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Abstract. In this paper, a comparison of single-view gradient-based
2D/3D rigid registration methods is presented. To achieve dimensional
correspondence between the images, projection and back-projection stra-
tegies have been proposed in the literature. Two similarity measures
that are applicable for both strategies are involved in the comparison.
Extensions of the similarity measure are proposed and compared to
the original proposals. It is demonstrated that the projection strat-
egy achieves a median accuracy up to 0.8 mm, which outperforms the
back-projection strategy with a median accuracy of up to 1.1 mm. Our
extension of the covariance-based similarity measure in combination with
the back-projection strategy achieves the highest convergence range (up
to 34.0 mm), while the the maximum achieved convergence range for the
projection strategy is 31.3 mm.

1 Introduction

In many interventional procedures, C-arm systems are used to acquire live X-ray
images, which are used as a guidance during the procedure. However, some
important structures are not visible in these images. Pre-operative 3D images
can be used to create an overlay showing the structures. An accurate alignment
of 2D and 3D images is crucial. In order to achieve this, 2D/3D registration
methods are frequently used. A thorough overview of different methods is given
in [1].

Gradient-based methods achieve high accuracy [2] without the need of artifi-
cial markers. A projection-based method is described in [3], where the gradients
of the volume are projected and compared to the gradients of the 2D image.
A back-projection-based method is introduced in [4], where bone surfaces are
extracted and the gradient direction is compared in 3D to back-projected gradi-
ents. This method is extended in [5], where 3D gradients are reconstructed from
a set of 2D images. A rough registration step is also introduced which is less
accurate but has a higher capture range (CR). In [6], covariance matrices are

T. Tolxdorff et al. (Hrsg.), Bildverarbeitung fiir die Medizin 2016,
DOI 10.1007/978-3-662-49465-3_26, © Springer-Verlag Berlin Heidelberg 2016



Gradient-Based 2D /3D Registration 141

used to incorporate the neighborhood information into the similarity measure.
The similarity is evaluated at a set of voxels with the highest gradient values.

The remaining paper is organized as follows: the details of the compared
registration methods and the similarity measure extensions are discussed in Sec. 2
as well as the evaluation methodology and the used data sets. The results are
presented in Sec. 3, followed by a discussion in Sec. 4.

2 Materials and methods

The registration is performed by defining a similarity measure which is high for
correct alignment of images and decreases with higher misalignment. The rigid
transformation T, is searched which maximizes the measure. For the projection
strategy, the gradients of the 3D image V are projected onto the image plane
as derived in [4]. Ray casting on the GPU is used to obtain the projection
image. For the back-projection strategy, the gradients in the 2D image 7 are
back-projected onto an auxiliary plane P orthogonal to the ray direction e, [4].

2.1 Similarity measures

In [4], a similarity measure based on the angle between two gradients is proposed.
It is based on the intuition that if the images are aligned, the gradients should
point into the same direction. The measure is computed as
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where g,; and gp; denote the compared gradients and « the angle between
these. As in [4], n = 2 is used in all experiments.

However, this measure is not invariant to the number of points used. This
can be demonstrated for the case where the compared gradients have identical
direction and identical magnitude c¢. For N point pairs, the measures is

cos™ () if |e| < 90°

0 otherwise
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Therefore, in addition to the original DS measure, the measure DS_P is intro-
duced, which is the weighted mean of f(«) at the points. It is expressed as

N
Zi:l |ga,i| : |gb,i| (o)
N
Zi:l |ga,i| : |gb,i|

In [6], a similarity measure is introduced which uses covariance matrices
containing the gradient information in the neighborhood of a point. Both the
covariance matrix from the volume as well as the 2D image are projected onto
the auxiliary plane P described before. The resulting covariance matrices are

DS_P = (3)
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denoted Cy and Cp. The covariance matrices are computed for the neighbor-
hood £2,. We choose the size of {2, as three times the pixel size in Z for both
the projection and back-projection strategies. The similarity measure is com-
puted using the normalized tensor scalar product. Contrary to [6], the number
of points is variable. To account for this, the resulting similarity measure is
computed as

Trace(C,,iCp)
4
N Z Trace(C,,;)Trace(Cy ;) )

For the projection strategy, the covariance matrices are compared for every pixel
and no projection onto an auxiliary plane is necessary.

The covariance matrices preserve the gradient orientation, but not the di-
rection. To force the gradients to point into the same direction, the similarity
measure is extended by setting the similarity to 0 if the direction of the gradients
at the central points varies by more than 90°. The modified measure is

Trace(C,,iCyp ) 1 if |a| <90°
CS_0O = . here d =
N Z Trace(C,,;)Trace(Cy ;) d where {O otherwise (5)

2.2 Point selection

A set of points in V is selected for the back-projection strategy. The points
should correspond to structures which are also present in Z. Therefore, points
on bone surfaces are extracted as in [4] using the canny edge detector. The
gradient magnitude and hysteresis thresholds are denoted t, and t,. Addition-
ally, minimum and maximum intensity thresholds t,, and ty; are introduced in
this work to select specific tissue classes. A minimum connected component size
ty = 1000 is introduced to exclude small surfaces which are present due to noise.
If the points are selected only based on the 3D structures in V, there will
be points for which no large gradient is observed in the 2D image, e.g. points
on surfaces parallel to the image plane. Generally, the correspondence of the
gradients is good if the points are located on the occluding contour of the 3D
surface, i.e. if the ray going through the point is tangential to the surface. In this
case, the ray is perpendicular to the gradient in the volume. Therefore, surface
points are selected which satisfy Z(g;,e;) > 90° —t., [7]. For the experiments t.,
is set to 4°. It was found that on sharp edges (e.g. the top and bottom of ribs)
many points are missing due to high gradient direction changes and the discrete
nature of V. Therefore, the surface points are classified as edge points or not
based on the covariance matrix J of the neighborhood {25 around the point. If
As2/A31 2 te holds (Ay 1 and Ay 2 are the largest and second largest eigenvalues
of J), the point belongs to an edge and a higher threshold t. o = 20° is used.

2.3 Optimization

The similarity measure is optimized using gradient descent and a multi-scale
approach with 5 scale levels. Both V and Z are scaled by the factor 0.5 for each
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scale level. As high frequencies are lost when the images are down-sampled,
the used gradient thresholds are also scaled by the factor 0.5 for each resolution
level. The neighborhood §2, and {25 are scaled by the factor 2 to cover a larger
region of the image. The threshold ty is multiplied by the factor 0.5 % 0.5, as the
surface is a 2-dimensional structure. If occluding contour point selection is used,
the angle threshold is scaled by the factor 2. This is based on the intuition that
on lower resolution levels, coarser structures are involved and therefore thicker
contours are used. t-. is not modified as it reflects the threshold needed on
sharp edges to avoid missing points.

2.4 Evaluation setup

Error computation Two crucial properties of a registration method are the
accuracy and the ability to find the correct alignment for a given initial mis-
alignment. The accuracy can be measured by defining a set of points in V and
measure the distance of that points for the estimated T.c, and the ground truth
transformation Tg. Evaluating the mean distances in 3D space leads to the
mean target registration error (nTRE) [8]. As for overlays, the error in the im-
age plane is relevant, the points are projected before computing the error, which
leads to the mean projection error (mPE) [7]. Points are uniformly distributed
in V at 50 mm intervals and only used if inside Z for Tgy.

The CR indicates up to which misalignment a correct registration can be
expected. For a correct registration, a maximum resulting error threshold of
5 mm is defined. The CR is defined as the minimum initial error for which
less than a given fraction of registration with smaller or equal initial errors are
successful. The mTRE error is often used as the initial error, e.g. in [6]. However,
as mPE is used as the resulting error in this work, it is also used for the initial
error computation. This has the advantage that the effect of projecting the
error, which decreases the error in most cases, does not bias the evaluation. The
accuracy is given as the median error for all successful cases below the CR. The
median is used as it is insensitive to low accuracy cases which are introduced
near the CR due to the cumulative computation of the CR.

Initial transformation generation To compute the CR, the initial errors
have to be uniformly distributed. Similar to [8], a set of initial transformations
is created which satisfies this. For each interval of 1 mm in the initial error,
three transformations are generated. The CR is computed on a per-mm basis.

Data A thorax phantom and a head phantom are used in the experiments.
The thorax data set contains a CT volume and three fluoroscopic images. The
values t, = 300, tp = 5000, 25 = 2mm and {2, = 0.76 mm are used. The
ground truth is obtained using an Optotrak stereo vision system. The head
data set contains a C-arm-CT volume and three X-ray images with contrasted
vessels in one hemisphere. The values t,,, = 300, tyy = 10000, 25 = 1 mm and
£25 = 0.73mm are used. A higher ty; compared to the thorax phantom is used
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Table 1. Convergence Range (CR) / median accuracy for successful cases below
CR. Bold values denote the best results for given strategy to achieve dimensional
correspondence and similarity measure type (DS-based or CS-based, all values in mm).

Thorax Phantom Head Phantom

Surface Occ. Cont. Projection Surface Occ. Cont. Projection
DS 170/18 140/19 203/11 11.7/19 12.3/1.4 24.3/0.8
DS p 120/1.6 187 /17 233 /12 120/16 10.0/1.7 220/ 0.8
CS 16.7 /18 177 /1.2 183 /15 57 /44 19.3 /2.5 31.3 /14
CS.O 26.7/17 237/21 220/1.1 34.0/1.3 253/1.3 28.0/0.8

to include the contrasted vessels. A reference method was used to estimate Tg.
The given results are the mean values for the used fluoroscopic images of one
data set.

3 Results

Tab. 1 shows the CR and median accuracy values. The projection strategy pro-
vides higher accuracy (error down to 0.8 mm for the head phantom) compared to
the back-projection strategy (down to 1.2 mm for the thorax phantom). The ac-
curacy is comparable for all measures except CS, which leads to an error increase
of about 0.3 mm for the thorax and 0.6 mm for the head phantom. Considering
only projection-based methods, the DS_P measure achieves the highest CR of
23.3mm for the thorax phantom. For the head phantom, the highest CR of
31.3mm is achieved using the CS measure. The extended measures lead to an
increased CR for the thorax and decreased CR for the head phantoms.

For the back-projection strategy, the CS_O measure with selecting all surface
points leads to the highest CR for both data sets, which is up to 34.0 mm for the
head data set. The selection of occluding contours leads to better results in case
of the CS measure in both data sets, while being outperformed by the extended
CS_0O measure selecting all points.

For two of the used X-ray images of the head data set, a CR of 0 mm to 3 mm
is often achieved, leading to an overall low CR. It was observed that this is both
due to the fact that vessels in Z are aligned to bony structures in V and that only
structures containing many points are aligned correctly. Both errors are caused
by the fact that structures containing many points have an over-proportionally
high influence on the similarity measure.

4 Discussion

Using the extended CS_O measure and the back-projection strategy, the high-
est CR is achieved. This leads to the conclusion that using neighborhoods of
selected points is advantageous for the registration and that the measure has to
be designed carefully not to neglect a part of the available gradient information.



Gradient-Based 2D /3D Registration 145

This is further illustrated by comparing the CS-based measures. While the use
of contour points is of advantage for the CS measure, it leads to a lower CR for
the CS_O measure. This indicates that occluding contour selection can discard
some of the wrong matches of gradients with opposite directions by consider-
ing only object outlines. However, the CS_O measure handles these cases more
effectively and therefore is able to make use of points not located on a contour.

The projection strategy achieves higher accuracy compared to the back-
projection strategy, while the measure leading to the highest CR depends on
the data set. One explanation is that as every pixel is used, no advantage can
be gained from using neighborhoods in the general case. Possible reasons for the
increased accuracy are the noise suppression without blurring the image by the
integration of gradients along a ray and a more uniform weighting of different
regions compared to the selected points in the back-projection strategy.

As the highest CR is achieved using the back-projection strategy and misreg-
istration is often caused by the distribution of points, improved point-selection
methods and weighting strategies for the points are subject to future research
with the main goal to improve the CR.
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