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Objective. To demonstrate a novel approach of compensating overexposure artifacts in CT scans of the knees without attaching
any supporting appliances to the patient. C-Arm CT systems offer the opportunity to perform weight-bearing knee scans on
standing patients to diagnose diseases like osteoarthritis. However, one serious issue is overexposure of the detector in regions
close to the patella, which can not be tackled with common techniques. Methods. A Kinect camera is used to algorithmically
remove overexposure artifacts close to the knee surface. Overexposed near-surface knee regions are corrected by extrapolating
the absorption values from more reliable projection data. To achieve this, we develop a cross-calibration procedure to transform
surface points from the Kinect to CT voxel coordinates. Results. Artifacts at both knee phantoms are reduced significantly in
the reconstructed data and a major part of the truncated regions is restored. Conclusion. The results emphasize the feasibility of
the proposed approach. The accuracy of the cross-calibration procedure can be increased to further improve correction results.
Significance.The correction method can be extended to a multi-Kinect setup for use in real-world scenarios. Using depth cameras
does not require prior scans and offers the possibility of a temporally synchronized correction of overexposure artifacts. To achieve
this, we develop a cross-calibration procedure to transform surface points from the Kinect to CT voxel coordinates.

1. Introduction

C-arm CT systems (Figure 1(a)), in contrast to conventional
CT systems, have a high mechanical flexibility which gives
radiologists the opportunity to perform CT scans in a variety
of spatial positions. In particular, it is possible to rotate the
CT system around a vertical axis [1]. This enables imaging of
patients with knee diseases such as osteoarthritis while they
are standing in an upright position, hence while the knee is
bearing the weight of the patient [2].

One challenge of imaging relatively thin body parts like
the knee is the limited dynamic range of the C-arm CT flat
panel detector, leading to overexposure of the exterior regions
of the knee. If not avoided or compensated for, overexposure
leads to artifacts in the reconstructed volume, as shown in
Figure 1(b). The front and back of the knee appear blurry

and lack clearly defined outer boundaries. The image quality
of important parts of the knee image, such as the patella, is
severely affected by these artifacts.This has a negative impact
on reliability of the diagnosis.

Using a C-arm CT acquisition protocol with the patient
lying in supine position, several approaches are available to
avoid or compensate overexposure artifacts. Oneway to avoid
overexposure artifacts during acquisition is by covering the
knees with an additional absorber, for example, a rubber
belt [2, 3]. However, extra weight of the belt can cause great
discomfort for an upright patient with pains in the knees.

Different algorithmic methods for truncation correction
inC-armCT systems have been developed in the recent years.
Truncation artifacts that arise in scans with a small region
of interest can be effectively corrected without any explicit
extrapolation scheme [4]. If bigger portions of the patient
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Figure 1: (a) The Siemens Zeego C-arm CT system. The robotic arm allows free movement of the C-arm for scanning patients in standing
position. (b) Typical artifacts that arise when scanning knee-shaped objects with a C-armCT. Due to saturation, the original cylindrical shape
is lost, and the front is severely affected by artifacts (window level [−1000, 1500]).
are of diagnostic interest, different correction methods have
to be applied. In [5], additional knowledge through a prior
low-intensity scan is facilitated for artifact correction. In
the case of imaging of standing patients with knee diseases,
however, expected patientmovementmakes the use of a prior
scan very difficult.

Other methods, which do not use a prior low-intensity
scan, correct truncation artifacts through an appropriate
extrapolation model such as a water cylinder for the upper
body [6, 7]. In [8], themodel-based extrapolation is extended
by an iterative truncation correction algorithm, which is able
to handle cases where the water cylinder assumptions are
not exactly fulfilled. These model-based methods are not
applicable for knee imaging, as the anatomical structure is
too complex to be approximated by a single cylindrical or
elliptical object. Another approach which uses a multicylin-
der extrapolation model [9] yields better results. Similar
to the single water cylinder model, however, overexposure
correction only works for objects that sufficiently fit to the
simplified cylindrical knee models.

Hence, in order to bring the novel diagnostic possibility
of imaging knees of standing patients into clinical practice, it
is highly desirable to develop an imaging solution that avoids
these drawbacks.

In this paper, we present a method for correcting over-
exposure by combining information from a Kinect depth
camera with a C-arm system. As a proof of concept, we
demonstrate its feasibility for patients in supine position.
However, there is no fundamental limitation for applying the
same setup to patients in weight-bearing standing position.
In such scenarios, multiple Kinect depth cameras, observing
the patient from different angles, could be used for artifact
correction. The approach has the further advantage that the
information used for correction can be acquired simultane-
ously to the CT scan. Thus, depreciation of the correction
through patient movement is low in comparison to methods
relying on prior information.

The contributions of the paper are as follows:

(i) We introduce a specifically designed, easy-to-
reproduce calibration target for cross-calibrating a
C-arm CT system with a Kinect depth camera.

(ii) We propose a cross-calibration procedure between
the depth camera and the C-arm CT.

(iii) We present a depth-based correction of overexposure
artifacts.

Figure 2(a) shows a sketch of the cross-calibration pro-
cedure using a calibration phantom. The calibration target is
detected by both imaging systems and enables the computa-
tion of a transformation of the coordinates fromonemodality
to coordinates of the other modality.

Figure 2(b) shows a sketch of the imaging protocol. Once
the system is calibrated, a patient is placed into the field of
view of both modalities.

When imaging a patient, the Kinect depth data is used
to find the points of intersection between the X-ray beam
path and the object surface, that is, the points at which the
X-rays enter and leave the knee tissue. For each pixel in each
projection, the length of the beam path across the knee is
calculated. Overexposed pixels are corrected by extrapolating
the absorption along the corresponding line integrals.

In Section 2, we describe the phantom and the cross-
calibration procedure for transforming points between both
imaging modalities. In Section 3, we describe the pro-
posed projection-based artifact correction. In Section 4,
the reconstruction of the corrected projections is evaluated
and compared with an uncorrected volume and the ground
truth. In Section 5, we discuss the correction results and
limitations of our proposed method. In Section 6, we discuss
possible improvements and future work based on the current
correction method.
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Figure 2: (a) A Kinect camera is cross-calibrated to the C-arm CT using a phantom on the patient bench. (b) For overexposure correction,
the patient is imaged simultaneously by the C-arm and the Kinect.

(0, 1, 0)

(1, 0, 0)

(−√2

2
,
√2

2
, 0) (√2

2
,
√2

2
, 0)

(a)

z-axis

Origin of sphere mount

PDS-2 center

206

72

325

110

51

270

90

70

(b)

Figure 3: (a) Relative alignment of the predefined axes of the cylindrical PDS-2 phantom and the depth calibration structure with the unit
direction vectors in the Zeego coordinate system. (b)The origin of the depth calibration structure aligns with the center of the PDS-2 phantom
along the 𝑧-axis.
2. Kinect to CT System Cross-Calibration

The Microsoft Kinect camera provides a color image and
additionally per pixel the distance in 3D of the depicted scene
point to the camera. To use this distance information in a CT
scan, we determine the parameters for a rigid transformation
between both imaging systems through cross-calibration
procedure.

A cross-calibration phantom with known geometry is
observed by both imaging modalities to determine the
relative translation and rotation between both coordinate
systems.

The cross-calibration phantom consists of the cylindrical
PDS-2 calibration phantom, which is commonly used for C-
arm cone-beam CT calibration [10], and an attached depth
calibration structure. Figure 3 shows the basic design and
geometry of the phantom. The depth calibration structure is
a scaffold of orthogonal plastic rods.

Three spheres are attached on each rod. The spheres are
particularly suitable for detection and localization with the
Kinect camera from a wide range of viewing angles. The
goal of the calibration is to identify the three rods with the

coordinate axes and their intersection with the coordinate
origin.

From solely observing the cylinder surface, only the
direction of the axis of the cylinder could be determined.
The spheres allow the determination of the alignment of
the 𝑥- and 𝑦-axes purely based on depth data. Painting the
cylinder to indicate the axes directions, for example, would
introduce inaccuracies from the Kinect-internal RGB-to-
depth calibration to the cross-calibration procedure.

The use of the attachment could prove to be especially
advantageous in weight-bearing scanning scenarios, where
two ormore Kinect cameras are observing the phantom from
different angles for the calibration.

For processing the depth data, we use the Range Imaging
Toolkit RITK [11]. A visualization of acquired data can be seen
in Figure 4. Raw depth images from the Kinect camera are
relatively noisy, with a standard deviation of point-to-plane
distances of about 25mmat 1mdistance [12]. To counter this
noise, we apply spatial smoothing (Gaussian kernel with 𝜎 =2.5), temporal averaging (20 frames) and edge-preserving
smoothing (guided filter with 4-pixel support [13]).
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Figure 4: (a) shows an overlay of the depth and RGB data as captured by the Kinect camera. (b) and (c) show the separate RGB and depth
images as used for this work.

2.1. Sphere Segmentation and Fitting. First, a user has tomark
the spheres in the RGB data. We compute the estimated
projected size of the sphere from the depth information at
the marked point. Pixels of similar depth around the seed
point are recursively added to the sphere area, as long as the
distance of newly added pixels does not exceed the sphere
size.

Spheres belonging to the same axis are fitted to the depth
data. We estimate the sphere center for each connected set
of sphere surface points (see Figure 5). An initial estimation
of the sphere center is made by using 𝑥 and 𝑦 coordinates
from the initially user-selected spheres. The depth value of
the center is approximated by adding half of the sphere radius
to the mean depth value of the respective surface points. The
best fitting center point is determined using a least squares
error metric. Let p𝑖, 1 ≤ 𝑖 ≤ 𝑛, be the 𝑖th surface point in
Kinect 3D coordinates and c∗ the unknown Kinect 3D center
coordinate of the sphere. Then, c∗ is determined by solving
the convex optimization problem

c∗ = argmin
c

𝑛𝑝∑
𝑖=1

p𝑖 − c22 , (1)

where 𝑛𝑝 denotes the number of segmented sphere surface
pixels

2.2. Estimation of the Axes Directions. From the estimated
center points, position and direction of the axes are obtained

as follows. Per axis we use at least two center points (each axis
has 2 to 4 spheres, resp.).Without loss of generality, we aim to
recover one point on thefirst coordinate axis and its direction,
denoted as c1 and k1, respectively. Let 𝑛𝑠 ∈ {2, 3, 4} denote the
number of segmented spheres on this axis and c∗𝑗 , 1 ≤ 𝑗 ≤ 𝑛𝑠,
the center of the 𝑗th segmented sphere. The axis point c1 is
the 3D mean coordinate of all c∗𝑗 :

c1 = 1𝑛𝑠 𝑛𝑠∑𝑖=1c∗𝑗 . (2)

The algorithm for finding k1 is analogous to finding the best
fitting plane to the points. We solve this problem via orthog-
onal distance regression and singular value decomposition
(SVD) [14].

Let

A =((c∗1 − c1)T...(c∗𝑛𝑠 − c1)T) (3)

be a zero-mean matrix containing the displacement vectors
of the sphere centers c∗𝑗 to the mean center coordinate c1.
SVD yields a matrix factorization A = USVT, where S is a
diagonal matrix containing the singular values of A, and the
columns of U and V are, respectively, left- and right-singular
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Figure 5: (a) The green areas visualize the resulting segmentation in the RGB image. (b) Surface points of the segmented pixels. (c) Sphere
centers and subsequently the coordinate axes and origin are fitted to these points.

vectors corresponding to the singular values. Let k1 be the
eigenvector in V associated with the largest singular value in
S. Then,

a1 = c1 + 𝑡 ⋅ k1 (4)

is a least-square estimate of the first coordinate axis in
parametric form with scale parameter 𝑡. Accordingly, we
estimate other coordinate axes a2 and a3 from the two
remaining sets of sphere centers.

2.3. Estimation of the Kinect Coordinate Origin. We calculate
the axis origin as the estimated point of intersection of the rod
axes. Due to noise and estimation inaccuracies, the axes are
unlikely to intersect in one single point. Therefore, we define
the coordinate origin as the closest point to all three axes in a
least-squares sense [15].

The formula for calculating the closest point g to multiple𝑛-dimensional lines is the following (see Appendix A.1):

g = ( 𝑛∑
𝑖=1

I − k𝑖k
T
𝑖 )−1 ⋅ ( 𝑛∑

𝑖=1

(I − k𝑖k
T
𝑖 ) c𝑖) . (5)

The unit direction vectors k𝑖 and suspension points c𝑖 of
the axes are already known from the previous estimation of
the axes directions.

The solution g = (𝑥𝑔, 𝑦𝑔, 𝑧𝑔)T is the fitted origin of the
sphere mount in the Kinect coordinate system. All detected

3D points in the Kinect coordinate system are translated to
the estimated origin g:

pKinect
 = [[[[

𝑥3D𝑦3D𝑧3D]]]] − [[[[
𝑥𝑔𝑦𝑔𝑧𝑔]]]] . (6)

2.4. Coordinate System Transformation. Knowing the posi-
tion and rotation of the calibration structure to the phantom,
coordinates can be directly transformed from Kinect to the
C-arm CT (see also Appendix A.2). The coordinate system
origin of the C-arm CT lies in the center of the cylinder (cf.
Figure 3(a)).

LetW capture rotation around 𝑧-axis and tOrigins transla-
tion between 𝑔 and the center of the cylinder. Then

pZeego =WpKinect
 + tOrigins (7)

transforms a Kinect surface point pKinect


into a C-arm CT
coordinate pZeego.

3. Overexposure Artifact Correction

The flat panel detector used in C-arm CT imaging has a
limited dynamic range. If both knees overlap in a projection,
higher X-ray doses are necessary to penetrate both knees. In
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Figure 6: (a) shows an RGB image of the knee phantoms acquired by the Kinect camera. The corresponding preprocessed RGBD image can
be seen in (b).
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Figure 7: (a) The necessary surface points for the correction are selected by first disregarding the 𝑦-component of the points and the
intersecting X-ray. Only surface points that have the same 𝑧 coordinate as the trajectory line at their 𝑥 coordinate are selected. (b) The
calculation of the curve-line intersections is performed in 2D by only regarding the 𝑥- and 𝑦-values.
the exterior regions of the knees the X-rays are only slightly
attenuated and the resulting high intensities at the detector
cause saturation. Hence, information about these regions is
lost and saturation artifacts arise.

3.1. Projection-Based Extrapolation. The correction of the
saturation artifacts is performed for every detector line in
each projection separately. Joint use of Kinect and CT data
allows a straightforward correction of overexposure in three
steps:

(1) If a detector line in a projection contains overexposed
pixels, we determine the 3D points where the X-rays
entered and exited the knee.

(2) From these points, the length of the beam path
through the knee is computed.

(3) Overexposed pixels are corrected by extrapolating
a smooth absorption fall-off from nonoverexposed
pixels.

Note that the extrapolation does not automatically suppress
tissue variations at knee boundaries: the angular range in C-
arm CT scans usually amounts to 200∘. Upon tomographic

reconstruction of the knee volume, there exist for each
boundary voxel many projection angles where a sufficiently
thick portion of the knee is traversed, such that tissue varia-
tions at knee boundaries can in principle still be observed.

3.2. Geometric Considerations of Correction. Figure 7(a)
shows 𝑥-𝑧-axis view of an X-ray beam hitting an exemplary
detector line.We are interested in the length of the beam path
through the knees. Figure 7(b) shows the same trajectory in𝑥-𝑦-axis view. We are looking at rays on a plane defined by
the X-ray source and the currently considered detector line.
For each ray, we are seeking the intersection length of the ray
with the knees.

In our experiments, we simulate the knees with two
plastic bottles filled with water (see Figure 6). To simulate the
femurs in the legs in the CT images, two dense rods with a
density of 1000 g/cm2 are placed between the bottles.

In principle, the intersection length can be directly com-
puted from the nearest Kinect surface points at the entrance
and exit of the knee.However, tomake the resultsmore robust
to noise, we first fit a cubic B-spline curve to all points lying
on the plane and determine the intersection length from the
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Figure 8: Examples for the B-spline interpolation of the surface points of two plastic bottles and different intersecting lines. The computed
intersection lengths are (a) 209.91, (b) 213.25, and (c) 82.11.
spline. Note that this computation can be performed in 2D,
as all involved points are located on the same plane.

Examples for resulting closed cubic B-spline curves are
shown in Figure 8. Here, we observe two plastic bottles that
represented the knees. The line that passes through the curve
represents an example of the X-ray trajectory. In this case the𝑥-component of the X-ray direction vector is dominating;
that is, detector and radiation source lie close to the 𝑥-𝑧-
plane. Note the slight inaccuracies on the right side and
truncated horizontal contours due to limitations in the edge
detection of the depth camera. We extrapolated the surface
points on the unobserved side of the knee phantoms by
mirroring the visible points on a plane parallel to the 𝑥-𝑧-
plane.

A schematic explanation of the proposed extrapolation
method is shown in Figure 9. The objective is a smooth and
reasonable extrapolation of the line integrals at the transitions
to the overexposed regions 𝑥1 and 𝑥2.

For a smooth transition, the intersection lengths are
normalized to match the value of line integral at 𝑥1 and𝑥2, respectively. To prevent noise-related inaccuracies, we
use an average value of the last nonoverexposed points for
normalization.

The result of the Kinect-based correction of a CT projec-
tion is demonstrated in Figure 10.

3.3. Reconstruction Setup. We use the CONRAD framework
for reconstruction [16] after the artifact correction.

The reconstruction pipeline consists of a cosine weight-
ing filter [17], a Parker redundancy weighting filter [18],

a Shepp-Logan ramp filter [17], and a GPU-based back
projection tool [19]. After the reconstruction, the data is
normalized to the Hounsfield scale. In a final step, the recon-
structed data is smoothed with a bilateral filter (width: 5,
photometric distance: 500). The source-detector and source
to 𝑧-axis distances are 1200mm and 600mm, respectively.
We acquire 133 projections in a 200∘ rotation around the
object. The detector size in pixels is 1240 × 960 with a pixel
spacing of 0.308mm for 𝑥 and 𝑦. The mean distance of the
Kinect camera to the phantom is 700mm.

4. Results

We evaluate and compare the reconstructions of the four
projection data sets which are shown in Figure 10. After a
brief description of the reconstruction setup we describe the
results for one slice of the reconstructed volumes.

Afterwards, the results are compared quantitatively for
five regions of interest in the exterior region of the knee
phantoms.

4.1. Observations. We first inspect the reconstruction of the
uncorrected projections (see Figure 11(a)). The saturation
causes strong artifacts. High intensity streaks are observed
at the onset of the overexposure and the original shape of
the edges on the right side can not be clearly recognized.
The exterior regions on the right side lack a definite outer
boundary and are blurred.

Figure 11(c) shows the reconstruction of the corrected
projections. The overexposure artifacts are significantly
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Figure 9: (a) shows exemplary values for an overexposed projection. Due to the saturation, there is no reliable information beyond the
transition points to the overexposed regions 𝑥1 and 𝑥2. For correction, the calculated intersection lengths (b) are normalized to the projection
value at 𝑥1 and 𝑥2 and used to extrapolate the boundary of the saturated object (c).

reduced for both bottles and the boundaries on the right side
of the phantoms are mostly restored. However, the contour of
the phantom is still blurred at the outer regions of the bottles
in the top right and bottom right.

The boundaries of the ground truth and the surface data
do not align perfectly (see Figure 12(b)). This problem arises
from inaccuracies in the cross-calibration procedure. As
these inaccuracies are sufficiently small, we can still achieve
good correction results. The outline of the bottles in the left
half of the surface data slice lies outside the ground truth
boundary. This inaccuracy results from the extrapolation
of surface points to the back side of the knees, which was
based on mirroring the surface points on the 𝑥-𝑧-plane at an
estimated 𝑦-height.

In Figures 11 and 12 we observe that in principle there
is sufficient depth information to extrapolate the truncated
boundary within the field of view. However, the boundary
was not restored completely in the corrected volume. The
reason for this is the nonlinear preprocessing by the C-
arm CT system. As a result of this preprocessing, the values
of the last nonoverexposed pixels can be very low. If the
intersection lengths are normalized to these very low values,
the extrapolation is of almost no effect. This effect can be
countered by starting the extrapolation at an earlier point
at which the pixel values have not been minimized by
preprocessing.

4.2. Quantitative Comparison of the Results. For quantitative
comparison, five regions of interest (ROIs) are placed in the

Table 1: Comparison of the measurements of the ROIS shown in
Figure 13.

Type ROI Mean Std dev Min Max

Uncorrected

1 −478 111 −727 −92
2 −715 319 −988 364
3 −568 191 −861 68
4 −806 89 −922 −455
5 −128 458 −793 1333

Corrected

1 −245 81 −598 −120
2 −528 143 −873 −219
3 −133 63 −296 28
4 −284 72 −559 −147
5 −139 59 −290 −15

Ground truth

1 −60 34 −181 36
2 −30 51 −157 80
3 −99 46 −202 27
4 −43 51 −195 122
5 −52 61 −181 173

exterior regions of the bottles (Figure 13). The measurements
are shown in Table 1. The table compares the measurements
of the HU values within the ROIs for the reconstructions of
the uncorrected projections, the corrected projections, and
the ground truth.

For the corrected reconstruction, we can observe that
the mean values of ROIs move closer to the corresponding
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Figure 10: An uncorrected projection is shown in (a). (b) shows the intersection lengths that have been calculated for the projection geometry
as in (a). Based on these intersection lengths, the saturated projection is extrapolated. The resulting corrected projection is illustrated in (c)
and can be compared to the ground truth in (d). Window levels (a), (c), and (d): [0, 8]. Window level (b): [0, 300].

ground truth values. This change occurs because the pre-
viously truncated parts of the phantom are now partially
restored at the positions of the ROIs. Now, the material of
the phantom is more consistently measured inside the ROIs
instead of air in the truncated case.

Furthermore, the values of the standard deviation are
reduced. This shows that the values within the ROI in the
corrected data are more homogeneous and outliers, which
would increase the standard deviation, have been eliminated.
The saturation artifacts cause very high maximum values on
the truncated edge of the lower bottle. These artifacts are
corrected with the Kinect-based correction tool.

The corrected data shows significantly improved recon-
struction results.The visualization of the absolute differences
between both uncorrected and corrected data and the ground
truth (see Figures 11(e) and 11(f)) backs up ourmeasurements.
We observe that the differences are lower for almost all
regions. Furthermore, the figures show that, apart from
artifact correction inside the knee phantoms, artifacts caused
by truncation between the two phantoms were also reduced.

5. Discussion

The results have shown that the Kinect-based correction of
saturation in cone-beam CT is a feasible approach for reduc-
ing artifacts in saturated scans. Lost surface information,

especially at the front side of the knee phantoms,was restored.
Furthermore, noise and overexposure artifacts were reduced
through the correction of the projections.

Overexposure not only exclusively occurs in C-arm CT
imaging but also occurs in other systems such as multide-
tector CT (MDCT). One factor that makes overexposure
compensation easier in MDCT is the higher dynamic range
of 20 bits [20], which generally leads to less severe artifacts.
Furthermore, bowtie filters and tube current modulation can
be utilized to reduce radiation dosage in the exterior regions
of the scanned object [21–23]. In C-arm CT, overexposure
artifacts are mostly tackled after image acquisition, as bowtie
filters are linked to reduced detector efficiency [24] and
overexposure of the detector is often even intentionally
caused to tackle image quality limitations due to the limited
dynamic range [9, 25, 26].

Fully leveraging the 200∘ raw data acquisition of the C-
arm CT around the knees might allow for better correction
results in algorithmic approaches than the baseline consid-
ered in this paper. ROI reconstruction [27–29] or iterative
reconstruction [30] could be utilized for this approach. Severe
truncation, however, is still unlikely to be fully corrected [30].
In this context, it should be noted that the proposed method
can, in principle, be used in combination with any other
correction method. Using the additional surface information
could be used for regularization which would likely lead to
further performance improvements.
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(a) (b)
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(e) (f)

Figure 11: (a) shows a slice of the uncorrected volume. Severe artifacts deriving from saturation are visible on the right exterior regions of
both bottles. (b) shows the corresponding slice to (a) which has been reconstructed by solely using the intersection lengths obtained from
the depth data.These values are used for the correction of the saturation artifacts. A slice of the resulting corrected volume can be seen in (c).
(d) shows the reconstruction of the nonoverexposed knee phantoms. The bone phantoms have been removed to acquire this ground truth
reference. For further demonstration of the results, the absolute difference between the ground truth and the uncorrected data (e) and the
corrected data (f) is visualized. The two dense rods between the two water cylinders have a density of 1000 g/cm2, simulating the femurs in
the legs. Window level (a)–(d): [−1000, 1000]. Window level (e) and (f): [0, 1000].
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Figure 12: (d) shows the boundary of a slice created from the ground truth data. For comparison, this boundary is also shown in the
corresponding slices of the uncorrected (a), corrected (c), and surface data (b). It can be observed that the edges on the right side of the
surface data are not perfectly aligned with the ground truth. This results from inaccuracies in the cross-calibration. Window level: [−1000,
1000].

Additional considerations would have to be made, if the
overexposure occurred in the bone, for example, the patella.
In this case, the normalization factor would be based on
the bone density. Instead of the skin tissue, the bone would
be expanded until the outer surface, which would cause
correction errors. The first likely occurrence of overexposure
is to be expected in the skin tissue right next to the bones.
The extrapolation of the skin tissue based on the values of
the neighboring bone tissue can algorithmically be avoided. If
the values of the last nonoverexposed pixels are significantly
higher than expected for skin tissue, the normalization factor
can be adjusted according to nearby or typical skin tissue
values.

In the B-spline interpolation we observe inaccuracies of
the edge detection of the Kinect camera. For a bigger field
of view problems may arise in the correction of the outer
edges. However, saturation artifacts are usually only expected
at front side and back side of the knees for patient scans. For

these regions we can acquire reliable information with the
Kinect camera.

Choi et al. [31] proposed an approach for motion cor-
rection in weight-bearing knee scans. However, it is still
necessary to correct for overexposure artifacts. A depth
camera-based solution offers the possibility of a temporally
synchronized correction of overexposure artifacts, because
the depth information is captured in real-time and contin-
uously throughout the complete scanning procedure.

6. Outlook

The experiments in our research aim to demonstrate the
general feasibility of the correctionmethod. For this, we focus
on supine scans of the human knees. However, the design
of the method is not restricted to supine scans and could in
principle also be used for weight-bearing scans of the knees
in real-world scenarios.
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(a) (b)

(c)

Figure 13: (a), (b), and (c) Show 5 ROIs in the exterior regions of the bottles which are used for comparison reconstructed projections. The
ROIs are evaluated for one slice in the uncorrected (a), corrected (b), and ground truth (c) data. Window level: [−1000, 1000].

For this, we propose using two Kinect sensors to gather
surface information for all relevant angles. The design of
the cross-calibration phantom allows the simultaneous cross-
calibration of two Kinect sensors with the C-arm CT. By
capturing the surface areas close to the patella and popli-
teus with two separate cameras, closed B-spline curves can
directly be calculated from the merged surface data and used
for saturation correction. By using this approach, no further
estimations for the back side of the object have to be made
and more accurate results are to be expected.

In this paper, we analyzed the new correction approach
in isolation. The correction method could be combined
with other recent algorithmic approaches to leverage their
respective benefits. In future experiments, the performance
improvements of the artifact correction for combined
approaches could therefore be investigated in detail.

In order to use proposed approach in real-world scenar-
ios, the accuracy of the cross-calibration is of high impor-
tance and can be improved through more precise manufac-
turing.Design improvements could be achieved by evaluating

the cross-calibration accuracy for different positions, sizes,
and numbers of spheres. Transparent materials are usually
not detectable by the depth camera and could be used for the
sphere-carrying rods to improve the segmentation accuracy.

Besides qualitative improvements in the phantom design,
the procedure could be improved algorithmically. In the
experiments, only depth features from the Kinect sensor are
used for the calibration. By making use of the additional
RGB data gathered by the Kinect, the accuracy of the cross-
calibration could be further enhanced.

Big improvements in processing time can be made in the
projection correction. The main source of computing time
derives from the B-spline curve interpolation and calculation
of line integrals along the X-rays through the object.This type
of calculation is one of the basic routines on a GPU and could
be performed by providing the graphics card with the 3D
points and projection geometry [32].

The sphere segmentation was performed
semiautomatically by first clicking on the individual
spheres in a predefined order. In future, the spheres could
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be detected in the RGB image automatically, based on their
color.

7. Summary

When scanning knees, the limited dynamic range of the
detector causes saturation artifacts in the reconstructed
volumes. As these artifacts affect the surface regions of the
scanned object, the idea for the correction method is to
additionally use a Kinect camera to locate the surface of the
object in 3D.

In order to use these surface points for the correction
of CT images, we develop a procedure for cross-calibration
between the camera and the C-arm CT. For cross-calibration
we use a PDS-2 calibration phantom and attached a structure
that is detectable with the Kinect camera.

After the cross-calibration, a projection-based saturation
correction is performed where all detector lines are suc-
cessively corrected within the projections. With the C-arm
geometry, we determine the 3D points where the X-rays
entered and exited the knee and calculate the length of the
X-ray through the knee with these points. Ultimately, we
use these calculated lengths for smooth extrapolation of the
boundary of the object in the overexposed regions.

The reconstruction results show that the projection-
based correction itself yields clear improvements to the
noncorrected data. The boundaries of both knee phantoms
are extrapolated to their correct position and overexposure
artifacts are significantly reduced.

Potentially arising problems due to limited edge detection
and the different tissue densities in the knees are also
considered.

Possible futurework includes the usage of a secondKinect
camera for weight-bearing scans and a GPU-based calcu-
lation of the intersection lengths. The sphere segmentation
could be automated by identifying the spheres based on their
color. Furthermore, a temporally synchronized correction
approach could be applied in current research projects.

Appendix

A. Mathematical Formulas

A.1. Line-Line Intersection. All direction and normal vectors
of lines in the following equations shall be considered as unit
vectors. Two-dimensional lines can be represented by a point
pline on the line and a normal vector nline perpendicular to
that line.The distance between a point g and a line defined by
pline and nline is

𝑑pl (g, (pline,nline)) = (g − pline)T nline
= √(g − pline)T nlinenT

line (g − pline). (A.1)

The sum of squared distances to more than one line is𝑤 (g) = ∑
𝑖

𝑑pl (g, (pline,𝑖,nline,𝑖))2= ∑
𝑖

(g − pline,𝑖)T (nline,𝑖n
T
line,𝑖) (g − pline,𝑖) . (A.2)

To find the closest mutual point, that is, the minimum of
function 𝑤(g), the equation has to be differentiated with
respect to g and the result has to be set equal to the zero vector.
This leads to

g = (∑
𝑖

nline,𝑖n
T
line,𝑖)−1 ⋅ (∑

𝑖

nline,𝑖n
T
line,𝑖pline,𝑖) . (A.3)

The equation

I = nlinen
T
line + klinek

T
line (A.4)

with the 2 × 2 identity matrix I and normalized direction
vector kline is introduced and proved for the two-dimensional
case. Multiplying both sides of (A.4) with any direction or
normal vector kline or nline leads to

kline = nlinen
T
linekline + klinek

T
linekline= nline ⋅ 0 + kline ⋅ 1 = kline,

nline = nlinen
T
linenline + klinek

T
linenline= nline ⋅ 1 + kline ⋅ 0 = nline,

(A.5)

which is always true. Equation (A.4) is rearranged to

nlinen
T
line = I − klinek

T
line (A.6)

and used tomodify (A.3), which leads to the final solution for
g:

g = (∑
𝑖

I − kline,𝑖k
T
line,𝑖)−1

⋅ (∑
𝑖

(I − kline,𝑖k
T
line,𝑖) pline,𝑖) . (A.7)

The calculation of g in three dimensions is very similar.
Equations (A.3) and (A.4) are sufficient in 2D cases, because
the two orthogonal vectors kline and nline span the 2D space.
The calculation of the mutually closest point in 3D has to
take into account a second normal vectormline but is analog
to the 2D case apart from that. The vectors kline, mline, and
nline are pairwise orthogonal and therefore span the 3D space.
For three-dimensional lines, (A.3) and (A.4) contain the sum(nlinenT

line +mlinemT
line) instead of (nlinenT

line) and I now is the3 × 3 unity matrix.
The mutually closest point is still calculated as described

in (A.7), because the sum nlinenT
line +mlinemT

line is replaced in
the same way as in the 2D case:

nlinen
T
line +mlinem

T
line = I − klinek

T
line. (A.8)
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A.2. Coordinate System Transformation. The first step of
the transformation between both coordinate systems is a
coordinate system rotation. The rotation matrix is calculated
by using the matrix rotation formula

WC = D, (A.9)

where W is the 3 × 3 rotation matrix that is used to
rotate the orthogonal axis vectors of the Kinect coordinate
system onto the corresponding axis vectors of the Zeego
C-arm coordinate system. C is the matrix containing the
unit direction vectors of the sphere mount axes in the
Kinect coordinate system. D is the matrix containing the
unit direction vectors of the sphere mount axes in the Zeego
coordinate system. Using (A.9), the direction vectors of C
shall be rotated onto the direction vectors of D. The rotation
matrix W can be obtained by calculating the matrix inverse
C−1 and rearranging the equation to

W = DC−1. (A.10)

After rotating the points with the rotation matrix W,
the final step of the coordinate system transformation is the
translation of the coordinate system origin to the center of the
PDS-2 phantom which amounts to 110mm on the 𝑧-axis:

tOrigins = [[[
00−110]]] . (A.11)

Subsequently, the complete transformation is

pZeego =WpKinect
 + tOrigins. (A.12)
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