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Abstract—Dual-energy CT imaging allows to separate mate-
rials and tissue based on their attenuation behavior using two
different X-ray spectra. Various techniques exist to acquire X-ray
and CT images with two different energies. One approach utilizes
a specific detector technology to discriminate the photons in the
emitted X-ray spectrum by their energy instead of integrating the
energy as in current applied detector technology. Photon-counting
detectors (PCDs) offer several advantages compared to traditional
energy integrating detectors such as improved detective quantum
efficiency (DQE). However, due to manufacturing challenges,
PCDs are still part of on-going research and not applicable in
a clinical scanner, yet. In this paper, a first step towards in-
vivo material decomposition for iodinated contrast agent from
background tissue in a porcine study using a large field-of-
view photon-counting detector is presented. First preliminary
results are encouraging to further exploit material decomposition
methods using the presented photon-counting detector. However,
major challenges remain with the current technology that need
to be investigated and addressed in future work.
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I. INTRODUCTION

Photon-counting detectors (PCD) offer significant advan-
tages to current energy-integrating flat panel detectors (FDs)
such as improved detective quantum efficiency (DQE) and
photon energy resolution [1], [2], [3]. In particular the ability
to differentiate material properties dependent on photon en-
ergies has attracted significant attention as it allows material
decomposition with a single scan, as data with both energies
is acquired simultaneously. This enables 2-D projection-based
decomposition of materials [4], [5], [6]. The acquisition of a
high energy (HE) and total energy (TE) image at the same
time point with a PCD, assuming 2 energy bins, solves the
problem of degraded image quality due to motion artifacts.
For example for a 2D digital subtraction angiography (DSA),
where the mask and the fill images are acquired at different
time points, severe motion artifacts can occur as visible in
Fig. 1. Modern C-arm systems allow to select the mask image
and also provide motion correction algorithms. However, these
cannot eliminate severe motion between mask and fill images.
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Fig. 1. Prominent motion artifact in DSA image may occur because mask
and fill image were acquired at different time points.

Current photon-counting detector technology still poses
significant challenges. Amongst other problems, an excess of
detected photons results in pulse pile-up and the detected
count rates are energy dependent and spatially varying [2],
[3]. So called homogenization approaches to compensate those
effects exist which result in significant improvements of the
acquired image stacks [7], [8]. Assuming a PCD with two
energy bins, a total energy (TE), high energy (HE), and low
energy (LE) image stack is acquired. The most benefit of the
homogenization techniques exists for the TE image. Results for
the individual energy bins (HE, LE), however may be inferior
(cf. Fig. 2). As pulse pile-up favors lower count rates, detectors
typically can only account for smaller pixel sizes and the X-
ray tube needs to be set to low exposure rates. As a result, the
acquired 2-D images have a noisy appearance and material
separation is not possible on the raw 2-D images.

All the previously mentioned challenges make it difficult
to advance from simulated phantom PCD experiments towards
integration into a clinical system. In this paper, a first attempt
towards projection-based material decomposition with a large
field-of-view photon-counting detector in an in-vivo porcine
study is presented. A non-linear denoising technique is applied
to the generated 2-D (LE, HE) image stacks to perform a
simple linear material decomposition. To the best of our knowl-
edge, this is the first study on in-vivo material decomposition
using a large field-of-view PCD.

II. MATERIALS AND METHODS

A. Photon-Counting Detector (PCD) Imaging

A large field-of-view dual-energy photon-counting detector
(XCD) for its application in interventional radiology was
”piggy-back” mounted to the flat panel detector (FD) of



Fig. 2. Homogenization algorithms improve spatially varying detection
behavior, but detector module artifacts are still present in the HE and LE
processed images.

an Artis zeego system (Siemens Healthcare GmbH, Forch-
heim, Germany). The detector is a customized OEM product
manufactured by XCounter ABB (Danderyd, Sweden). The
detector features a 1 mm cadmium telluride (CdTe) layer to
convert absorbed X-ray energy to an electrical signal. The
detector covers an active area of 30×5 cm2 made up of
several individual modules, each having a size of 1.25×2.5
cm2. Overall the 2D image matrix is 3072×512 pixel with an
isotropic pixel resolution of 100µm. The exposure integration
range is from 100µs-5s. The XCD features two energy bins
per pixel with an adjustable threshold with a counter depth
of 12 bit. The adjustable thresholds are only mean values
and can vary between different pixel modules. The two bins
allow synchronous acquisition of a total energy (TE) and a
high energy (HE) image can be performed. The detector also
features a charge sharing correction feature to restore the
energy that may spread over several neighboring pixel due to
fluorescence or charge dispersion and to count the event only
once. The detector design is similar to the small PCD presented
in Ullberg et al. [1]. The readout of the XCD is performed over
a gigabit ethernet connection and the generated 2D images are
visualized and stored on an external workstation. The same
pre-processing and conditioning as described in Ahmad et al.
was applied to the TE and HE image stacks [9].

B. TE-guided Bilateral Filtering

As previously mentioned, the 2D HE and LE image stacks
suffer from severe pixel noise compared to the TE image stack
(cf. Fig. 2). In order to improve image quality and to reduce

noise, a non-linear joint bilateral filtering (JBF) technique is
applied [10], [11], [12]. The approach exploits the improved
image quality of the TE image ITE(x) to filter the respective
(HE, LE) image under guidance at position x. The bilateral
filtered image I ′b(x) from the non-filtered image Ib(x), where
b ∈ {HE,LE} can be computed by

I ′b(x) =
1

c(x)

∑
u

gs(x,u)gI(x,u)Ib(x), (1)

c(x) =
∑
u

gs(x,u)gI(x,u), (2)

gs(x,u) = e−
||x−u||22

2σs (3)

gI(x,u) = e
− (ITE(x)−ITE(u))2

2σI (4)

Here, σs denotes the spatial standard deviation and σI denotes
intensity standard deviation used for the joint bilateral filter.

C. Material Decomposition

Due to the non-linearity of the photon count rate and since
the material decomposition is spatially quite variant, we chose
a simple linear model for material separation and assume that
this model is valid in a small patch of the image. In order
to compute a soft tissue suppressed image that only shows
contrast agent, we analyzed a small area ΩST containing only
soft tissue to compute regression coefficients m and t solving
the least-square problem:

arg min
m,t

=
∑

x∈ΩST

|| ln(I ′HE(x))− (m · ln(I ′LE(x)) + t)||22. (5)

The contrast projection IC(x) showing only iodinated contrast
agent can be computed by

IC(x) = ln(I ′HE(x))− (m · ln(I ′LE(x)) + t). (6)

D. Evaluation

1) Digital Subtraction Angiography (DSA): The PCD gen-
erated iodine images I ′HE(x) were compared to DSA-like
data. DSA is a popular method in angiographic imaging for
visualization of iodine-based contrasted vessels. For DSA-
imaging, the reference frame I ′b,ref(x), without contrast injec-
tion is acquired and subtracted to get only the contrast-filled
projection Ib,DSA(x):

Ib,DSA(x) = I ′b(x)− I ′b,ref(x). (7)

This procedure can be performed for both energy bins b
(HE, LE).

2) Contrast-to-Noise Ratio (CNR): In order to quantita-
tively evaluate the contrast within vessel structure to back-
ground, the contrast-to-noise ratio (CNR) was computed.



III. EXPERIMENTS

Stanford Universitys Administrative Panel on Laboratory
Animal Care approved the protocol for this in-vivo animal
study. Arterial femoral access was established using percuta-
neous puncture for hemodynamic monitoring, administration
of medications, and the injection of contrast agent. For the 2D
scan a 20 mL of 100% iodinated contrast agent (Omnipaque
350 mg/mL, GE Healthcare, Princeton, NJ) was administered
over a pigtail catheter placed in the aortic root. The contrast
was delivered with a rate of 8 mL/s using a power injector
(Medtron, Saarbrücken, Germany). The 2D acquisition was
performed with requesting 81 kV, 10 ms and 800 mA from
the X-ray tube and the thresholds of the XCD were set to 8
keV for the lower and 39 keV for the higher energy bin.

IV. RESULTS

In the following section, the results of the TE-Guided
filtering and the material decomposition are presented in
comparison to conventional DSA-imaging. All algorithms were
realized using the CONRAD software package [13].

A. TE-guided Bilateral Filtering

In a first experiment, we explored whether TE-guided JBF
filtering reduces noise, improves image quality and still allows
to identify tissue clusters in a HE/LE channel scatter plot. A
1×1 cm2 patch of the image showing a contrasted vessel and
soft tissue background was selected for the scatter plot. Fig. 3
shows the LE versus HE scatter plot for a small region of in-
terest containing an iodinated contrasted vessel and water-like
background tissue. It can be seen that without smoothing, no
materials can be differentiated. Only after extensive smoothing,
material clusters for separation of different materials form even
though spatial resolution is drastically reduced. As shown in
Fig. 4, with TE-guided bilateral filtering similar tissue clusters
as seen with strong spatial smoothing appear, but preserving
the spatial resolution. Spatial smoothing with σs = 5 and a
TE-guided filtering with σs = 5 and σI = 10 were compared.
Visual comparison before and after filtering of the LE channel
which contains the most noise also confirms the effectiveness
of the TE-guided filtering, while Gaussian smoothing enables
the same differentiation and degrades severely the spatial
resolution (cf. Fig. 5).

B. Material Decomposition

Subsequently, we explored different methods to emphasize
the contrast filled right coronary vessel tree. As a first attempt
we investigated only a single detector tile as a first proof of
concept due to the large differences in energy count behavior
between the different detector modules. Fig. 6 displays the
results of the different methods. DSA of the HE channel shows
the contrast filled vessel with a CNR of 1.66. Using the TE-
guided filter improves the CNR to 2.46. On the LE channel, the
contrast is barely visible at a CNR of 0.64. There is only high
contrast at the top of the vessel, while contrast is significantly
reduced in most parts. TE-guided filtering also improves
contrast to a CNR of 1.32. The material decomposition image
also shows sub-optimal contrast compared to the denoised HE
channel. But the material decomposed image does not suffer
from any motion artifact. Its CNR is also higher than the HE

Fig. 3. Scatter plot for LE and HE photon counts. Identification of underlying
material or tissue in the non-filtered 2D HE and LE stack is not possible, due
to the excessive noise and spatially variant energy discrimination. Extensive
spatial filtering (2D-Gaussian filter) allows to form clusters for water and
iodine while decreasing spatial resolution.

Fig. 4. TE-guided filtering improves the ability to identify material and tissue
clusters in the 2D TE raw data, comparable to Gaussian filtering using a strong
spatial sigma.

raw image with 2.00 as noise is greatly reduced. The non-
uniformity of the energy counts across the single tile causes
the top part of the image and the bottom left to loose contrast.
Note that the water calibration was performed in the left center
of the tile which delivers the best signal-to-noise characteristics
in the image.

V. DISCUSSION AND CONCLUSION

In this proof-of-concept study the goal was to investigate
the first attempts towards material decomposition using in-
vivo data acquired with a large field-of-view photon-counting
detector. As a first feasibility test a simple and local method
for material separation was chosen due to the detectors spatial
variations. After pre-processing of the TE image stacks using
homogenization methods, the spatially variant energy resolu-
tion and noise still pose the biggest challenges. TE-guided
filtering reduces noise drastically while preserving spatial in-
formation. This results in increased CNR rates in DSA images
for HE and LE. However, DSA has the large disadvantage
that motion artifacts are introduced. Material decomposition
techniques are not effected, as the image is computed from
simultaneously acquired TE and HE image stacks. The current
detector shows significant differences in energy sensitivity and
energy resolution abroad detector modules. In particular at the
tile borders neighboring pixels may have significantly different



Fig. 5. LE channel before and after TE-guided filtering: The filtering reduces
noise significantly and preserves the edges of the contrast filled vessel. Note
that also the impression of the patches between the detector elements is
reduced as these are less apparent in the TE images.

Fig. 6. Patches of the different techniques to extract iodinated contrasted
vessel from background and respective CNR.

properties in terms of spectral separation. To alleviate this, we
investigated only a single tile for material decomposition. Still,
the CNR of the decomposed image is only slightly better than
the DSA of the LE projection of the same patch. It should be
mentioned that the trimming of the detector is not sufficient
and will be addressed in future work. Overall, we believe that
further investigations using more sophisticated methods found
in literature [14], [15], [16], [17] will help to improve material
decomposition that will finally enable applications as single
shot DSA.

Disclaimer: The concepts and information presented in
this paper are based on research and are not commercially
available.
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