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Abstract The distribution of incident light is an important physics-based cue for ex-
posing image manipulations. If an image has been composed from multiple sources, it
is likely that the illumination environments of the spliced objects differ. Johnson and
Farid introduced a proof-of-principle algorithm for a forensic comparison of lighting
environments. However, this baseline approach suffers from relatively strict assump-
tions that limit its practical applicability.

In this work, we address one of the biggest limitations, namely the need to com-
pute a lighting environment from patches of homogeneous material. To compute a
lighting environment from multiple-color surfaces, we propose a method that we call
“intrinsic contour estimation” (ICE). ICE is able to integrate reflectances from multi-
ple materials into one lighting environment, as long as surfaces of different materials
share at least two similar normal vectors. We validate the proposed method in a con-
trolled ground-truth experiment on two datasets, with light from three different di-
rections. These experiments show that using ICE can improve the median estimation
error by almost 50%, and the mean error by almost 30%.
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Fig. 1 Original or manipulated? The detected direction of incident light (white pointer) differs about 40◦

(pictures best viewed in color).

1 Introduction

As digital imagery and image processing software become increasingly available
there is a need for image forgery detection. Blind image forensics aims at verify-
ing the authenticity and origin of images while not requiring any support from an
embedded security scheme. Researchers developed a family of forensic algorithms
that either try to detect traces of manipulation in an image, or aim at verifying char-
acteristic scene or image properties to affirm its authenticity. Overviews of existing
methods can be found, e. g., in [15] and [5].

Existing methods in image forensics can roughly be categorized into statistical
and physics-based. Statistical methods aim to detect manipulations from local bit-
level irregularities, while physics-based methods aim to quantify deviations from the
interplay of objects with the scene, like the shadow geometry or the direction of inci-
dent light. Two key advantages of physics-based algorithms are that they are typically
not limited to digital imagery (i. e., they can also be used on analog photographs), and
that they are relatively robust to automated counter-forensics methods. The biggest
disadvantage of physics-based methods is that they typically require manual user
interaction, and as such are not well suited for batch processing. Several physics-
based algorithms exploit geometric constraints to detect inconsistencies in cast shad-
ows [19,12,11]. Other approaches aim to validate color [16,3] or motion cues [2].

Another group of physics-based approaches is the validation of lighting environ-
ments. Human perception is relatively insensitive to differences in the direction of in-
cident light [13]. Johnson and Farid [9] presented an algorithm to determine the 2-D
direction of incident light from the distribution of intensities along object contours.
Kee and Farid [10] extended this approach to 3-D by fitting 3-D face geometries to
persons under investigation. This approach yields a dense grid of 3-D normals (and
hence more robust estimation results), but is also considerably more complex than
the 2-D approach. Recently, Peng et al. [14] proposed an improvement to the 3-D es-
timation by Kee and Farid by using a surface reflection model that allows additional
flexibility with respect to non-convex local geometries, and non-constant material
reflectance. An alternative to this approach was proposed by Fan et al. [4]. They re-
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placed the estimation of a 3-D surface model with a shade-from-shading algorithm.
The attractivity of the 2-D algorithm is that it is relatively lightweight, and widely
applicable, in the sense that it does neither require a 3-D model of the objects of
interest, nor additional 3-D convexity or simplicity assumptions.

Unfortunately, lighting-based algorithms are oftentimes difficult to apply in prac-
tice, which is mainly due to their relatively strong scene assumptions. First, the under-
lying model only holds for contours of purely diffuse, homogenous materials under
direct illumination. Selected contours must exhibit a large variety of normal direc-
tions to obtain a numerically stable estimate of the lighting environment. Addition-
ally, all contours used for calculation must be extracted from regions that represent
the same material. In practice, it can be challenging to satisfy all three requirements at
the same time. For example, hair or highly textured clothes are not admissible under
this model. Also, structurally unsmooth regions like for example folds or crumbles
in clothes have to be excluded. If applied to real world images, body pose and partial
occlusion add to these challenges. Thus, oftentimes it not possible to extract contours
represent both a large directional variety and identical materials at the same time.

In this work, we extend the approach by Johnson and Farid [9] by removing the
constraint that surface normals have to be selected from the same material. Being
able to use a wider variety of surface normals makes the estimation of the lighting
environment more robust, or possible in the first place. The proposed method is based
on the observation that normals from different materials pointing towards the same
direction shall ideally have identical pixel intensities. We propose an straightforward
analytic solution to this optimization problem. This work is an extended version of a
recent workshop paper [17]. Compared to the previous work, we build a second, more
experimental setup, which is considerably more challenging with respect to different
subject poses, different materials, and a smaller difference between illuminations. We
also considerably expanded the evaluation and discussion of the method.

The idea of the method is illustrated in Fig. 1. On the left, an example image of
two spliced persons is shown. The proposed method allows to select contours along
multiple materials to estimate the direction of incident light. On the right of Fig. 1, an
example analysis is shown. The primary illuminants on the persons were estimated
to be at angles of 46.8◦ and 4.6◦, respectively. These directions are indicated by the
white vectors on the chests. The deviation between both angles indicates inconsisten-
cies of the lighting environments and therefore suggests that the image is spliced.

The paper is organized as follows: some basic notation is introduced in Sec. 2.
In Sec. 3, we restate the baseline algorithm. In Sec. 4.2, we present the proposed
algorithm, which we call Intrinsic Contour Estimation (ICE). We captured two sets
of ground truth data. The protocol is described in Sec. 5. Quantitative results and a
discussion are presented in Sec. 6.

2 Notation of Intensities, Normals and Angles at a Pixel Coordinate

We briefly introduce some mathematical notation that will be used throughout this
paper. We denote a pixel position in the image as x ∈ R2. The observed RGB vector
at x is denoted as p(x). A scalar intensity at x is denoted as m(x). We assume that any
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Table 1 Spherical Harmonics coefficients used for 2-D estimation of the lighting environment. These
functions depend on the normal vector in the image plane, denoted as angle φ = ν(x).

linear operation (e. g., a projection) may be used to reduce a polychromatic signal
p(x) to a monochromatic signal m(x). The presented method makes use of normal
vectors of contours that cross pixel x. We denote with n(x) the 2-D normal of a
contour in the image at pixel x. Furthermore, we denote with ν(x) the angle of n(x).

3 Estimation of 2-D Lighting Environments

In the following section we restate the algorithm by Johnson and Farid for estimating
a 2-D lighting environment from contours. For additional details please refer to the
original work [9].

Consider an object that is illuminated by direct and indirect light sources from
different direction. The distribution of these illuminants (i. e., the “lighting environ-
ment”) can under some assumptions be computed from the intensity distribution on
the object and the object’s surface normals. Since the picture under examination is a
2-D projection of the true 3-D scene, the scene normals are mostly unknown. The key
idea by Johnson and Farid is that at occluding contours, the 3-D scene normals are
identical to the observed 2-D image normals (because the 3-D normals lie in the im-
age plane). Thus, a 2-D projection of an object’s lighting environment can be directly
estimated from the image.

For forensic exploitation, consider that the lighting environment of two objects
shall be compared. For each of the two objects, the object contours are manually
annotated. Contours can be defined piecewise, but they must be directly illuminated.
Thus, contour pixels containing self-shadowing (e.g., from folds in clothes) have to
be excluded. The surface normal of each contour pixel is estimated by fitting a 2-D
polynomial to the contour in the pixel’s neighborhood. The intensity of each point
along the contour is extrapolated from pixels in a surrounding neighborhood.

The lighting environment is modeled using a weighted sum of the five second-
order basis functions of the 2-D spherical harmonics. These five functions are listed
in Tab. 1. Assuming purely diffuse (Lambertian) reflectance of an object of interest,
the intensity along the object boundary can be expressed as a linear combination
of the basis functions. For a contour consisting of a points x1, . . . , xa yielding a
normals, the basis functions can be evaluated and stored in a matrix A ∈ Ra×5. Then,
the unknown weighting factors h ∈ R5×1 must satisfy

Ah = m , (1)

where m = (m(x1), . . . ,m(xa))
T ∈ Rn denotes a vector of intensities along the con-

tour. For color images, this implies that either a single color channel is selected, or
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Fig. 2 Illustration of mixed-material contours: the brightness contrast between the black T-shirt and bright
skin prevents cross-material estimation of the lighting environment.

the color values are converted to grayscale. To add some robustness against noise, a
regularization term is added to Eqn. 1, leading to the final energy function

E(h) = ‖Ah−m‖2 +µ‖Ch‖2 , (2)

where C ∈R5×5, C = diag(1 2 2 3 3), and µ is a user-selectable parameter to guide
the strength of the regularizer. Equation 2 has the analytic solution

h = (ATA+µCTC)−1ATm . (3)

The method fits a 2-D spherical harmonics model to the intensity distribution
along the object boundary. All brightness differences along the contour are attributed
to differences in the lighting environment. As a consequence, all contour pixels have
to be extracted from the same underlying material.

Figure Fig. 2 shows an (extreme) case of what happens if intensities are selected
from materials with large brightness differences: the left picture shows a test sub-
ject illuminated from top right. Middel picture: To model the lighting environment,
contour pixels are selected along the T-shirt and arms. However, since the T-shirt is
black, the resulting lighting environment estimates that the light comes from an angle
of −61.5◦, i. e., the bottom right. This is shown in the normal-intensity plot on the
right, with the direction of the contour normal on the x-axis (0◦ points to the right,
angular direction in counter-clockwise direction), and the brightness of the respec-
tive contour pixel on the y axis. The blue dashed line indicates the estimated lighting
environment, the direction of the dominant light at −61.5◦ is indicated by the orange
vertical line.

4 Color Neutralization

If an object consists of just a single color, then most of the normals around an object
can be used for the estimation in Eqn. 2. The example in Fig. 2 illustrated that this
is generally not the case for multi-colored surfaces. However, for objects consisting
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Fig. 3 Example “teabag2” for intrinsic image decomposition from a ground-truth dataset [8]. Left: input
image. Middle: shading component. Right: reflectance component.

of multiple materials, an equivalent statement can be made: if we are able to separate
shading from reflectance, estimation of Eqn. 2 can be performed only on the shading
component.

4.1 The General Problem: Intrinsic Image Decomposition

In computer vision, the problem of separating shading and reflectance is known as
intrinsic image decomposition. Figure 3 shows an example image (“teabag2”) for
intrinsic image decomposition from a publicly available dataset by Grosse et al. [8].
The fact that the shading component is completely free from any textures makes it
the optimal input for estimating lighting environments.

Thus, we experimented with several algorithms for intrinsic image decomposi-
tion, notably the recent methods by Gehler et al. [7] and Shen and Yeo [18]. Mathe-
matically, the task of intrinsic image decomposition is to estimate for each observed
pixel intensity one scalar shading component and one vector of reflectances, i. e.,

p(x) = s(x) · r(x) . (4)

Thus, for example for an RGB image, each pixel has four unknown variables but only
three known variables. To obtain a solution, Gehler et al. and Shen and Yeo make use
of additional assumptions. Most importantly, the set of distinct reflectances in the
scene is assumed to be small. Second, shading is assumed to vary smoothly. Third,
the scene contains spatially extended areas of constant or very similar reflectance.
Besides these conceptual similarities, Gehler et al. and Shen and Yeo chose very
different paths to algorithmically exploit these constraints. Gehler et al. chose a sta-
tistical model using a conditional random field. Reflectance constraints are included
via the retinex algorithm [1]. Shen and Yeo use weighted red-black wavelets as a
sparse reflectance model. The decomposition task is formulated as a L1-regularized
least squares problem where all constraints are correspondingly incorporated. For
both methods, global constraints ensure the consistency of the results on 2-D images.

We used the publicly available implementation by Gehler et al. and reimple-
mented the method by Shen and Yeo. Both methods are computationally demand-
ing, which is why we operated on downsampled versions of our images. Both meth-
ods have been shown to work very well on the laboratory ground truth data by
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Grosse et al.. However, we were not able to transfer the success of these methods
from the laboratory data to real-world images. Specifically, we were not able to find a
good set of parameters across multiple images such that the 2-D shading component
does not fall back to a trivial solution.

4.2 A Specialized Solution for Forensics: Intrinsic Contour Estimation

Upon closer examination, our application does not require full recovery of the 2-D
shading image. Instead, as a special case, we require only a 1-D shading contour along
the user annotations. Thus, we call the proposed method Intrinsic Contour Estima-
tion. For each single material, the intensities vary with the direction of the normals.
However, having a perfect intrinsic contour implies that for two identical normals,
the intensities are also identical. This constraint can be used to neutralize intensity
variations that arise from different colors: assume that we observe two different ma-
terials with the same surface normal. Then, we seek a multiplicative factor for one
material that levels the intensity difference. This multiplier is then applied to all re-
maining normals of the material, which effectively yields a shading contour. This
procedure is not restricted to two materials, but can be applied to any number. Since,
typically, multiple normals overlap, we chose the correction factor that minimizes a
least squares fit.

In relation to the aforementioned 2-D algorithms on intrinsic image decomposi-
tion, the problem of estimating a 1-D contour is far easier. A big difficulty for the
general algorithms is the 2-D segmentation of areas of constant reflectance. This is
simpler in 1-D, since piecewise constant materials can be thought as lining up on
a 1-D string instead of having to fit a 2-D jigsaw puzzle. Furthermore, in the con-
text of forensics, it may happen that suitable object contours are manually annotated
anyways. In such a case it is practically also feasible to even provide user-annotated
reflectance boundaries.

More technically, the algorithm works as follows. We first identify clusters of con-
tour pixels that are likely to belong to the same material. This can either be done au-
tomatically using, e. g., k-means on the contour colors or a combination of color and
spatial proximity [6, page 315]. Alternatively, this can be done manually by specifi-
cally assigning the annotated contours to clusters. Without loss of generality, assume
that a contour points are clustered by reflectance (or color, respectively) into two sets
U and V . Let xi ∈ U and x j ∈ V be two points from these clusters. From the per-
spective of intrinsic image decomposition, the shading component has to be identical
if the normal directions ν(xi), ν(x j) of these points are identical. For such pairs of
points, it is straightforward to analytically find a multiplicative factor to neutralize
the brightness difference between the clusters by solving(

m(xi)
m(xj)

)T

· t = 0 . (5)

Since it is unlikely to have normals pointing towards exactly the same direction, nor-
mals that are pointing to almost the same direction are incorporated with a Gaussian
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angular distance weight w(xi,x j),

w(xi,x j) =

{
exp
(
(ν(xi)−ν(x j))

2

σ2

)
if |ν(xi)−ν(x j)| ≤ 2σ

0 otherwise
, (6)

where σ governs the width of the distribution. In our implementation, we empirically
set σ to 18.75◦. The threshold in this equation is derived from a Gaussian probability
distribution, where less than 5% of the values assume values that are larger in absolute
than 2σ .

We rewrite the constraint in Eqn. 5 more generally for arbitrary numbers of simi-
lar normals and arbitrary numbers of materials as

Wt = 0 , (7)

where W ∈ Rm×k for m pairs of overlapping normals and k clusters (materials). Each
row of W has two entries that are set as follows. Without loss of generality, assume
that the example points xi ∈U , x j ∈ V from above are the l-th point pair, and that u
and v are the cluster indices (counted from 0) of clusters U , V . Then,

Wl,h =

 w(xi,x j)m(xi) if h = u, xi ∈U
w(xi,x j)m(x j) if h = v, x j ∈ V

0 otherwise
, (8)

The remaining m−1 rows of W are filled analogously with data from the m−1 other
point pairs. To avoid the trivial solution t = 0, we set t1 = 1, which yields the final
solution

W ′t′ =−d , (9)

where W = (d W ′) and t = ( 1
t′ ). Equation 9 can be seen as a least-squares problem,

and then directly be solved via singular value decomposition (SVD).
As a sidenote, it is also possible to integrate this scheme directly into the solution

of the baseline method in Eqn. 3, and jointly estimate material compensation and
lighting environment. However, in our implementation the solutions to the integrated
approach was somewhat less stable, hence we omitted this approach here.

5 Database

We capture two sets of ground-truth images to quantify the accuracy of the proposed
method. In both sets of images, three primary light sources are installed at defined
positions in the scene. Additional light sources provide ambient (background) illumi-
nation. For each scenario, we capture three images, where in turns exactly one of the
three primary light sources is activated. The ground truth direction of the dominant
illuminant is the projected angle between the primary light source and the center of
the object.
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1.5m

1.5m

45◦

45◦

Fig. 4 Experimental setup for the incandescent light dataset. Ambient light is provided by the brown
background lamp. Direct illumination (red) on the subjects (yellow) comes from 0◦, 45◦ and 90◦, measured
1.5m above the floor.

5.1 Incandescent Light Dataset

Figure 4 shows the experimental setup for the first dataset. The data was captured in
a closed room without windows. 10 different subjects were asked to stand with the
back to the wall. We use three incandescent lights that act as dominant light sources.
The first light was mounted at about breast height exactly to the right (seen from the
camera) of the subject, which we denote as a projected angle of 0◦. The second light
was mounted top right (seen from the camera), forming a projected angle of about
45◦. The third light was mounted on top of the subject, with a projected angle of
about 90◦. A fourth, stronger light source was located behind the camera pointing to
the backside wall to provide a floor of scattered environment light. We captured and
manually annotated a total of 30 images. Example pictures of this dataset are shown
in Fig. 5. The distance of the primary lights to the subjects are about 1.5 m. This
is a more challenging scenario than when using direct sunlight, since the method’s
assumption of parallel rays originating from an “infinitely distant” light source is vi-
olated. For the present setup geometry, the error varies between 0◦ and about 9.4◦,
with the highest errors occuring for normals a) located at maximum distance to the
line connecting the light source and the center of illumination and b) that point in a di-
rection orthogonal to this line. All other normals exhibit a lower error, down to 0. The
details of this calculation are in Appendix A. Nevertheless, since the angle between
dominant light sources is 45◦ and 90◦, respectively, we found that this deviation is
still manageable.

5.2 Flash Dataset

Figure 4 shows the experimental setup for the second dataset1. The setup somewhat
deviates from the first setup. First, we used camera-synchronized flash lights as dom-
inant light sources. Second, we used a room with windows to provide natural light as

1 Both datasets, are available from our lab’s web page http://www5.cs.fau.de/.
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Fig. 5 Example images from the first dataset. The rightmost subject is shown under the three different
illumination directions from 0◦, 45◦, and 90◦.

1.5m

1.5m

44◦
16◦

Fig. 6 Experimental setup for the flash dataset. Ambient light is provided by windows in the back of the
room (images were captured on an overcast day). Direct illumination (red) on the subjects (yellow) comes
from 0◦, 44◦ and 60◦, measured 0.95 m above the floor.

background light. The room has a side length of more than 4 m, and the sky was over-
cast, to prevent the background illumination to dominate the scene. The flash lights
were moved slightly in front of the subject to reduce effects from self-shadowing.
The projected (2-D) angles of the light sources were at 0◦, 44◦ and 60◦. Thus, the an-
gular distances of the light sources were shorter, but the absolute distances in meters
between light source and subject were between 1.57 m for the low light and 2.30 m
for the uppermost light, which leads to a worst-case angular uncertainty of 9.03◦ and
6.20◦, respectively. We captured 9 scenes under all three different dominant illumi-
nations. To enforce a challenging variability in the the different materials, we used
a single, sitting subject that we purposefully dressed in different clothes, with varia-
tions of bright and dark garments in various angular directions. We avoided very dark
(black) garments to increase the signal-to-noise ratio in the pixels. Example pictures
from this dataset are shown in Fig. 7. Note that in this setup, the cast shadow in the
background might also indicate the lighting direction. However, we did not use any
of such information for this analysis.

6 Evaluation

For evaluation, we use the images from both experimental setups. From each image,
we selected contours using a single material and using multiple materials.
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Fig. 7 Example images from the second dataset. The three pictures on the right show the three different
illumination directions from 0◦, 44◦, and 60◦.

Fig. 8 Images used to demonstrate the dependency on normal direction coverage. The white lines represent
the contours and normals, respectively.

The angle of the dominant direction of the incident light is estimated by applying
the method in Sec. 3 for single-material contours, or by applying ICE (Sec. 4) and
then the single-material method.

There is always more than one possible choice for finding an annotation of single-
material contours (see Sec. 6.4 for general comments on the annotation). To be as fair
as possible, we always used the a-posteriori best contour. From a practical viewpoint,
this might imply that the single-material results are somewhat too optimistic. How-
ever, by doing so, we enforce that there is no better choice if operating on only single
materials. Thus, all improvements of multi-material contours over single-material
contours can be attributed to the benefit of the proposed method.

In Sec. 6.1, we first illustrate that estimating a lighting environment from normals
with a limited angular range is unstable. In Sec. 6.2, we report results on the first
dataset. In Sec. 6.3, we report results on the second dataset. We add a brief discussion
on the results in Sec. 6.4.
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6.1 Estimation of Light Direction from a Limited Angular Range

We first assess the effect of a limited angular range of normals on the estimation
of the dominant lighting direction. We created a generic test case from the three
images shown in Figure 8. Here, the same light was used (coming from the right,
at an angle of 44◦), but the blue sweater was moved to different sides of the body.
We exclusively extract contours from the sweater to track the behavior of the lighting
direction estimates. From left to right, the estimated angular directions are 73.8◦,
84.7◦, and 33.0◦, respectively. Thus, the differences to the true light direction are
+29.8◦, +40.7◦, and −11◦. In order to better understand where this variation comes
from, we show in Figure 9 (top and bottom left) plots of the data that is used for
the estimation. Along the x-axis is the direction of the normal in degrees, i. e., 0
denotes normals pointing to the right, 90◦ denotes normals pointing upwards. The
y-axis represents the pixel intensities per normal. Additionally, a smooth solid line
is plotted which shows the intensity distribution as a result of fitting the data to a
lighting environment. It can be seen that a sparse angular range by tendency draws
the fitted curve towards the direction where the observations happen. Thus, if only
normals are selected that point towards the direction of the light source, a perfect
estimate can be obtained “by luck”. If only normals are selected that point away from
the light source, the result can become arbitrarily bad. This shows that if only normals
from a limited angular range are available, there is a large room for estimation bias.

Conversely, in Fig. 9 (bottom right), we plotted the normals from all three images
into a single diagram. The angular range is now much more widely covered, which
implies tighter boundaries of the estimated lighting environment. Indeed, when we
estimated the direction light, we obtained on this rich vector a lighting direction of
43.2◦, i. e., the error to the ground truth is below one degree.

6.2 Evaluation on the Incandescent Light Dataset

The first set of results is computed on the incandescent light dataset. We compare
the single-material estimation by Johnson and Farid [9] (denoted as “Original”) to
the proposed ICE multi-material estimation (denoted as “ICE”). Quantitative results
are presented in Tab. 2. In the first row, we used the original method only on single-
material contours. In the second row, we used the original method on multi-material
contours. In the third row, we applied ICE to multi-material contours. We compute
the median error, the mean error, and the number of cases where a method is able
to distinguish two different lighting environments. Since all light sources are in a
distance of 45◦, we counted the cases where the absolute error was less than 22.5◦.

Quite expected, the original method breaks on multi-material contours. ICE slightly
improves the mean error, and is able to solve one additional case within 22.5◦. How-
ever, the original method still achieves the best mean value. While it can be seen that
ICE gently integrates multiple materials, it is not apparent that there is a significant
benefit with respect to the final outcome of the forensic analysis. Upon analyzing
these results, we found that for this dataset, the original method actually greatly ben-
efits from estimation bias illustrated in the previous Section: although the angular
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Fig. 9 Contour intensity as a function of the normal orientation. Top: intensity plots from the contours at
the left and middle of Fig. 8. Bottom left: intensity plot from the contours at the right of Fig. 8. Bottom
right: intensity plot where all three parts have been combined together.

Median Mean Within 22.5◦

Original (single-material contour) 10.7 13.6 25/30 (83%)

Original (multi-material contour) 40.2 56.5 10/30 (33%)

ICE (multi-material contour) 12.6 13.0 26/30 (86%)

Table 2 Results on the incandescent light dataset. See text for details.

range of each single material is limited, there is very often a single good contour
where the normals point towards the light source, i. e., many single-contour results
are “lucky”. The next Section shows that this is not generally the case.

6.3 Evaluation on the Flash Dataset

The second set of results is computed on the flash dataset. This dataset is designed to
be more comprehensive with respect to body poses, occlusions, and varying materials
at varying locations. We use the same evaluation protocol as in the previous section,
with one notable exception. Since the light sources were located at 0◦, 44◦, and 60◦,
the angles between the light sources are not equidistant anymore. Thus, we counted
correct attribution of a lighting environment for the first and last light if the absolute
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Median Mean Correctly attributed

Original (single-material contour) 15.1 16.2 15/27 (56%)

ICE (multi-material contour) 7.8 11.6 19/27 (70%)

Table 3 Results on the flash dataset. See text for details.

error is within 22◦ and 8◦, respectively, and for the middle light if the estimate is
located in the interval within. Note that these are much tighter boundaries than in the
previous scenario, which also explains the lower percentage of correct attributions.

Results for the original method on the best found single-material contours, and
for the proposed method ICE on multi-material contours are shown in Tab. 3. Here,
the benefit of multi-material contours becomes apparent. The median error of ICE is
about half of the median error of the original method. The mean error is almost 30%
lower. Conversely, the number of correctly attributed lighting situations is consider-
ably higher.

6.4 Discussion

These controlled experiments show that ICE allows to integrate contours of different
materials. Although incorporating ICE means that the processing pipeline for finding
the dominant illuminant is extended by another step, the (unavoidable) estimation
errors do not increase, even in a close-to best-case scenarios for the single-material
method, like when using the first dataset.

The biggest impact of ICE is that it allows to use contours over a much wider
angular range. The two main advantages are a) the increased robustness (and hence
reduced estimation bias) of the baseline method, and b) the general applicability of
the method for unconstrained images, where it is all to often extremely difficult to
find a good set of single-material contours. Thus, in principle, the proposed method
is applicable to the same scenarios as the method by Johnson and Farid [9]. However,
our method makes the estimation numerically more robust, with the added benefit that
there are somewhat less stringent color constraints on the scene. Thus, the advantage
over the previous method is not that it allows to process a completely new class
of forgeries, but that its performance declines more gently over a large number of
increasingly difficult (in a numerical sense) examples.

Still, the choice of good contours can be tricky at times. To our experience, a rea-
sonably good strategy for extracting contour information is to annotate not exactly
the object contour, but instead a line that is parallel to the actual object contour but
two or three pixels inside the object, to avoid noise from edge interpolation. Folds or
crumbles in the clothes also show up as noise, and should be excluded from the con-
tour, as well as self-shadows. Generally, hair, beard, and metallic (or generally clearly
non-Lambertian) surfaces should be avoided as well. A single contour segment does
not need to be long, as few pixels (seven, in our implementation) suffice for comput-
ing the normal. The overall number of pixels in a contour may be low, but it is crucial
that there are contour pixels with similar normals across different materials. If the
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number of pixels across clusters is massively inbalanced, it may help (although we
did not explicitly test that) to resample the large clusters. For reference and compar-
ison, we provide our contours together with the dataset for download from our web
page.

The theoretical model for estimating lighting environments relies on parallel light
rays, which is only the case for an infinitely distant light source (or, approximately,
the sun). This implies that in theory the method is only applicable to objects exposed
to direct sunlight, which brings practical complications for a quantitative performance
evaluation. Computer-generated scenes are also far from straightforward to set up for
simulating all effects of real images, including image noise, crumbles in clothing, or
even physically-real material reflectances. Thus, we decided for capturing real-data
in an indoor environment, although near-light sources propagate in a cone beam. Our
calculation in Appendix A shows that the introduced model error is not negligible,
but indeed manageable, which is also confirmed by the experiments.

All in all, using ICE as color normalization for the classical lighting estimator
greatly increases the applicability and robustness of illumination tools for forensic
analysis. In future work, it may be worth investigating other objective functions for
optimization than the least-squares approach, and to quantify the impact of assuming
Lambertian reflectance for various materials.

7 Conclusions

Estimating lighting environments for a physics-based forensic image analysis re-
quires to compute a representative set of “good” normals, i. e., normals that match
the underlying physical model. In practice, it turns out that normal selection is very
challenging, and even impossible at times.

In this work, we address one of the biggest limitations in the physical model of
2-D lighting estimation: the requirement that all such normals have to be located on
the same material. We propose a method that compensates different materials, which
we call Intrinsic Contour Estimation (ICE). We exploit the fact that normals with
the same orientation, but different underlying materials, have to provide the same in-
tensity contribution to the estimation of the lighting environment. We captured two
quantitative ground-truth datasets to evaluate the efficacy of ICE. It turns out that
lighting estimation can greatly benefit from material neutralization, a) for reducing
estimation bias due to a limited angular range of single-material normals, b) for in-
creasing the overall accuracy of estimating the direction of the dominant light source.

Acknowledgements This work was supported by the Research Training Group 1773 “Heterogeneous
Image Systems”, funded by the German Research Foundation (DFG).

A Intrinsic Dataset Error due to Indoor Illumination

We perform an error calculation to illustrate the effect of a light source at finite distance, as used for
capturing both datasets. A light source at a finite distance effectively casts a cone of light. Assuming that
object normals are selected from a light cone of 50 cm diameter around the object center, only the central
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ray of the cone is with exactly the same angle incident to the object as if the rays were parallel. The
maximum angular deviation of a ray incident to the object is

φmax,incand tan−1(25cm/150cm) = 9.46◦ , (10)

which occurs at the outer boundary of the cone. Under the method’s assumption of Lambertian reflectance,
this error propagates into the cosine between the ray direction and the surface normal. The derivative (and
hence variation) of the cosine is maximum at π/2, with sin(π/2) = 1. Distributing the error symmetrically
around π/2 leads to a upper bound of the intrinsic dataset error of

eorth,incand = 2 · cos(π/2− (9.46◦/2)) = 9.44◦ . (11)

This worst case bound occurs if a normal is located at the cone-beam boundary and is directed orthogonally
to the light source. If a normal lies at the cone beam boundary but points towards the light source, the
intrinsic dataset error is negligible, i. e.,

etowards,incand = 1− (2 · cos(9.46◦/2)) = 0.39◦ . (12)

Similarly, the closer a normal is to the center of the cone-beam, the smaller is its estimation error. In other
words, normals that are orthogonal to the light source and located at the cone boundary exhibit the same
intensities as if the light source-contour angle were 90◦+9.44◦ ≈ 100◦ degrees under an infinitely distance
light source. All normals that do not adhere to both of these conditions exhibit a lower error, with minima
at the center of the cone-beam or whenever normals are parallel to the central ray of the light source.

Performing the same calculation for the flash dataset yields φmax,flash = 9.04◦ for the closest (“0◦”)
light source, and φmax,flash = 6.20◦ for the most distant (“60◦”) light source. The maximum errors eorth,flash
are therefore 9.03◦ and 6.20◦, respectively. The minimum errors etowards,flash are 0.36◦ and 0.17◦, respec-
tively.
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