04, Ali 12], our phase images look blurred.
Therefore, shorter distances are needed for border delineation. However, our concern
is to maximize contrast for cell detection applications rather than cell segmentation.
Consequently, using the aforementioned contrast-blurring trade-off principle for the
defocus distance selection sounds plausible.



Chapter 7

Unsupervised Cell Detection

Considerable parts of this chapter were already published in:
F. Mualla, S. Schöll, B. Sommerfeldt, A. Maier, S. Steidl, R. Buchholz, and J. Horneg-
ger. “Unsupervised unstained cell detection by SIFT keypoint clustering and self-
labeling algorithm”. In: P. Golland, N. Hata, C. Barillot, J. Hornegger, and R. Howe,
Eds., Medical Image Computing and Computer-Assisted Intervention MICCAI 2014,
pp. 377–384, Springer International Publishing, Boston, MA, USA, September 2014.

7.1 Motivation

The cell detection approaches discussed so far depend on supervised learning. The
latter transfers part of its inductive bias to the training data which makes the ap-
proach adaptable by simply changing the training set. This has the advantage that
it can model very complicated situations and provide reliable results as long as the
training set is representative. On the other hand, its drawback is that it requires
labeled ground truth. In many cases, the users of cell image analysis software would
sacrifice some detection accuracy in favor of having a labeling-free system. This pref-
erence becomes more serious when the system has to be trained for each new cell
line.

In Chapter 5, we presented a supervised algorithm for cell detection in which
strong emphasis was placed on reliability and robustness. In this chapter, no claim is
made that it is possible to obtain the same degree of robustness without supervision.
We show, however, that part of the knowledge needed to detect cells in an image can
be learned from this image based on unsupervised learning. Technically speaking, we
also employ supervised learning, but with ground truth learned automatically from
the input image. Moreover, we apply the algorithm on images obtained by both
bright field microscopy and phase contrast microscopy which form together a very
appropriate choice for the evaluation of unstained cell detection.

The rest of the chapter is organized as follows: Section 7.2 describes the proposed
algorithm. The results are given in Section 7.3 which are discussed along with final
conclusions in Section 7.4.
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7.2 Cell Detection by Keypoint Clustering and
Self-labeling Algorithm

The proposed unsupervised approach is composed of a sequence of steps. These steps
are described in order of application in the following sections.

7.2.1 Keypoint Extraction

The algorithm starts by extracting SIFT keypoints of the input image I. These
keypoints are not thresholded using the PCR or the DoGγ1 values. In other words,
all detected SIFT keypoints of all strength and anisotropy values are considered at
this step.

7.2.2 Blob Type Detection

As mentioned in Section 5.3, the blob type is either black-on-white (+1), or white-
on-black (-1). We compute the blob type in this unsupervised approach based on the
following equation:

BTunsup = sign

(∑Nkp
j=1 η(pj) |DoGγ1 (pj)|HS (DoGγ1 (pj))∑Nkp

j=1 η (pj) |DoGγ1 (pj)|
− 1

2

)
, (7.1)

where pj, j = 1 .. Nkp are the extracted keypoints in the considered image, Nkp is
their number, HS is the Heaviside step function (cf. Eq. 5.2), and η is given by:

η(pj) =
σ(pj)

PCR(pj)
· (7.2)

There are two differences between Eq. 7.1 in the unsupervised approach presented
here and Eq. 5.1 in the supervised approach presented in Chapter 5:

1. In the supervised approach, cell keypoints in the entire training dataset are
involved in learning the blob type. As this is not possible when ground truth
is not available, in the unsupervised case, we use all keypoints extracted from
the input image.

2. The weight of each DoGγ1 value is slightly changed: instead of using only
keypoint scale to weight the contribution of each keypoint’s DoGγ1 value, we
additionally employ the PCR giving elongated keypoints less importance.

7.2.3 Scale Adaptive Smoothing

The image I is smoothed with a Gaussian kernel whose standard deviation is the
mean keypoint scale. The latter is computed using the following equation:

σ̄unsup =

∑N ′kp
j=1 |DoGγ1(pj)|σ(pj)∑N ′kp

j=1 |DoGγ1(pj)|
(7.3)
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where N ′kp is the number of keypoints resulting from the step described in Sec-
tion 7.2.2, i. e. only one blob type is considered. This is similar to the SAS in the
supervised approach (cf. Section 5.4.3) except that we use here a weighted average in-
stead of a simple arithmetic average. The smoothed image Iσ̄unsup is saved for further
processing.

7.2.4 Second Keypoint Extraction

The step described in Section 7.2.1 is applied on the smoothed image Iσ̄unsup and the
keypoints which conform to the previously computed BTunsup are considered while
the others are discarded. The goal of this step is to adapt the SIFT Gaussian pyramid
according to the mean structure size in the input image. The relation between the
resulting SIFT pyramid and the original one, i. e. the pyramid resulting from applying
SIFT on I, is clarified in the text which follows. Based on Eq. 3.16, the sequence of
discrete variance values in a typical SIFT GSS can be given according to the following
equation:

σ2(l) =
(
σ02

l
S

)2

= σ2
02

2l
S , l = 0 · · ·S ·O− 1· (7.4)

The reader is referred to Section 3.1.4 for the definitions of constants and variables in
Eq. 7.4. Convolving an image consecutively with two Gaussian kernels of variances τ1

and τ2 is equivalent to convolving this image with a single kernel of variance τ1 + τ2.
Consequently, applying SIFT on the smoothed image Iσ̄unsup is equivalent to applying
SIFT on the original image I, but with the following discrete variance values for the
SIFT GSS:

σ̌2(l) = σ̄2
unsup + σ2

02
2l
S , l = 0 · · ·S ·O− 1· (7.5)

The discretized σ values of this GSS are thus given as:

σ̌(l) =

√
σ̄2

unsup + σ2
02

2l
S , l = 0 · · ·S ·O− 1· (7.6)

For instance, the first level in the GSS pyramid of Iσ̄unsup is
√
σ̄2

unsup + σ2
0 compared

to σ0 in the GSS pyramid of I.

7.2.5 Cell/background Keypoint Clustering

At this step, the keypoints are clustered into one of two categories: cells and back-
ground. k-medians clustering is applied with k = 2. k-medians is a clustering algo-
rithm with an objective function which minimizes intra-cluster `1-norm. It is very
similar to the more famous k-means algorithm which minimizes the `2-norm inside
each cluster. In both variations, i. e. k-medians and k-means, a local optimum of
the objective function is found by iteratively computing the center (a median in k-
medians and a mean in k-means) of each cluster and then assigning feature vectors
to cluster centers. The local optima are dependent on initialization, and hence, this
iterative procedure needs to be properly initialized.
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For initializing the cell/background clustering, we employ one-dimensional Otsu
thresholding on the DoGγ1 values of the keypoints and the two resulting clusters are
used to start the iteration. The features are modality-specific:

• For bright field microscopy, at each keypoint pj, we employ DoGγ1(pj) and
smoothed image intensity Iσ̄unsup(pj) as features.

• For phase contrast microscopy, we use DoGγ1(pj) and VMap′I(pj, 2σ̄unsup). The
latter is the local variance of the original image I within a square neighborhood
centered at pj with a side-length equal to 2σ̄unsup (up to an integer approxima-
tion). It is similar to the variance map in Section 5.3.1, except that the window
size is given here in terms of σ̄unsup instead of σ(pj).

The features are normalized to [0, 1] so that they contribute equally to the `1-norm.
After termination, the keypoints which belong to the background cluster are dis-
carded.

7.2.6 Cell/Cell Keypoint Clustering

The goal of this step is to cluster the cell keypoints resulting from the previous step
(Section 7.2.5) into Nclust clusters where two keypoints belong to the same cluster if
and only if they belong to the same cell. Nclust is not known a priori. In order to
achieve this goal, similar to Chapter 5, a classifier which ranks each pair of keypoints
as belonging to the same cell or not is required. In contrast to Chapter 5, however,
we here propose to learn this classifier from the input image using a self-labeling
algorithm instead of manually-labeled ground truth. Informally speaking, the algo-
rithm trains a profile classifier on extreme cases (for which ground truth labels can be
assumed) and applies the resulting classifier on intermediate cases. This is achieved
as follows:

1. Consider A to be a set of keypoint pairs defined as:

(pj,pl) ∈ A⇔ ‖pj − pl‖2 ≥ $,

where
$ = ρ · σ̄unsup,

and ρ is a constant. $ must be larger than the maximum cell length in pixels.
Due to the use of SIFT, safe values for ρ can be set easily regardless of the
image resolution or cell type. We set it to 10 in our experiments, that is to say
every line segment between two cell keypoints which is longer than 10σ̄unsup can
be assumed to be between two different cells.

2. Randomly choose Na elements, i. e. keypoint pairs, from A. Label each of
them as cross which means that the two corresponding keypoints belong to two
different cells and the profile between them is thus a cross profile.

3. Randomly choose Nb keypoints from the set of cell keypoints and form the set
B. In this random sampling, the probability of selecting a keypoint for B is, by
construction, proportional to its scale, so as to lessen keypoints which indicate
very small structures. Both Na and Nb were set to 100 in our experiments.
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4. For each element pj in B, choose a random orientation ϑ̇j and construct the
point:

p̃j = pj +
(
σ(pj) cos(ϑ̇j), σ(pj) sin(ϑ̇j)

)
·

The resulting point p̃j is located at a distance σ(pj) from pj. Label each pair
(pj, p̃j) as inner which means that the two corresponding points belong to
the same cell. This is motivated by the intuition that a single cell keypoint
is very unlikely to span more than one cell because it represents a structure
inside a cell. The labels obtained by this step and by step 2 are illustrated in
Figure 7.1 (b).

5. For each inner/cross pair (p∗j ,p
∗
l ), extract the following feature:

Vjl = Iσ̄unsup(p∗j)− 2 extremumjl + Iσ̄unsup(p∗l ),

where extremumjl is, by definition, either the maximum (when BTunsup = +1)
or the minimum (BTunsup = −1) intensity along the line segment between
p∗j and p∗l . Note that this feature is an adapted version of feature V2 in the
supervised learning approach (cf. Eq. 5.5) which was ranked among the best
features by the random forest (cf. Table 5.5).

6. Estimate the two class conditional densities P̂ (V |inner) and P̂ (V |cross) assum-
ing a Gaussian distribution. This is simply done by estimating the mean and
variance of V for each of the two Gaussian distributions.

So far, a profile classifier was trained using the input image. The posterior probability
P̂ (cross|V ) assuming equal priors P̂ (cross) = P̂ (inner), i. e.:

P̂ (cross|V ) =
P̂ (cross)P̂ (V |cross)

P̂ (cross)P̂ (V |cross) + P̂ (inner)P̂ (V |inner)

=
P̂ (V |cross)

P̂ (V |cross) + P̂ (V |inner)
,

is then used to rank each two nearby keypoints (cf. Figure 7.1 (c)). This ranking
expresses the probability that they belong to two different cells. In order to reduce
runtime, only the three nearest neighbors of each keypoint are considered. The re-
sulting ranks are then used as input for an agglomerative hierarchical clustering with
average linkage similar to Chapter 5. The resulting clusters at a cut-off equal to 0.5
(cf. Figure 7.1 (d)) represent the detected cells. Inside each cluster, the arithmetic
average of the keypoint coordinates identifies the center of a detected cell.
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K-medians cell/background clustering

Automatic generation of ground truth
using the proposed

(a)

Application of the learned

Agglomerative hierarchical

(b)

(c)

(d)

self-labeling algorithm

profile classifier

clustering

cross
inner

cross
inner

Figure 7.1: Illustration of the cell/cell keypoint clustering. The circle inside each
figure shows a magnified view. a) Cell keypoints resulting from the cell/background
k-medians clustering. b) Point pairs chosen by the self-labeling algorithm for training
a profile classifier. Each pair is indicated by a line segment. c) The learned profile
classifier is employed to rank nearby keypoint pairs. The output is probabilistic, but
only the binary classification result is shown. d) Result of hierarchical clustering
using the ranks obtained from the previous step. Each cluster represents a detected
cell.
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7.3 Evaluation

As mentioned in Chapter 4, the ground-truth type of all datasets except [Arte 12] is
cell border delineation, while in the dataset of [Arte 12] a dot is marked at the center
of each cell. This difference in ground-truth representation leads to a difference in the
evaluation procedure. In all datasets except [Arte 12], a cell is considered detected
if the hit point belongs to the cell mask and the centeredness error (cf. Eq. 5.19) is
used to assess the deviation from the cell center. This is the evaluation procedure
used with the supervised approach in Chapter 5 and Chapter 6. In the dataset of
[Arte 12], cell masks are not available. Therefore, a cell is considered detected if the
distance to the ground-truth cell center is less than the minimum cell radius. The
latter was set after [Arte 12] to 5 pixels. Figure 7.2 exemplifies detection results of
our unsupervised approach for the real cell lines of the standard bright field dataset
while Figure 7.3 exemplifies the phase contrast results. Quantitative evaluation is
given in the next paragraph. The evaluation results of [Pan 10] and [Arte 12] are
given according to their corresponding papers.

A comparison with our supervised approach presented in Chapter 5 on bright
field microscopy is shown in Table 7.1. The figures of the supervised approach in
Table 7.1 were obtained by image-wise cross-validation in each cell line: one image
per cell line is used for training and the other images of the same cell line are used for
testing. The results of the unsupervised approach were obtained by averaging each of
the F-measure, time, and centeredness error over images per cell line. A comparison
with [Arte 12] and [Pan 10] on phase contrast microscopy is shown in Table 7.2. The
shown results of the approaches [Arte 12] and [Pan 10] in Table 7.2 were generated by
the hold-out method: [Arte 12] was trained using 11 images and tested on other 11
images. Similarly, [Pan 10] was trained using 10 images and tested on other 10 images.
We evaluated our unsupervised approach on the same images which were used for
testing each of them (the images described in Table 4.2). Tables 7.1 and 7.2 show
that the proposed approach is very close in terms of F-measure and centeredness error
(when available) to the supervised approaches. However, the proposed unsupervised

Supervised Unsupervised
approach proposed

of Chapter 5 approach

F-measure (%)
CHO 84.2 85.1
L929 86.5 88.3
Sf21 97.0 89.5

Time (seconds)
CHO 45.9 10.5
L929 36.7 10.9
Sf21 40.7 14.4

Centeredness error
CHO 0.48 0.40
L929 0.38 0.42
Sf21 0.16 0.23

Table 7.1: Comparison with the state-of-the-art on bright field microscopy



110 Chapter 7. Unsupervised Cell Detection

Supervised Supervised Unsupervised
Pan et al. Arteta et al. proposed
[Pan 10] [Arte 12] approach

F-measure (%) Hela - 88.0 88.7
Bovine 94.6 - 86.0

Time (seconds) Hela - 30.0 1.5
Bovine 900.0 - 3.5

Centeredness error Hela - - -
Bovine - - 0.11

Table 7.2: Comparison with the state-of-the-art on phase contrast microscopy

(a) CHO (b) L929

(c) Sf21

Figure 7.2: Samples of the detection results on bright field microscopy: each plus
sign marks a detected cell.
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(a) Hela (b) Bovine

Figure 7.3: Samples of the detection results on phase contrast microscopy: each plus
sign marks a detected cell. The two shown images have different resolutions but they
were scaled for display.

method is much faster especially when compared with the phase contrast approaches
where it is one or two orders of magnitude faster.

The blob type was correctly picked for all images by Eq. 7.1. As can be seen in
Eq. 7.1, this blob type is decided by the sign function. Therefore, the reliability of
the decision is proportional to the absolute value of the sign operand. We observed a
little improvement (data not shown) of this reliability when both PCR and scale are
used for weighting (as in Eq. 7.2) compared to the case when only the scale is used
(as in the supervised approach).

Lastly, we conducted a qualitative evaluation of the unsupervised approach on
COSIR images similar to Section 5.8.6. As shown in Figure 7.4a and Figure 7.4b,
the unsupervised approach completely fails. This is expected as intensity, which is
used as a feature in the k-medians clustering, is not discriminative in the presence of
illumination artifacts. In Figure 7.4c and Figure 7.4d, the phase contrast k-medians
feature space was used yielding better, but still unsatisfying, results.

7.4 Discussion

Both blob type detection and scale adaptive smoothing were proposed in the super-
vised approach in Chapter 5. In contrast to Chapter 5, where only keypoints which
belong to cells (known from ground truth) are considered, the blob type BTunsup

was computed in this chapter in unsupervised manner by considering all keypoints.
In addition, we use both scale and PCR to weight the keypoint contribution to
BTunsup whereas only scale is used in the supervised approach. For the scale adaptive
smoothing, we use a weighted average instead of the simple arithmetic average used
in Chapter 5. In general, we can conclude that SIFT can be successfully employed
for unsupervised structure-of-interest measurements such as mean scale and dominant
curvature direction.
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(a) (b)

(c) (d)

Figure 7.4: Evaluation on COSIR images: the unsupervised approach fails on COSIR
images, mainly, due to illumination artifacts and insufficient contrast. For the k-
medians clustering, the bright field features were used in the upper row and the
phase contrast features were used in the lower row (cf. Section 7.2.5). Compared
to bright field features, phase contrast features yield better, but still unsatisfying,
results.
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In the cell/cell clustering step, a self-labeling algorithm was employed to train a
ranking classifier. This classifier learns from extreme cases and applies the learned
model on intermediate ones. In other words, training and testing feature vectors are
drawn from different distributions. Therefore, the features should be chosen carefully
so that they do not overfit the training samples. With this in mind, we confined
ourselves to use a one-dimensional feature space and a simple generative model. We
think that the cell/cell clustering step presented in this chapter may be improved
by applying transductive transfer learning techniques. On the other hand, for the
possibly less-reliable cell/background clustering, we think that applying transductive
learning methods may alleviate the limitations of k-medians. In the self-labeling
algorithm, due to the use of SIFT, it was possible to define a scale-invariant notion
of the extreme cases. Consequently, the algorithm could successfully detect cells in
images of different resolutions and/or cell types without any change in the parameter
values.

On images obtained by phase contrast microscopy and standard bright field mi-
croscopy, the proposed approach achieves detection accuracy which is close to three
state-of-the-art supervised cell detection approaches in much less time, without train-
ing data, and without manual parameter-tuning. On the other hand, it fails on
COSIR images which exhibit less contrast and suffer from illumination artifacts. We
thus believe that under standard conditions, the cell detection problem is, to a large
extent, solvable by self-supervised techniques which learn from the input image itself
even though more research is required in this direction. Nevertheless, when reliability
is a main concern or when cell images deviate from standard conditions, supervised
approaches are more appropriate.
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Chapter 8

Outlook

In this chapter, limitations and shortcomings of the proposed approaches are more
closely considered. Moreover, possible extensions are discussed and proposals for
further work are made.

8.1 Automatic Defocus Distance Selection

For solving the TIE or estimating the local phase images, the axial intensity derivative
is required. This derivative was estimated by subtracting two images at two different
focus levels, for instance, I(0) and I(∆z). Choosing a proper defocus distance ∆z is
important for recovering phase values correctly. Mathematically, in order to estimate
∂I/∂z, ∆z must approach zero. However, due to noise in physical world, such small
distances yield very poor SNR in the resulting derivative image. In order to improve
the SNR, a larger ∆z value is required as the contrast I(∆z)−I(0)

I(0)
is proportional to

∆z (cf. Eq. 2.23). In fact, using the forward finite differences to estimate the first
derivative of I(z) at z = 0 has the implicit assumption that I(z) is linear inside
[0,∆z]. Eq. 2.23 reveals that this assumption of linearity is plausible. However, by
increasing ∆z, smoothing with the point spread function of the optical system also
increases leading to non-linear changes which are not modeled in Eq. 2.23. Therefore,
an optimal defocus distance which represents a trade-off between SNR and excessive
smoothing is required for a reliable estimation of the axial derivative. As pointed out
in literature [Soto 03, Wall 10], this optimal defocus distance depends on the frequency
spectrum of the imaged object and SNR of the image detector.

The aforementioned optimal defocus distance is ideal for estimating physical phase
and low-pass monogenic local phase values. However, cell detection poses a different
objective function. In other words, a defocus distance which yields the lowest cell
detection error is different from the defocus distance which yields the lowest error
in estimating phase values, even though both of them are trade-offs between the
same players (SNR and blurring). Moreover, an optimal defocus distance for cell
segmentation is, in principle, different from the two previous optimal distances.

In a study of focus curves of phase objects conducted also in context of the COSIR
project [Scho 14], it was shown that focus curves show untypical behavior when com-
puted for phase objects. For homogeneous cell cultures, i. e. for cultures in which
most cells tend to lie in the same z-plane, both normalized variance and Tenenbaum
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gradient focus measures exhibit a configuration termed phase effect characteristic
(PEC). This configuration is defined by a minimum at the optical focus position and
two maxima, one in each defocusing direction. It was suggested in [Scho 14] to use
the images at the two PEC’s maxima of the normalized variance for cell detection
and the images at the two PEC’s maxima of the Tenenbaum gradient for cell seg-
mentation. This was, however, only anticipated and not shown to be working in an
experimental evaluation. More research is thus required in this direction.

8.2 Learning to Detect Concave Cells

In order to classify keypoint-pairs as either inner or cross, for each keypoint-pair
(p1,p2), we extract an intensity profile along the line segment between p1 and p2.
While this is very efficient and easy to implement, going only along the line segment
from p1 to p2 implicitly assumes that the cell shape is not concave between these
two keypoints. To a large extent, this assumption holds for all cell lines used in this
thesis. However, in order to make our methods more general, paths between keypoints
need to be selected more carefully. One solution for that is to follow the easiest-to-
climb path [Pan 09, Pan 10] between the two cell keypoints. This path is found using
dynamic programming in the neighborhood of the two corresponding keypoints. The
resulting path is thus a local optimum. We suggest investigating the random walker
with restarts (RWR) [Kim08] for computing a dissimilarity measure (probability of
belonging to different cells) between nearby keypoints. Since the random walker
can follow any path between the two keypoints, the resulting solution is global. In
addition, these random paths do not need to be simulated or manually extracted as
this problem is known to have an elegant analytic solution.

8.3 Replacing SIFT

SIFT keypoints were heavily used in our methods. While SIFT attains a very good
reputation in the computer vision research community, most companies will not prefer
incorporating it in their products as it is a patented technique. SIFT is composed
of a detector and a descriptor. For our algorithms, we think that it is fairly easy
to replace the SIFT descriptor as we already have a rich set of features for keypoint
classification. For replacing the SIFT detector, we need a local feature detector which
fulfills the following requirements:

1. It detects blobs in intensity. This excludes feature detectors which are based
on corner detection such as FAST [Rost 05] and BRISK [Leut 11].

2. It provides a measure of keypoint strength which can replace the DoGγ1 in
SIFT.

3. It provides a mechanism to differentiate between black-on-white and white-on-
black blobs.

4. Both scale and orientation are specified for each keypoint.
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The SIFT’s PCR was used in our algorithms as a keypoint feature in the supervised
approach (cf. Section 5.3.1) and as a weight in the unsupervised approach (cf. Eq. 7.2).
However, according to the resulting feature ranking and experimental evaluation, it
is not indispensable and the algorithms will thus not loose much performance by
omitting it.

8.4 Reliable Unsupervised Keypoint Learning

In the unsupervised approach presented in Chapter 7, it was shown that it is pos-
sible to learn a profile classifier from the input image itself based on automatically
generated ground truth. However, the experimental evaluation showed that, mostly
due to inefficiency of the cell/background clustering step (cf. Section 7.2.5), the un-
supervised approach fails on images suffering from illumination artifacts. One may
think of investigating transductive learning techniques for alleviating the limitations
of k-medians clustering. This adjustment, albeit expectedly helpful, is not suffi-
cient as it may improve the learning model but does not incorporate information
characteristic to cell images. Such information was employed, for instance, by the
self-labeling algorithm for profile learning (cf. Section 7.2.6). Inspired by the success
of this self-labeling algorithm, one may wonder whether it is possible, based on some
fair assumptions, to design a learning algorithm in the same spirit for cell/background
separation which does not require manually-labeled ground truth.

8.5 Extracting Features From the SIFT GSS

In the proposed supervised approach of Chapter 5, both keypoint features and profile
features were extracted from a smoothed image. The standard deviation of the Gaus-
sian kernel used for smoothing was set to mean scale σ̄ of the one-sided keypoints of
the input image, and the resulting operation was thus called scale adaptive smooth-
ing (cf. Section 5.4.3). This has the advantage of implicitly incorporating relevant
structure size into the feature extraction pipeline. It was also shown that this step,
i. e. extracting the features from the smoothed image Iσ̄, improves the accuracy of
cell detection (cf. Section 5.8.2), even though in our image database, the standard
deviation of cell size in the same image1 is not small. For instance, in the L929 cell
line, the major axis length of cells in a single image is estimated as 71.74 ± 33.16
pixels2 and the minor axis length is 32.96± 10.42 pixels.

As alternative to this global strategy, one may think of extracting the features
from the SIFT GSS. For example, intensity stencil, ray features, and variance map
at a keypoint (x, y, σ, ϑ) can be extracted from the level L(., ., σ) in the GSS (instead
of Iσ̄). Moreover, profile features for an intensity profile between p1 and p2 can be

1Since σ̄ is computed for each image, the standard deviation of cell size in the considered image
(not in the entire training data) is what matters here.

2This is computed as follows: in each L929 image, the mean and standard deviation of major
axis length of the cells in this image are computed. The value of 71.74 is the average of the
aforementioned means over all L929 images while the value of 33.16 is the average of the standard
deviations. Estimating the minor axis length is performed in a similar way.
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extracted from a GSS level which is relevant for both keypoints, say L(., ., σ1+σ2
2

)
(approximated to the closest available level in the GSS). On one side, this strategy is
more scale-specific and one may thus expect improvements in detection accuracy. On
the other side, there is no clue about the relevant structures in the image. Consider,
for instance, two keypoints at a very low scale, the decisions (cell/background and
inner/cross) will be made based on image details which are likely to be too small
compared to cell size. This results in lack of global information. More investigation
is thus required in order to gain the advantages of both strategies.

8.6 Application on Other Microscopic Modalities

In this thesis, we presented cell detection results on images acquired using phase
contrast microscopy, standard bright field microscopy, and COSIR hardware. In
addition, there are experiments on other microscopic modalities not reported so far.
For instance, we applied the supervised approach of Chapter 5 for nuclei detection
in fluorescence microscopy and also for molecule detection (nano-scale objects) in
scanning tunneling microscopy. Similar to the experiments reported in this thesis,
one image was used for training and no parameter tuning was conducted. These
experiments provided good qualitative results but they were not performed on a large
scale. Therefore, they can be seen as a proof-of-concept and serve as indicators that
the supervised pipeline can be employed in diverse tasks where detection of blob-like
structures is involved.

8.7 Adaptation of Standard Features Based
on Keypoints

In Section 5.3, keypoint-based forms of variance maps, ray features, and intensity
stencils were proposed. As mentioned earlier, this extraction scheme is sparse, scale-
invariant, orientation-invariant, and enables feature parameters to be tailored in a
meaningful way based on a relevant scale and orientation. While this is similar to
the concept of keypoint descriptors in the literature, we think it can be more widely
applied in application-dependent tasks to other standard feature sets, say for instance,
Haralick texture features [Hara 73] and Haar-like features [Papa 98, Viol 01].

8.8 Cell Viability Determination

As explained in Section 2.4, experiments of cell viability determination are typically
performed in laboratories using staining. A widely-accepted standard for this process
is the PI-staining (cf. Figure 2.8). It was shown in literature that supervised machine
learning methods can separate viable from non-viable cells based on visual appear-
ance as depicted in unstained cell images. In this case, staining is required only for
obtaining ground-truth labels to train the involved classifiers. In fact, this automatic
viability determination from unstained images has a great practical impact because
of at least two reasons: Firstly, measurements of viable cell concentration play a
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vital role in several important fields including biology, medicine, and pharmaceutics.
Secondly, the manual methods widely used for this purpose are time-consuming, la-
borious, and not accurate.

There are several published works which tackle the problem of automatic viability
classification based on unstained cell images. This includes viability determination
applied on: 1) cells from swine tissues in phase contrast microscopy using texture
features [Malp 03], 2) yeast cells in dark field microscopy using energy and entropy of
wavelet sub-images [Wei 08], 3) A20.2J murine B-cell lymphoma cells in bright field
microscopy using pixel patches [Long 06].

In context of the COSIR project, we also investigated cell viability determination
on both phase contrast and bright field images of CHO cells [Van 13]. An important
consequence of this work is that, at least on the datasets employed for this study,
viability can be determined from unstained bright field images with accuracy compa-
rable to that obtained from phase contrast images. This was the case with different
feature sets including the keypoint features of Section 5.3.1. For extending this work,
we make the following points:

• Both [Van 13] and [Wei 08], even though being done with different cell types
and microscopic modalities, share a common observation: dead cells tend to be
more homogeneous and show less cellular details. Therefore, incorporating more
features which capture this property may improve classification accuracy. To
give just one example, in [Wei 08], energy and entropy of wavelet-decomposition
sub-images (up to the second level) features were extracted from a fixed-size
patch around the center of each detected cell. These features were shown to
be discriminative on the dark field images. Adapting them to the keypoint-
based feature extraction scheme in our pipeline may thus improve the viability
classification rate on bright field images.

• Is it more appropriate to perform cell viability determination at the cell level
(after cell detection) or at the keypoint level? The answer depends on how each
of them is implemented. The first choice is more intuitive. On the other hand,
the second case seems to be convenient in our supervised cell detection pipeline
for three reasons: 1) It is straightforward to extend the keypoint classifier for
three classes (background, viable, and non-viable) instead of the current two
classes (background and cell) as the random forest is inherently a multi-class
classifier. 2) The keypoint features of Section 5.3.1 worked pretty well for the
viability determination experiments in [Van 13]. 3) At the end of cell detection
in our pipeline, one obtains a cluster of keypoints inside each cell. In one clus-
ter, there will be, in principle, both viable and non-viable keypoints. It is then
possible to aggregate the results of the same cluster, either to obtain a confi-
dence index or to make a more reliable decision. The values of keypoint scale,
orientation, DoGγ1, and PCR can be employed to weight individual keypoint
contributions to the final decision.

• As in any study, soundness and generalizability of the derived statements are
dependent on diversity of the considered data. For viability determination,
this seems to be of special importance as cell death cannot be uniquely and
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unambiguously defined and it may manifest itself in different morphological
behaviors. For instance, while the lack of cellular details was a prominent
feature of non-viable cells in [Wei 08] and [Van 13], the fragmentation into
small subcellular structures was the the main observation made on dead cells
in [Malp 03].

8.9 Simulation of Cell Image Stacks in Bright Field
Microscopy

In this thesis, the software package SIMCEP [Lehm07] was employed to simulate
additional cell images along with their ground-truth masks. This software was orig-
inally developed for fluorescence microscopy. As mentioned in Section 4.1.3, it was
used in our experiments due to the unavailability of a proper alternative for bright
field microscopy. We suggest to extend SIMCEP for simulating cell image stacks in
bright field microscopy as follows: it can be assumed that a simulated SIMCEP image
without cytoplasm (cf. Figure 4.1d) represents a phase map φsim(x, y) of a very thin
sample. In this case, the image stack can be theoretically obtained by solving the
simplified form of the transport of intensity equation (cf. Eq. 2.23) for I(z):

I ideal
sim (x, y, z) =

−I0

k
z∇2
⊥φsim(x, y) + I0, (8.1)

where I0 = I ideal
sim (x, y, 0) = constant and z is the distance to the focus position which

is assumed to be at z = 0. Eq. 8.1 describes an ideal image because blurring by point
spread function of the optical system is not modeled. Incorporating a point spread
function PSFsim in the simulation yields:

Isim(x, y, z) = I ideal
sim (x, y, z) ∗ PSFsim(x, y, z)

=

(
−I0

k
z∇2
⊥φsim(x, y) + I0

)
∗ PSFsim(x, y, z)· (8.2)

For a diffraction-limited optical system, i. e. a system whose resolving power is lim-
ited only by the wavelength of light, the PSFsim is given by an Airy pattern (cf. Sec-
tion 2.7). A more realistic PSFsim would also model the aberrations caused by hard-
ware imperfections and the deviations resulting from experimental setup in labora-
tory. From this perspective, the PSFsim model of Gibson & Lanni [Gibs 92] seems to
be a good candidate, especially that it can be used in a bright field setup [Tadr 10].
For the purpose of this discussion, it is sufficient to assume a Gaussian approximation.
In this case, the standard deviation of the Gaussian kernel σpsf is linearly increasing
with the defocus distance [Ague 08]:

σpsf(z) = C1 |z|+ C2, (8.3)

where C1 and C2 are related to microscope parameters and experimental setup. They
can be thus considered as part of the simulation parameters. By using this Gaussian
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approximation model for PSFsim in Eq. 8.2, the simulated bright field stack can be
given as:

Isim(x, y, z) =

(
−I0

k
z∇2
⊥φsim(x, y) + I0

)
∗ s(x, y, σ2

psf)

=

(
−I0

k
z∇2
⊥φsim(x, y) + I0

)
∗ 1

2π(C1 |z|+ C2)2
e
− x2+y2

2(C1|z|+C2)
2 , (8.4)

where s is the Gaussian kernel. Note that k, I0, C1, and C2 are constants which can
be set by the user along with the other simulation parameters.

If the simulated phase map φsim(x, y) contains noise in background, ∇2
⊥φsim(x, y)

in the background is not zero. In this situation, inside the same lateral plane (same z
value), the simulated increased contrast by defocusing is nothing more than a scaling
by a constant z followed by smoothing, which is, unlike natural defocusing, does not
improve the contrast. Therefore, this scaling in the simulation has to be done only
for cell pixels as to mimic the natural defocusing process correctly.
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Chapter 9

Summary

In this thesis, automatic unstained cell detection on bright field microscope images
was investigated. The research was done in context of the interdisciplinary research
project COSIR. COSIR aimed at developing a new microscopic hardware having
the following attractive feature: it can be placed inside the incubator where cells
can be cultivated under ideal physical conditions. The device is composed of 24
channels, each of which delivers an image of a single well from a 24-wells microtiter-
plate. A bright field microscopic pipeline was implemented in each channel. Due to
size limitations and other manufacturing challenges, the bright field technique was
preferred over other microscopic modalities. In addition to introducing the COSIR
project in Chapter 1, a review of the state-of-the-art in unstained cell detection was
presented and the contributions of this work to the progress of research were stated.

In Chapter 2, the most widely-used microscopic image modalities were presented.
The main focus was on light microscopy, i. e. microscopic techniques which employ
visible light in order to form an image of a given specimen. Magnification mechanisms
in these light microscopy techniques are conceptually similar and can be explained
using the thin lens model and the compound microscope principle. On the other hand,
the interpretation of information in the acquired images is modality-dependent. In
bright field microscopy, image formation is based on the attenuation of light amplitude
due to light absorbing induced by the imaged specimen. A fluorescence microscope,
on the other hand, depicts the fluorescent radiation of fluorescent materials injected
in the specimen. Furthermore, in phase contrast microscopy, the obtained contrast
is a result of variations in light phase upon passing through different parts of the
specimen, which are assumed to vary in refractive index and/or thickness. These
phase variations cannot be detected by a CCD chip or human eye, and hence, in order
to form an image, phase variations are converted to amplitude changes using the so-
called Zernike’s trick. Related to both phase contrast and bright field techniques,
the so-called quantitative phase microscopy is increasingly gaining more interest. In
short, it yields phase information computationally from bright field images obviating
the need to the expensive and complicated phase contrast hardware. An additional
advantage of this technique is that the obtained phase information is quantitative.
This enables reconstruction of refractive index or thickness profile from the computed
phase maps. The transport of intensity equation, being a promising quantitative
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phase technique, was explained in Chapter 2 and put in context with the more general
Helmholtz’s equation and wave equation.

In Chapter 3, theoretical concepts concerning blob detection, random forests, and
agglomerative hierarchical clustering were presented. Our cell detection methods
belong to the interest-point based methods. These interest points are detected as
scale-space extrema of a blobness measure such as the Laplacian of Gaussian or the
difference of Gaussians. Comparing the raw derivative values at different scales (for
finding scale-space extrema) is inappropriate as the derivative amplitude always de-
creases with smoothing (increasing scale t). In the γ-normalized derivatives, however,
the decrease of derivative amplitude by smoothing is compensated by multiplying the
mth-order derivative with tγm/2. Lindeberg showed that a γ-normalized derivative
attains an extremum at a scale related to structure size. Moreover, when γ = 1, the
derivative amplitude at the extremum is scale-independent. These principles were
employed and extended in SIFT along with carefully-chosen parameter values and
intensive evaluations in order to detect interest points reliably and efficiently. In ad-
dition to blob detection, in Chapter 3, the concepts of decision trees, bagging, feature
random selection, and random forests were explained. Moreover, the basic principles
of agglomerative hierarchical clustering were discussed. Of special importance is the
Lance-Williams model which expresses a linkage method using a recursive equation
so that it can be computed efficiently. In addition, the so-called monotonicity of the
resulting clustering trees can be guaranteed if the model coefficients fulfill certain
requirements.

In Chapter 4, we described the image materials used for evaluating the proposed
cell detection algorithms. We acquired standard bright field images of three cell
lines and simulated other two cell lines. These images along with their ground-truth
masks are available online so that they can be of benefit for the community. Moreover,
COSIR images were also employed in a qualitative evaluation. The COSIR image
set was obtained at the end of the financial support period of the COSIR project,
as to reflect the most recent status of the hardware. In addition to the bright field
images acquired by us, phase contrast images collected by other research groups were
considered for the evaluation.

In Chapter 5, a new supervised cell detection approach is introduced. We em-
ployed a point-based method where a two-class problem is solved first in order to clas-
sify keypoints as belonging to background or cells. Cell keypoints are then grouped
together by another classifier so that it is possible to rank each pair of keypoints
in the sense whether they belong to the same cell or to different cells. While this
rough pipeline was used in the literature of phase contrast imaging, in this thesis,
considerable novel contributions were added and heavy experimental evaluations were
conducted (cf. Section 1.3). Standard pixel-based feature sets such as ray features,
intensity stencils, and variance maps were adapted so that they can be extracted in
a keypoint-based manner. This adaptation makes the aforementioned feature sets
sparse, scale-invariant, and rotation-invariant. In addition, their related parameters
can be chosen in a meaningful way according to a relevant scale and orientation. The
probabilistic result of the profile classifier, indicating the probability that a pair of
keypoints belongs to two different cells, can be seen as a dissimilarity measure. This
dissimilarity is used as input for an agglomerative hierarchical clustering procedure.
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Instead of the standard linkage methods, we employ a novel SIFT-based method
which incorporates the information obtained by SIFT keypoints in the linkage. We
proved that this linkage method is combinatorial, i. e. it can be written as a Lance-
Williams recursive equation, and hence, the clustering procedure can be performed
efficiently. Moreover, we showed that it is monotonic, and the resulting dendrograms
are thus interpretable.

A special care was given to robustness with respect to illumination artifacts. This
robustness was achieved by: 1) Making keypoint features and profile features invariant
to local shift of intensity. 2) Refraining from taking decisions based on large image
regions, as in this case the illumination field cannot be approximated by a constant.
For instance, only short-length intensity profiles are extracted and the customized
linkage method gives a weight to each intensity profile inversely proportional to the
squared length of the line segment between the corresponding keypoints (cf. Eq. 5.8).
Learning to extract short-length profiles was done in a scale-invariant manner so that
the maximum inner profile length (cf. Section 5.4.2) can be learned from training
images having diverse resolutions and applied then on testing images of different
resolutions.

In order to test the approach’s robustness, it was trained with images at specific
scale, orientation, and illumination conditions. The trained model was then tested
on images at completely different scales, orientations, and illumination artifacts. The
results show that the proposed approach is very robust with respect to these factors.
A general additional consequence from the evaluation is that the algorithm can learn
to detect cells efficiently from a relatively small training dataset: in our experiments,
one image per cell line was used for training, while the remaining images were used
for testing. Moreover, the system was trained and tested in a completely automatic
manner since no manual parameter tuning was required.

We pointed out in the introduction that an interesting link between physical phase
of light and local phase was introduced recently in the literature. Since this was not
sufficiently studied by other researchers, we investigated part of its applications for
bright field image analysis. The aforementioned link can be briefly described as
follows: the local phase of the monogenic signal framework can be used to approxi-
mate the solution of the transport of intensity equation, which is the physical phase
of light. This approximation is valid under two conditions: 1) The axial intensity
derivative is used as input of the monogenic framework. 2) A low-pass filter which
approximates the inverse Laplacian is utilized instead of the typically-used band-pass
filter. In Chapter 6, we explained this link in detail and clarified its plausibility. We
showed with several experiments that local phase is more discriminative than defo-
cused images in pixelwise cell/background classification. Moreover, we showed that
both TIE-solution images and local phase images can be successfully employed to im-
prove joint learning of suspended and adherent cell detection. When we trained our
supervised approach presented in Chapter 5 on both suspended and adherent cells
(joint learning), the detection accuracy was reduced compared to the case of separate
learning where the algorithm is trained and then tested on each cell type alone. This
reduction in detection accuracy is plausible due to the remarkable difference between
suspended and adherent cells in contrast and visual appearance. On the other hand,
when the keypoint features and the profile features of Chapter 5 were extracted from
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a TIE-solution image or from a local phase image instead of a defocused image, the
generalization ability of the algorithm was considerably improved yielding a result
which is almost as good as the separate learning case. One may question the im-
portance of this generalizability as follows: it does not hurt to train the supervised
approach of Chapter 5 on adherent cells alone and then applying the trained system
on test images which contain only adherent cells. Likewise, this can be done with
suspended cells. However, adherent and suspended cells coexist in cell cultures even
though this is not very well reflected in our image materials. In addition, the states of
adherence and suspension are two terminal cases with shades of gray between them.
This generalizability is thus relevant in practice.

In Chapter 7, we investigated unsupervised cell detection. This was seen in the
following perspective: if images do not exhibit severe artifacts and reliability can
be compromised for having a labeling-free cell detection system, then unsupervised
learning is easier to apply and manage. In this approach, the dominant curvature
type, i. e. whether cells are dominated by black-on-white or white-on-black blobs,
was successfully determined without supervision. Keypoints were categorized into
cell and background clusters using k-medians clustering. Afterwards, in order to
separate intensity profiles into inner and cross similar to the supervised approach, a
profile classifier was employed. However, this classifier was trained without manually-
labeled ground truth. A new self-labeling algorithm was suggested which can employ
SIFT keypoints and the cells available in the input image to generate ground truth.
This was motivated by the following intuition: we can assume ground truth (cross
or inner) for the very long line segments and also for the very short ones. A very
long line segment between two cell keypoints will cross the borders of at least one cell
and it can be thus labeled as cross. On the other hand, a very short line segment,
or more specifically, a line segment inside a single cell keypoint, can be labeled as
inner. This is justified by the observation that a cell keypoint, being an indicator of a
structure inside a cell, is very unlikely to span more than one cell. A profile classifier
is trained based on these extreme cases and applied then on the intermediate ones.
Due to the use of SIFT, this notion of long and short line segments can be defined in
a scale-invariant way which is, to a large extent, independent from image resolution
and cell type. The unsupervised approach was applied successfully on phase contrast
and standard bright field images and was comparable, with a bit inferior accuracy
but much shorter detection time, to state-of-the-art supervised approaches including
the one suggested in Chapter 5. However, it failed on COSIR images which exhibit
lower contrast and suffer from dominant illumination artifacts while our supervised
approach was able to detect cells reliably and efficiently on those images.

Chapter 8 contains proposals for further work. Suggestions were made to extend
the supervised approach using random walks, SIFT GSS, and cell viability determi-
nation. Moreover, discussions and recommendations were given regarding replacing
the patented SIFT technique, automatic selection of defocus distance, reliable unsu-
pervised cell/background separation, and simulation of bright field stacks.
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