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Abstract—We propose a data-driven method for extracting a 

respiratory surrogate signal from SPECT list-mode data. The 

approach is based on dimensionality reduction with Laplacian 

Eigenmaps. By setting a scale parameter adaptively and adding a 

series of post-processing steps to correct polarity and 

normalization between projections, we enable fully-automatic 

operation and deliver a respiratory surrogate signal for the entire 

SPECT acquisition. We validated the method using 67 patient 

scans from three acquisition types (myocardial perfusion, liver 

shunt diagnostic, lung inhalation/perfusion) and an Anzai 

pressure belt as a gold standard. The proposed method achieved 

a mean correlation against the Anzai of 0.81±0.17 (median 0.89). 

In a subsequent analysis, we characterize the performance of the 

method with respect to count rates and describe a predictor for 

identifying scans with insufficient statistics. To the best of our 

knowledge, this is the first large validation of a data-driven 

respiratory signal extraction method published thus far for 

SPECT, and our results compare well with those reported in the 

literature for such techniques applied to other modalities such as 

MR and PET. 

Index Terms—Data-driven, Laplacian eigenmaps, 

respiratory gating, single photon emission computed 

tomography (SPECT), surrogate signal.  

 

 

I. INTRODUCTION 

INGLE photon emission-computed tomographic (SPECT) 

imaging is vulnerable to blur and artifacts caused by 

respiratory motion occurring during respiratory cycles shorter 

than typical projection dwell times. One acquisition scenario 
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where such issues arises is myocardial perfusion imaging, 

where physicians search for areas of the heart muscle 

receiving below average blood supply, which may be 

indicative of coronary artery disease or other cardiological 

pathologies. Motion of the diaphragm is known to induce 

corresponding movement on the heart. Previous work has 

determined that the predominant motion is along the inferior-

superior axis, and mean amplitudes of this translation have 

been variously reported to be 16 mm, 18.1 mm, 9 mm, and 

12.4 mm [1-4].  In simulation [5] and [6], as well as patient 

studies [2], it has been shown that respiratory motion of the 

heart can lead to hypoperfusion artifacts, particularly when the 

emission and transmission data used for attenuation correction 

are mismatched spatially.  

 The same motion of the diaphragm that is problematic for 

cardiac imaging also creates complications for hepatic 

imaging, where motion of the liver can approach 25 mm [7]. 

This is especially critical for therapy planning prior to Y-90 

radioembolization, where an intraarterial injection of Tc-99m-

MAA (macroaggregated albumin) into the hepatic artery is 

used to estimate dose to the lungs and healthy liver tissue 

incurred during therapy [8].  

Another SPECT acquisition type where respiratory motion 

becomes problematic is lung ventilation/perfusion imaging. In 

this protocol, patients receive a first SPECT scan after 

inhaling a Tc-99m-labelled gas to assess airflow in the lungs. 

A second scan follows after injection of Tc-99m-MAA to 

examine blood perfusion through the lungs. The authors of [9] 

reported an increase in sensitivity for detection of ventilation 

and perfusion defects when the effect of respiratory motion 

was mitigated. 

In order to overcome artifacts due to respiratory motion, a 

number of methods have been proposed that seek to subdivide 

the acquisition into time bins, or gates, during which motion is 

small. Individual gates may then be reconstructed and 

evaluated separately [10], or used to produce a single motion-

corrected reconstruction [11-15]. Critical to each approach is a 

surrogate signal describing the respiratory state over time that 

can be used to drive the gating process.  

One family of methods for deriving a surrogate signal is 

based on sensors placed directly on the patient. The most 

established of these is comprised of an elastic belt with a 

pressure sensor that measures the force exerted by the body 
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surface due to respiration [16]. Other techniques utilizing 

spirometers [17] and  piezoelectric belts [18] are available, as 

well as camera-based methods using marker tracking [19, 20] 

and range imaging [21] that offer more detailed, multi-

dimensional information about respiratory motion.   

Despite the utility of these approaches, they all necessitate 

that extra hardware be installed, calibrated, and synchronized 

with the SPECT system. Furthermore, the sensor-based 

methods, as well as the marker tracking technique, require that 

extra hardware be affixed to the patient, creating discomfort 

and an opportunity for user error if the requisite sensors are 

not used properly. A further issue in SPECT is that most 

systems in clinical use have two large detectors that rotate 

very close to the patient in order to maximize resolution. This 

proximity precludes the use of large external sensors and 

creates occlusion problems for techniques involving cameras. 

For these reasons, data-driven approaches are desirable that 

estimate a surrogate signal from the acquired data itself.  

Data-driven approaches based on tracking count rate 

variations [22], image center of mass (CoM) [23, 24], and 

spectral analysis [25] have been previously investigated for 

positron emission tomography (PET). However, whereas PET 

employs a ring detector, SPECT acquisitions are composed of 

sequential discrete projections. Due to attenuation and 

background, focal regions contributing to count rate variations 

and CoM movement may not be visible from each angle. One 

CoM tracking approach was applied to cardiac SPECT with a 

three-headed system in [26], but the method was found to be 

unstable at clinical count levels. Another CoM implementation 

in [27] proved more successful, but for a specialized SPECT 

system capable of acquiring 19 projections simultaneously.  

Similar to traditional SPECT, cone-beam CT (CBCT) relies 

on slowly acquired discrete projections and, hence, faces 

similar problems. For this modality, methods based on 

diaphragm tracking [28, 29] have shown promise. SPECT 

projections have a lower resolution and much higher noise 

than their CBCT counterparts, however, limiting the 

applicability of this approach. 

Despite the fact that temporal variations due to respiration 

in image characteristics such as count rate and CoM location 

may not enable a surrogate signal estimate individually, it is 

nevertheless safe to assume that some type of variation exists 

in each projection. A successful data-driven technique in 

SPECT should therefore be sensitive to all variation in the 

image and be capable of “summarizing” it in a surrogate 

signal. This problem statement corresponds to the goal of 

dimensionality reduction (DR) methods, which seek to map 

high-dimensional data points into a low-dimensional space 

while preserving their structure and variations between them. 

DR methods are useful for exploratory data analysis [30] as 

well as medical image processing [31].  

The most well-known DR method is principal component 

analysis (PCA), which computes a linear mapping from a 

high- to a low-dimensional space based on an analysis of the 

input data’s covariance matrix. It has been successfully 

applied to PET in [32] for the purpose of respiratory surrogate 

signal estimation, as well as in a specialized form to CBCT in 

[33].  An alternative to PCA is Laplacian Eigenmaps (LE) 

[34], a nonlinear DR technique adapted to magnetic resonance 

imaging (MR) and ultrasound in [35, 36]. LE was compared to 

PCA and other methods for PET in [37] and found to deliver 

acceptable but slightly poorer results. However, in preliminary 

work by our group for SPECT [38] we compared PCA and LE 

in a phantom experiment and on cardiac patient data and 

found that LE outperformed PCA in both cases, particularly at 

high noise levels. Nevertheless, the goal of [38] was to 

compare the two methods, and a number of steps still remain 

before LE can be deemed fit for clinical practice.  

The aim of this paper is to make an effort to resolve these 

remaining issues. Specifically, we detail a solution for the 

issue of normalization and polarity correction of LE-based 

surrogate signal estimates, which may be arbitrarily scaled and 

flipped for each projection view. Furthermore, we perform a 

more extensive validation and characterization of the method 

using patient data from three different tracer/scan protocols 

where surrogate signals obtained using an Anzai belt serve as 

a gold standard. We also propose a predictor of surrogate 

quality that can be used to identify cases where the method is 

likely to fail due to insufficient photon counts. 

II. METHODS 

 Laplacian Eigenmaps A.

The goal of a DR method is to map data natively 

represented in a high-dimensional space to a low-dimensional 

space while preserving its intrinsic structure. In our case, the 

input data consists of 𝑇 vectorized projection images 𝐱𝑖 ∈ ℝ𝑀, 

where 𝑖 denotes the 𝑖-th time bin and 𝑀 is the number of 

pixels in the image. The desired output is the respiratory 

surrogate signal with one 𝐲𝑖 ∈ ℝ𝑁 for each time bin, where 

𝑁 ≪ 𝑀.  

Laplacian Eigenmaps accomplishes DR by finding the 

matrix 𝐘 = [𝐲1, 𝐲2 … 𝐲𝑖 … 𝐲𝑇] that minimizes the following 

function: 

∑‖(𝐲∗,𝑖 − 𝐲∗,𝑗)‖
2

2

𝑖,𝑗

w𝑖,𝑗 ,  (1) 

where the subscripts ∗, 𝑖 and ∗, 𝑗 denote column vectors of 𝐘 

corresponding to 𝑁-dimensional output points at time bins 𝑖 

and 𝑗, respectively. w𝑖,𝑗 is an element of the data’s affinity 

matrix 𝐖 and is a weight inversely proportional to the 

distance between points 𝐱𝑖 and 𝐱𝑗. Determining a series of 

𝐲∗,𝑖’s that minimizes  (1) ensures that points that are close in 

the high dimensional space will remain close in the low 

dimensional space as well.  

The choice of distance metric originally proposed in [34] is 

motivated by thermodynamics and based on the heat kernel: 

  w𝑖,𝑗 = {𝑒−
‖𝐱𝑖−𝐱𝑗‖

2

2

𝛼 , for ‖𝐱𝑖 − 𝐱𝑗‖
2

2
 

0, otherwise,

<  𝜖 
 

(2) 

where 𝜖 is a threshold value and 𝛼 a constant scale parameter. 

An alternative method also proposed in [34] utilizes the same 

exponential kernel, but employs a k-nearest-neighbor approach 

instead of thresholding, where only the k largest w𝑖,𝑗’s for 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TMI.2016.2576899

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



 3 

each 𝐱𝑖 receive non-trivial values, with all others being set to 

zero.   Thresholding and k-nearest-neighbor rules serve to pare 

elements of 𝐖 and have the effect of imposing an aspect of 

locality on  (1), allowing only points in a given 𝐱𝑖’s local 

neighborhood to affect the corresponding 𝐲𝑖. For reasons 

discussed below, we found that, in our application case, 

judicious selection of α allowed both of these rules to be 

discarded, eliminating the need to set these parameters while 

still providing robust performance. 

Equation  (1) can be optimized with the help of the graph 

Laplacian 𝐋 = 𝐃 − 𝐖, where 𝐃 is a diagonal matrix whose 

elements represent the degree of connectivity of each high-

dimensional point: 𝐃𝑖,𝑖 = ∑ w𝑖,𝑗𝑗 .  As shown in [34], the 

optimization can be reduced to a generalized eigenvalue 

problem: 

𝐋𝐲𝑛,∗ = λ𝐃𝐲𝑛,∗,  (3) 

where the 𝐲𝑛,∗ is the eigenvector corresponding to the n-th 

non-zero eigenvalue λ and represents the n-th row of 𝐘. To 

obtain an 𝑁-dimensional representation of the original data, 

one must simply extract the 𝑁 eigenvectors corresponding to 

the 𝑁 smallest non-zero eigenvalues. 

 Determining the Scale Parameter 𝛼 B.

In preliminary investigations, k, 𝜖, and 𝛼 proved difficult to 

manually set, providing highly inconsistent results over our 

patient collective for a given value. In an effort to determine 𝛼 

adaptively, we relied on work by Coifman et al. on Diffusion 

Maps, a DR approach related to LE [39]. The authors noted 

that for small 𝛼, all non-diagonal elements of 𝐖 go to zero, 

and for large 𝛼, all elements approach unity. Neither one of 

these cases is capable of yielding a useful mapping, and 𝛼 

must therefore be chosen from the transition region between 

these two asymptotes where it has a magnitude relevant to the 

distances between points contained in 𝐖. To accomplish this, 

we dispense with thresholding and nearest-neighbor rules and 

simply set 𝛼 equal to the mean over all squared Euclidean 

distances between time bins: 

𝛼 =  
1

𝑇2
∑‖𝐱𝑖 − 𝐱𝑗‖

2

2

𝑖,𝑗

  (4) 

The properties of this method are illustrated in Fig. 1, where 

𝑄(𝛼) = ∑ w𝑖,𝑗(𝛼)𝑖,𝑗  is plotted against 𝛼 for one set of cardiac 

patient data. Each curve represents a different noise level 

generated via binomial subsampling of the counts in the 

original projection data. This is accomplished by performing Z 

Bernoulli trials with probability f at each pixel, where Z and f 

are the number of counts in the original data and the 

subsampling fraction, respectively.  It can be seen that for all 

cases, the lower asymptote of 𝑄(𝛼) is at 𝑇, the number of 

input points, and the upper asymptote lies correspondingly at 

𝑇2.  As image noise increases (indicated in the legend by 

reduced percentage of total counts), the transition region for a 

viable 𝛼 is shifted, partially explaining the difficulty in 

choosing a universal value for all acquisitions a priori. 

However, as shown by the vertical lines, setting the scale 

parameter according to (4) tracks the transition region. 

It should be noted that the local aspect of the LE method is 

thus no longer explicitly enforced in this implementation. 

However, the use of the exponential kernel in tandem with an 

appropriately chosen 𝛼 causes w𝑖,𝑗 to naturally decay to zero 

for distant pairs of input points, mimicking the paring 

behavior of 𝜖-thresholding and k-nearest-neighbor rules.  

 

 
Fig. 1.  The sum of all elements in the affinity matrix 𝑄(𝛼) = ∑ w𝑖,𝑗𝑖,𝑗 (𝛼) as 

a function of scale parameter 𝛼 is shown (log-log plot). Each curve represents 
data from a particular noise level of the same cardiac acquisition. The vertical 

lines indicate the value of 𝛼 chosen adaptively using (4) at each noise level.  
 

 Data and Preprocessing C.

In our implementation of the LE method for SPECT, we 

begin by temporally binning incoming list-mode data into 200 

ms frames. Detected photons are spatially binned into 

256x256 pixel matrices with 2.4 mm isotropic pixels. During 

preliminary work, we observed that the quality of estimated 

surrogate signals was best when all detected photons were 

used, rather than just those from the photopeak.  Thus, we bin 

all acquired counts, regardless of energy.  

Following binning, frames are smoothed spatially with a 

32×32 pixel rectangular window and temporally at each pixel 

with a 2 time bin moving average window, thus accomplishing  

3D smoothing similar to the 4D smoothing in [25]. Temporal 

smoothing with a moving average filter of even length 

effectively shifts the centers of the surrogate signal’s time bins 

by a uniform amount. This was not important for the 

validation study presented here but should be taken into 

account for applications requiring absolute synchronization 

with the SPECT data.  Our SPECT/CT system is outfitted with 

two detectors with an adjustable angular separation. Data from 

both detectors is acquired simultaneously at each rotation 

increment in a step-and-shoot mode, thus yielding two 

projections for each camera stop 𝑝. For this reason, frames 

from both detectors are concatenated to create a 256×512×T 

dataset for each stop. After vectorization of each time bin, 

input data to the LE method takes the form 𝐗𝑝 ∈ ℝ217×𝑇, 

where each column vector 𝐱∗,𝑖 represents an input point at 

time bin 𝑖.  
As a final step for cases where the camera sensitivity is 

uniform across the field of view (e.g. parallel-hole 

collimation), data in 𝐗𝑝 is normalized such that the sum of 

each column is equal. This is done under the assumption that, 

given uniform camera sensitivity and motion that is confined 

to the field of view, variations in total counts will be due to 
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statistical fluctuations rather than motion. As the LE method 

responds to all variations in the data over time, this 

normalization serves to reduce sensitivity to those purely due 

to the randomness of counting statistics.    This assumption 

holds for, e.g., liver and lung scanning with a parallel-hole 

collimator, but not in cardiac scanning with astigmatic 

collimation, which includes a complex pattern of collimator 

bore angulations to increase sensitivity in the center of the 

field of view [40]. In this case, no input normalization is 

performed, as spatially varying sensitivity results in count 

rates that are a function of the motion itself and hence capable 

of contributing to the estimate. 

Acquired data from each of the camera stops is disjoint in 

time and is thus treated as a series of independent 

measurements to yield one 𝐘𝑝 ∈ ℝ𝑁×𝑇  at each camera stop 𝑝. 

In this study, we restricted the dimensionality of the LE output 

to one (i.e. 𝑁 = 1), allowing 𝐘𝑝 to be represented as a vector 

𝐲𝑝 =  [y1, … y𝑇], where each element corresponds to the 

estimated respiratory amplitude of the patient at the 

corresponding time bin.  

 Post Processing D.

A number of post processing steps are required to assemble 

a complete surrogate signal for the entire acquisition from the 

individual 𝐲𝑝’s. These are illustrated in Fig. 2 and include the 

following:   

1) Smoothing:  First off, at each camera stop, the output 

signal of the LE estimation step is smoothed using a 

Savitzky-Golay filter with a span and order of nine and 

three, respectively. This choice of filtering was motivated 

by the filter’s tendency to preserve the magnitude of peaks 

in a noisy signal [41].  

2) Projection-Wise Polarity Correction:  Each smoothed 𝐲𝑝 

is the output of an eigenvalue decomposition and is hence 

scaled by an arbitrary value. All 𝐲𝑝’s must be polarity 

corrected and normalized such that they are consistent in 

sign and magnitude with others across the acquisition. To 

attain consistent polarity, two types of physical references 

computed from 𝐗𝑝 were used depending on collimation: 

For acquisitions with spatially varying camera sensitivity 

(astigmatic collimation), the total detected counts in each 

time bin served as a reference, similar to [22]. For 

parallel-hole collimation, the craniocaudal component of 

the image CoM was used in a similar way to [26].
1
 While 

too noisy to provide a respiratory signal themselves, these 

references (shown schematically as the orange dashed line 

in Fig. 2) serve as an anchor to enforce a consistent 

polarity throughout the acquisition. Each 𝐲𝑝 is compared 

to the reference via Pearson’s correlation and flipped if 

the correlation is negative. Note that no assumption is 

made at this point as to whether end-expiration 

corresponds to high or low values. 

 
1Bruyant, King, and Pretorius apply a threshold prior to CoM calculation that 

is optimized for cardiac imaging. As our method is more general, we do not 

threshold the data. 

 

3) Baseline Correction:  After projection-wise polarity 

correction, each 𝐲𝑝 is subjected to a robust baseline 

correction scheme. First, outliers (defined here as 

estimated surrogate signal values more than two standard 

deviations away from the mean) are stripped from 𝐲𝑝 to 

yield an outlier-free set Yolf = {y𝑖  |  |y𝑖 − �̅�𝑝|  ≤

2σ𝐲𝑝
 ∀ 𝑖 = 1 … 𝑇}, where �̅�𝑝 and σ𝐲𝑝

 are the mean and 

standard deviation over the elements of 𝐲𝑝, respectively. 

Then, the values of Yolf are sorted in ascending order, and 

the first decile is extracted to yield a subset Y10% ⊆ Yolf 

containing the lowest values of the signal. The mean of 

this subset Y̅10% is then subtracted from the original 

estimate to yield 𝐲𝑝
′  with elements y𝑝,𝑖

′ = y𝑝,𝑖 −

 Y̅10% ∀ 𝑖 ∈ {1 … 𝑇}, thus encouraging a uniform baseline 

across all camera stops.  

4) Normalization:  To ensure the curves have a uniform 

magnitude as well, the outlier rule is again applied to 𝐲𝑝
′  to 

obtain Yolf
′ = {y𝑖

′ |  |y𝑖
′ − �̅�𝑝

′ |  ≤ 2σ𝐲𝑝
′  ∀ 𝑖 = 1 … 𝑇}, where 

�̅�𝑝
′  and σ𝐲𝑝

′  are again the mean and standard deviation over 

the elements of 𝐲𝑝
′ , respectively. Each 𝐲𝑝

′  is then 

normalized by the standard deviation σolf over Yolf
′  to 

yield 𝐲𝑝
′′ =  𝐲𝑝

′ /√2σolf. Basing the normalization off of 

statistics from percentiles and outlier-free portions of the 

data provides more consistent performance in the face of 

noisy data and irregular breathing. If the respiratory 

waveform is approximately sinusoidal, typical respiratory 

cycles will have a peak-to-peak amplitude of two and a 

baseline of roughly zero.  

5) Concatenation:  To assemble a global respiratory 

surrogate signal for the entire acquisition, all 𝐲𝑝
′′’s are then 

concatenated to yield a vector 𝐲 ∈ ℝ𝑃𝑇×1. 

6) Global Polarity Correction (not shown in figure):  The 

projection-wise polarity correction and normalization has 

ensured that each 𝐲𝑝
′′ is consistent to the others, but the 

global polarity may still be inverted. To correct this, 𝐲 is 

subjected to a check using knowledge that, as most time is 

spent in end expiration, histograms of respiratory 

amplitude tend to be bottom heavy [42]. We enforce this 

constraint by constructing a histogram of 𝐲 and inverting 

the signal if it is negatively skewed. The resulting vector 

represents a surrogate signal for respiratory amplitude 

throughout the entire acquisition as a function of time.  

 Implementation and Runtime E.

The binning routine was implemented in C# as a compilable 

program. All other processing steps were implemented in-

house using Matlab (The MathWorks, Inc., Natick, MA, 

USA). Binning and processing were performed on a 

workstation laptop with a 2.6 GHz Intel i7-3720QM 

processor. Run time for binning increased with the total 

number of counts in each acquisition as well as number of 

camera stops and ranged from roughly 70 to 140 s. Time 

required to process the binned data increased with number of 

views and dwell time and ranged from ca. 240 to 400 s. 
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Fig. 2.  Schematic description of post processing steps. Final global polarity 

correction not shown.  

 Patient Validation F.

In a validation study approved by our hospital’s institutional 

review board, data was collected at the University of 

Erlangen-Nuremberg Clinic of Nuclear Medicine from 

patients undergoing routine exams between May, 2014 and 

August, 2015. For each acquisition, following granting of 

informed consent, an Anzai AZ-733V belt with pressure 

sensor (Anzai Medical Co., Ltd., Tokyo, Japan) was affixed to                                                                                                  

the patient. After confirmation that a proper respiratory trace 

was visible (and adjustment of the sensor when needed), the 

Anzai acquisition was commenced, followed shortly thereafter 

by the planned SPECT scan.  For this study, data from three 

types of acquisitions were collected: myocardial perfusion 

(stress and rest), shunt diagnostic scans for radioembolization 

planning, and lung inhalation/perfusion. All acquisitions were 

carried out using a Siemens Symbia T2 SPECT/CT system 

(Siemens Molecular Imaging, Inc., Hoffman Estates, USA). 

Table I summarizes the acquisition parameters involved for 

each scan type. 

Following data acquisition, the Anzai signal, which is 

acquired with a sampling frequency of 40 Hz, was resampled 

via b-spline interpolation to the temporal resolution of the LE 

estimate (5 Hz). To eliminate low-frequency baseline shifts 

such as those observed in [43] and [44], we detrended the 

Anzai signal by subtracting a moving average with a window 

width of one minute. To facilitate visual comparison, the 

baseline correction and normalization steps applied to each 

camera stop of the LE signal were then applied to the entire 

Anzai signal.   

As there was no way to synchronize the Anzai sensor and 

our SPECT system via hardware, we instead synchronized the 

Anzai signal to the LE estimate by searching for the maximum 

cross-correlation between the two and shifting accordingly. 

The sync was further refined at sub-time bin resolution by 

searching within a ±1 bin neighborhood in 20 ms increments 

via b-spline interpolation.  Synchronization in this way is 

insensitive to phase shifts or time delays that are constant 

throughout the entire acquisition but may be error prone if 

delays are not constant. 

To compare the Anzai gold standard signal with the LE 

estimate, we computed Pearson’s correlation coefficient 

between the two signals for each dataset and termed it ρAnzai. 

As this metric assesses the degree of linear dependence 

between the two signals, it should be a good predictor of how 

similar gating results would be based on Anzai and LE using 

prevailing amplitude-based gating methods [45, 46]. In 

addition to correlation, we manually compared each 

projection’s surrogate signal estimate with the corresponding 

excerpt from the Anzai signal and assessed whether or not the 

polarity correction failed. The same was done at the global, 

acquisition-wide scale.  

TABLE I  

ACQUISITION DETAILS FOR PATIENT VALIDATION 

Scan Type Tracer 
Injected Activity at 

Acquisition Time (MBq) 
Collimator 

Detector Angular 

Separation 

Camera Stops 

(Dwell Time) 

Number of 

Datasets 

Cardiac (Stress/Rest) Tc-99m-Sestamibi 
237 ± 22/ 

665 ± 56 

SMARTZOOM 

(Astigmatic) 
104° 17(30 s) 14 / 13 

Shunt diagnostic for liver 

radioembolization planning 
Tc-99m-MAAa 122 ± 37 LEHRb 180° 60(15 s)c 26 

Lung (Inhalation/Perfusion) 
Tc-99m-DTPAd/ 

-MAAa 
760 ± 117e/ 

158 ± 31 
LEHRb 180° 

60(25 s)/ 
60(15 s) 

7 / 7 

aMacroaggregated albumin 
bLow Energy-High Resolution  
cDue to a low injected dose, one patient was acquired with a dwell time of 30 seconds. 
dDiethylene-triamine-pentaacetate 
eLung inhalation activity values represent total amount prepared, decay corrected to acquisition time. Due to high variability in the inhalation process, the 

actual amount of radioactivity in the lungs may be much less.  
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 Probing Effect of Count Rate G.

SPECT imaging typically operates in a low count regime, 

and it is thus critical that any algorithm applied to it be 

assessed for robustness against noise. As we are seeking to 

estimate a function over time, we recorded the average 

detected counts per second in each of the patient acquisitions 

to serve as a measure of noise level in the data and enable 

further analysis.  

Although our patient collective provides a wide range of 

count rates, it is difficult to separate variations in results due 

strictly to noise from those due to inter-patient differences. To 

overcome this, we performed a separate analysis on three 

acquisitions with above average ρAnzai (one from each scan 

type) and progressively increased noise artificially via 

binomial subsampling on the full-count data. At each 

increment we then computed correlations between the 

reduced-count LE estimate and the Anzai signal. We repeated 

this analysis on one cardiac scan with low ρAnzai as well. 

III. RESULTS 

 Surrogate Signal Estimate A.

Fig. 3(a) shows the estimated and Anzai surrogate signals 

from the first three projections of a representative cardiac rest 

acquisition. Black bars denote the time spent during detector 

positioning. It can be seen that the LE estimate consistently 

represents all of the respiratory cycles present in the data, 

albeit with slight underestimations at cycle minima. The 

normalization provides a consistent baseline and peak-to-peak 

amplitude across data from each of the camera stops.  

 
(a) 

 
(b) 

Fig. 3.  Estimated and Anzai surrogate signals plotted against each other for 
three projections of a representative cardiac rest scan (a). Respiratory cycles 

are well represented, and normalization provides consistency between camera 

stops. Black bars cover time during detector rotation between camera stops. 

The scatter plot in (b) shows results for each time bin over entire acquisition. 

The correlation of the LE estimate to the Anzai signal for 

this scan was 0.91, and data from the entire 8.5 minute scan is 

shown in the scatter plot in Fig. 3(b), where each point 

represents data from one 200 ms time bin. There is a clear 

linear relationship with a slope close to unity and 95% 

prediction intervals roughly 25% of the total peak-to-peak 

amplitude, according to a linear fit. 

Table II shows mean ρAnzai ± standard deviation across all 

acquisitions for each scan group. Median ρAnzai is also 

reported. All correlations were significant with a p-

value<0.001. Cardiac and lung subgroups are listed separately 

due to their strongly differing count levels.  All of the 

acquisition types yielded median correlations ≥0.85 except for 

the lung inhalation scans, where the mean across the seven 

patients was lower at 0.54. According to Wilcoxon rank-sum 

testing, median correlations for all patient groups were 

statistically equal at the 10% confidence level with the 

exception of the lung inhalation scans, which were 

significantly lower than those for the stress, rest, and shunt 

diagnostic scans. 

TABLE II 

CORRELATIONS BETWEEN ANZAI SIGNAL AND LAPLACIAN 

EIGENMAPS ESTIMATE AND COUNT RATES ACROSS PATIENT 

COLLECTIVE 

Scan Type 
Pearson’s  

ρAnzai
a ± SD Median ρAnzai kCounts/s ± SD 

Cardiac  0.87 ± 0.10 0.90 50.3 ±  31.3 

     Stress 0.84 ± 0.13 0.89 21.4 ± 2.9 

     Rest 0.90 ± 0.03 0.90 81.4 ± 12.7 

Shunt diagnostic  0.75 ± 0.36 0.85 15.7 ± 5.5 

Lung  0.68 ± 0.24 0.71 14.5 ± 11.1 

     Inhalation 0.54 ± 0.24 0.54 4.4 ± 2.9 

     Perfusion 0.83 ± 0.12 0.86 24.7 ± 5.5 
aCorrelations for all acquisitions were significant with p-value < 0.001. 

 

The divergence between the median and mean ρAnzai, as well 

as the relatively high standard deviations, for cardiac stress 

and shunt diagnostic scans are indicative of outliers within 

each collective having disproportionately poor results. These 

groups had one and two patients each, respectively, with ρAnzai 

more than three standard deviations lower than the mean 

within the corresponding group. 

  Polarity Correction B.

Table III shows the absolute number of failures and failure 

rates for the projection-wise and global polarity correction. 

For cardiac and shunt diagnostic scans, projection-wise 

correction only failed in ca. 1% of cases. These errors were 

confined to three acquisitions, two of which were outliers with 

poor overall correlation. The projection-wise failure rate for 

the lung patients was higher at 6.3% and spread across eight of 

the 14 acquisitions. In each of these cases, either the surrogate 

estimate or the physical reference was too noisy to provide a 

meaningful correlation with each other. Global polarity 

correction failed in a single patient whose natural breathing 

violated the bottom heavy constraint.  
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TABLE III 

NUMBER OF PROJECTIONS AND ACQUISITIONS IN WHICH 

POLARITY CORRECTION FAILED. PERCENTAGE OF TOTAL 

PROJECTIONS/ACQUISITIONS AFFECTED SHOWN IN 

PARENTHESES 

Errors Cardiac Shunt Diagnostic Lung 

Projection-Wise 4(0.9%) 16(1.0%) 53(6.3%) 

Global 0(0%) 1(3.9%) 0(0%) 

 Count Rates C.

Fig. 4 shows ρAnzai for the cardiac stress/rest (a), shunt 

diagnostic (b), and the lung inhalation/perfusion (c) scans 

plotted against their respective count rates. It can be seen that, 

with the exception of the shunt diagnostic acquisitions, scans 

with poor surrogate signal estimates tend to be in the low 

count regime for their respective protocols. However, despite 

this visual impression, mean count rates for each scan group 

(reported in Table II) were not significantly correlated with 

ρAnzai. For subgroups, only results from the lung inhalation 

acquisitions were significantly correlated with count rate 

(Pearson’s ρ=0.86, p-value=0.024). 

Results of the second count rate analysis are presented in 

Fig. 5. For the three above average scans, the structure of the 

correlations as a function of count rate is well-fit by a logistic 

function. Points from each dataset show a plateau at higher 

count levels and a breakdown region as count rate is reduced. 

The poor quality cardiac stress scan, however, exhibits no 

plateau, and ρAnzai decreases even at mild levels of 

subsampling.   

IV. DISCUSSION 

 Effect of Irregular Respiration A.

In general, the post-processing steps were able to provide a 

common baseline, polarity, and magnitude for signals where 

breathing is either uniform throughout the acquisition or 

slowly varying. The baseline correction scheme makes no 

assumptions about whether each 𝐲𝑝 is polarity-aligned with 

end-expiration at high or low values (both cases were 

observed in our collective).  However, it does work under the 

assumption that for the case where end-expiration is at high 

values, any large variations in the magnitude of respiratory 

peaks will be of limited temporal duration. If this is satisfied, 

transients will be ignored by discarding outliers from Yolf, and 

the influence of small variations in respiratory cycle 

magnitude will be mitigated by taking the mean of the lowest 

decile rather than simply taking, e.g., the minimum.   

 
Fig. 5.  Correlation to Anzai plotted against count rates derived from above 
average cardiac rest, shunt diagnostic, and lung inhalation scans. Lower count 

rate data generated using binomial subsampling of full count data. Fits of 

logistic function to each set of points shown in black. Correlations for poor 
quality cardiac stress signal shown in green circles. 

 

Fig. 6(a) shows three projections from a more difficult 

scenario where a cardiac patient exhibited periodic breathing, 

whereby the amplitude of the respiratory cycle appears 

modulated by a low frequency component. This pathology is 

related to cardiac disease and is not uncommon for patients 

receiving myocardial perfusion scans [47]. The baseline 

between projections is not as consistent as Fig. 3, and the 

magnitude of peaks is frequently underestimated. It can be 

seen particularly from the larger spread in Fig. 6(b) that the 

modulation of the breathing cycle degrades the results of the 

surrogate signal estimation somewhat (ρAnzai was below 

average at 0.81). Nevertheless, the overall structure of the 

signal was well captured.  

 

 
          (a) 

 
            (b) 

 
           (c) 

Fig. 4.  Correlation of LE to Anzai plotted against count rates in the data for cardiac (a), shunt diagnostic (b), and lung (c) scan types. For clarity, the shunt 
diagnostic scan with inverted polarity (ρAnzai=-0.92, 19.5 kCounts/s) is not shown. 
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(a) 

 
(b) 

Fig. 6.  Estimated and Anzai surrogate signals plotted against each other for 
three projections of a below average cardiac rest scan (a). High-magnitude 

cycles are well recovered, but some low-magnitude cycles are lost in noise. 

Normalization shows some inconsistency in magnitude due to irregular 
breathing pattern that is reflected in the spread of the scatter plot in (b).   

Black bars cover time during detector rotation between camera stops. 

 

It is possible for abnormal respiratory waveforms to induce 

a failure on our global polarity correction as well. This 

occurred in one shunt diagnostic scan, where the patient spent 

more time at full-inspiration than full-expiration/beginning-

inspiration, violating the bottom heavy constraint enforced by 

the method. The resulting ρAnzai was -0.92, indicating a high 

quality estimate that was incorrectly inverted during post 

processing. If the polarity had been correct, the results for the 

shunt diagnostic patients would have been improved, with a 

ρAnzai of 0.83±0.13 and a median of 0.86. Furthermore, if the 

surrogate signal is being used to gate data as an input to a 

motion-correction method, the global polarity may be 

inconsequential as long as the relative separation between 

respiratory gates is maintained.  

Normalization is also affected by irregular breathing 

patterns, where transients of extended duration with 

amplitudes greatly exceeding that of other respiratory cycles 

can be problematic. In such cases, LE maps samples highly 

non-linearly into the low-dimensional space, and places 

outliers disproportionately far away from other points. For 

short duration transients, such as coughs, outliers will be 

excluded from Yolf
′ , and the normalization step will accurately 

match the amplitude of normal respiratory cycles to those in 

other projections. However, for longer duration transients, 

such as rogue deep inhalations, the normalization might fail, 

leaving one peak matching its true value and effectively 

suppressing the others. Fig. 7 depicts an example of this 

behavior from a lung inhalation scan. 

 
Fig. 7.  Respiratory surrogates from three projections of a lung inhalation 
scan. Failure of normalization due to rogue deep inhalation is visible in central 

projection. Black bars indicate time spent during detector positioning, the 

duration of which may vary due to autocontouring.   
 

The nonlinearity of LE is also visible in patients with 

regular breathing, as indicated by the slight concavity of the 

scattered points in Fig. 3(b). We observed this characteristic in 

several patients, but in such cases, a more fundamental 

disagreement between internal motion magnitudes and those 

appearing at the Anzai sensor cannot be ruled out. 

 Effect of Count Rate B.

As noted in the methods section, during preliminary work 

we observed a benefit from using all acquired counts rather 

than just those in the photopeak. The resulting frames are low 

contrast and useless for reconstruction, but the increase in 

counts – even if coming from scattered photons – stabilized 

our surrogate signal estimates. Table IV provides a trio of 

examples illustrating the effect of using all counts. For 

datasets with high count rates to begin with, there is little or no 

benefit, as can be seen in the first row. However, for patients 

with lower count rates, ρAnzai is higher when using all photons 

(fourth column) than when using either the non-photopeak or 

only photopeak counts alone (second and third column, 

respectively). This indicates that both scattered and non-

scattered photons carry some information related to respiratory 

motion that is useful for the LE algorithm. 

TABLE IV 

EXEMPLARY RESULTS ILLUSTRATING BENEFIT OF UTILIZING 

ALL DETECTED PHOTON COUNTS 

Scan Type 

ρAnzai  

Non-

Photopeak 

ρAnzai  

Photopeak 

Only 

ρAnzai  

All Counts 

kCounts/s 

Non-

Photopeak 

(Photopeak) 

Cardiac Rest 0.91 0.89 0.91 74.0(25.7) 

Cardiac Stress  0.52 0.17 0.70 14.1(3.8) 

Cardiac Stress 0.75 0.60 0.80 14.1(5.2) 

 

The increase in noise that comes with lower counts should 

somehow degrade algorithm performance, yet only the results 

of the lung inhalation scans were significantly correlated with 

count rate. This makes sense in light of the logistic 

characteristic for the high quality scans in Fig. 5, which we 

also observed in a phantom experiment in [38]. This behavior 

indicates that there is a range of count rates in the plateau 

region that deliver similar results and a breakdown point at 

which performance degrades rapidly. This nonlinear 

relationship would not be captured by a Pearson correlation 

and points to the fact that, with the exception of the lung 
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inhalation scans and the outlier cardiac scan (cardiac stress 

scan in Fig. 5), LE was operating in the plateau regime for the 

majority of datasets available.  

Although it is possible to explain some of the variation in 

results using count rates and the logistic characteristic, the 

presence of datasets with poor results in the shunt diagnostic 

and lung perfusion groups despite average count rates 

indicates that, at the very least, the location of the breakdown 

point is patient-specific. Furthermore, other factors such as the 

regularity of the breathing cycle discussed above certainly also 

play a role. Ultimately, more patient data, particularly for lung 

scans, are needed to thoroughly evaluate the robustness of the 

algorithm. 

 Towards a Performance Predictor C.

One challenge in applying an automated data-driven 

method in clinical practice is providing the user with an 

indicator as to whether or not it has failed. We can take 

advantage of the logistic breakdown behavior shown in Fig. 5 

to design a predictor for situations in which the method is 

likely to fail due to insufficient photon statistics. In practice a 

ground truth signal is not available, but by subsampling 

acquired data and comparing an LE surrogate signal derived 

from this data with one derived from the full-count data, it is 

possible to roughly determine whether the original estimate 

was in the plateau or breakdown regime. A good estimate 

from the plateau should be well-correlated with its reduced-

count counterpart, and an estimate from the breakdown region 

will devolve into noise if counts are reduced. We tested this by 

reducing the counts in the first projection of each acquisition 

by an empirically chosen factor of 50% and computing a 

surrogate signal. Correlating this signal with the 

corresponding one from the full-count data yielded a value 

ρ50% for each acquisition that serves as a performance 

predictor. Across all patient datasets, the predictors correlated 

significantly with the corresponding ρAnzai (ρ=0.77, p<0.001).  

This relationship between predictor and actual performance is 

of similar strength to the “Quality Factor” predictor based on a 

frequency domain analysis of projection data proposed in [48] 

for PET.  

Going one step further, we performed a receiver operating 

characteristic (ROC) analysis using all of the available patient 

scans, where those with ρAnzai≤0.6 were classified as “true 

failures”. The predictor’s ρ50% served as the discriminating 

variable, and a threshold 𝜃 applied to ρ50% was swept from 

zero to unity. At each threshold evaluation, datasets with 

ρ50%≤ 𝜃 were classified as “predicted failures”, allowing 

sensitivity and specificity values to the calculated at each 

point. The results can be seen in Fig. 8, where the ROC’s area 

under the curve (AUC) of 0.92 indicate that ρ50% is indeed a 

useful predictor of performance for failures caused by noise. 

The annotated operating point (𝜃=0.7) is sensitive enough to 

detect many failures and unlikely to misclassify good 

estimates.  

 
Fig. 8.  ROC curve showing ability of performance predictor to classify poor 
surrogate signal estimates. 

 Comparison to Other Respiratory Surrogate Signal D.

Extraction Methods 

Table V contains a collection of results from other 

respiratory surrogate signal extraction methods reported in the 

literature. It can be seen that hardware-based methods agree 

well with each other, with radar and time of flight cameras 

providing very similar surrogate signals to those from an 

Anzai belt [21, 49]. A successful data-driven method should 

be capable of providing a similar level of consistency. 

  One data-driven method that produced comparable results 

utilized MR navigator images [50], which offer higher 

resolution and lower noise than projections from emission 

tomography. Büther et al. in [23] and Kesner et al. in [48] 

proposed data-driven methods for PET using non-DR, image-

based metrics but reported somewhat poorer results.
2
 Despite 

lower correlations to truth, both authors were able to show 

significant lesion motion in gated reconstructions. In [37], 

Thielemans et al. compared data-driven methods based on 

sensitivity [22] and spectral analysis [25] to PCA and LE for a 

collective of 14 FDG and four NH3 cardiac PET patients.  The 

authors did not report specific average correlations, but 

indicated in figures that both DR-based methods and the 

spectral analysis method performed well, with an average 

correlation greater than 0.8 against an infrared camera-based 

gold standard. 

This body of work indicates that data-driven methods can 

approach the level of agreement of hardware-based 

techniques. Nevertheless, their application within emission 

tomography has been primarily limited to PET, a modality 

with superior angular coverage, resolution, and noise 

characteristics to traditional SPECT. Despite these hurdles, the 

proposed method is on par with data-driven techniques from 

PET, and even hardware-based approaches, provided 

sufficient counts are present.  

 
2 Büther et al. reported Spearman rank correlations rather than Pearson values, 

and the results are thus not directly comparable to others in the table. 

However, for data with a roughly linear relationship the two will be 

approximately equal, and for a nonlinear dataset Spearman should actually be 

higher.  
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TABLE V  

SURVEY OF RESULTS OF RESPIRATORY SURROGATE SIGNAL EXTRACTION METHODS REPORTED IN THE LITERATURE 

Paper Application Modality Proposed Method vs. Truth Number of Test Subjects Correlation 

Pfanner et al. [49] CT Radar vs. Anzai 10 0.92 

Schaller et al. [21] ToFa Camera ToFa vs. Anzai  (Abdomen/Thorax) 13 0.91 / 0.85 

Martinez-Möller et al.[50] PET/MR MR (diaphragm tracking) vs. Anzai 12 0.91 

Büther et al. [23] PET PET Sensitivity vs. Video 29 0.65 (Spearman) 

Büther et al. [23] PET PET Center of Mass vs. Video 29 0.68 (Spearman) 

Kesner et al. [48] PET PET Voxel TACsb vs. Anzai 24 0.61 

Proposed SPECT SPECT LE vs. Anzai 67 0.81 
aTime of Flight 
bTime Activity Curves 

 

The evaluation in this paper and others is primarily based 

on comparison to the Anzai belt, which is a popular choice for 

a gold standard, as it is widely available and approved for 

clinical use. However, the Anzai does not provide a perfect 

ground truth. The pressure sensor outputs a one-dimensional 

measurement, whereas camera-based methods (and LE) utilize 

information from the entire torso and/or abdomen. When the 

type of breathing (abdominal or thoracic) is mismatched 

relative to the location of the Anzai sensor, the “gold 

standard” signal may therefore not correspond to one based on 

a large field of view, even though the latter is possibly more 

valid. This disagreement was noted by in [21] by Schaller et 

al., who explicitly investigated the effect, and cannot be ruled 

out in all of our patients. Another potential source of error is 

time delay between the occurrence of internal motion and the 

arrival of surface pressure at the Anzai sensor. Due to our 

synchronization methodology, this time shift would cancel out 

if it were constant, but it is known to be variable [51] and 

could thus unpredictably degrade the correlation between the 

two signals. 

V. CONCLUSION 

In this work we proposed a fully-automated, data-driven 

respiratory surrogate signal extraction method for SPECT 

imaging with a traditional dual-headed system. We based the 

method on Laplacian Eigenmaps and added an adaptive scale 

parameter to improve usability despite wide variations in the 

properties of SPECT input data. We also laid out a series of 

post-processing steps that overcome the problems caused by 

SPECT’s disjoint projections. In a subsequent patient 

validation, the proposed method was well-correlated with a 

clinically accepted gold standard. In a follow-up analysis, we 

proposed a predictor for identifying scans where the method is 

likely to fail.  

Although promising, the validation is limited by the 

accuracy of the Anzai belt, which is an imperfect ground truth. 

Furthermore, although the respiratory surrogate signal is an 

enabler for subsequent respiratory gating or motion correction, 

the ultimate clinical utility of the work presented here must be 

established by future studies. Nevertheless, to the best of our 

knowledge, no such method for traditional SPECT has been 

described in the literature previously with an accompanying 

large patient validation. Our results are on par with those 

reported for other approaches and modalities, and the work 

presented here will facilitate future efforts toward respiratory 

motion management for SPECT imaging. 
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