
Optimizing R with SparkR on a commodity
cluster for biomedical research

Martin Sedlmayr a,*, Tobias Würfl a, Christian Maier a, Lothar Häberle b,
Peter Fasching b, Hans-Ulrich Prokosch a, Jan Christoph a

a Friedrich-Alexander University Erlangen-Nürnberg,Wetterkreuz 13, 91058 Erlangen, Germany
b Department of Gynecology and Obstetrics, Erlangen University Hospital, Universitätsstrasse 21-23, 91054
Erlangen, Germany

A R T I C L E I N F O

Article history:

Received 18 April 2016

Received in revised form

16 August 2016

Accepted 6 October 2016

A B S T R A C T

Background and Objectives: Medical researchers are challenged today by the enormous amount

of data collected in healthcare. Analysis methods such as genome-wide association studies

(GWAS) are often computationally intensive and thus require enormous resources to be per-

formed in a reasonable amount of time. While dedicated clusters and public clouds may

deliver the desired performance, their use requires upfront financial efforts or anonymous

data, which is often not possible for preliminary or occasional tasks. We explored the pos-

sibilities to build a private, flexible cluster for processing scripts in R based on commodity,

non-dedicated hardware of our department.

Methods: For this, a GWAS-calculation in R on a single desktop computer, a Message Passing

Interface (MPI)-cluster, and a SparkR-cluster were compared with regards to the perfor-

mance, scalability, quality, and simplicity.

Results: The original script had a projected runtime of three years on a single desktop com-

puter. Optimizing the script in R already yielded a significant reduction in computing time

(2 weeks). By using R-MPI and SparkR, we were able to parallelize the computation and reduce

the time to less than three hours (2.6 h) on already available, standard office computers.

While MPI is a proven approach in high-performance clusters, it requires rather static, dedi-

cated nodes. SparkR and its Hadoop siblings allow for a dynamic, elastic environment with

automated failure handling. SparkR also scales better with the number of nodes in the cluster

than MPI due to optimized data communication.

Conclusion: R is a popular environment for clinical data analysis. The new SparkR solution

offers elastic resources and allows supporting big data analysis using R even on non-

dedicated resources with minimal change to the original code.To unleash the full potential,

additional efforts should be invested to customize and improve the algorithms, especially

with regards to data distribution.

© 2016 The Authors. Published by Elsevier Ireland Ltd. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:

Computing methodologies

Genome-wide association study

Big data

Cluster computing

SparkR

* Corresponding author. Friedrich-Alexander University Erlangen-Nürnberg, Wetterkreuz 13, 91058 Erlangen, Germany. Fax: +49 (9131) 85
26754.

E-mail address: martin.sedlmayr@fau.de (M. Sedlmayr).

http://dx.doi.org/10.1016/j.cmpb.2016.10.006
0169-2607/© 2016 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

c om pu t e r m e thod s and p r og r am s i n b i om ed i c i n e 1 3 7 (2 0 1 6) 3 2 1 – 3 2 8

journal homepage: www.int l .e lsevierheal th .com/ journals /cmpb

mailto:martin.sedlmayr@fau.de
http://www.intl.elsevierhealth.com/journals/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2016.10.006&domain=pdf

1. Introduction

Medical researchers are challenged today by the enormous
amount of data collected in healthcare [1]. Especially re-
search of high dimensional data in cancer genomics and
translational medicine becomes increasingly common in medi-
cine [2]. Data mining algorithms and genome-wide association
studies (GWAS) are used to detect correlations between genomic
and phenotypic features [3].

Such analysis methods are often computationally inten-
sive and thus require enormous resources to be performed in
a reasonable amount of time. Fortunately, many algorithms can
be parallelized and therefore the tasks can be allotted to many
computers [4].

On an infrastructure level, cluster computing is often used
to distribute the workload on a (local) network of dedicated re-
sources [4]. In recent years, cloud computing became a viable
alternative, because of its elasticity and cost-effectiveness [5].
On a platform level, Hadoop-based services provide standard
interfaces for distributed storage and computing [6,7]. Espe-
cially Spark, an in-memory computing service based on Hadoop,
begins to surpass previous solutions such as the Message Passing
Interface (MPI) used in high-performance computing (HPC) [8].

Unfortunately, using external resources (e.g. the cloud) is
often limited or prohibited for sensitive patient data due to
privacy regulations. Researchers also face the problem to justify
an investment into dedicated resources (e.g. clusters and blades)
in smaller projects or for occasional use.

Therefore, we explored the possibilities to build a private,
flexible cluster based on commodity hardware using open
source solutions. We focused on the R-package parallel based
on MPI [9] and SparkR [10], not only because R is a popular soft-
ware for analyzing biomedical data [11] but it is as well the
tool of choice for our researchers. It also challenges two dif-
ferent paradigms: traditional HPC cluster computing and
Hadoop-based Big Data technologies.

In the following, we compare a GWAS-calculation in R on
a single desktop computer, an MPI-cluster and a SparkR-
cluster with regards to the performance, scalability, quality, and
ease of use.

2. Methods

The starting point of our work was an R script which was de-
veloped and validated by clinical statisticians together with
medical researchers of the Department of Gynecology and Ob-
stetrics of the University Hospital Erlangen.They also provided
an excerpt of a dataset derived from breast-cancer patients who
participated in previous clinical research.The calculation aims
to identify significant correlations between mutations in the
genome (single nucleotide polymorphisms, SNPs) and expres-
sion levels of any other genes (GENs), using basic clinical
variables to minimize confounders (similar to Ref. [12]).

The script reads an anonymous dataset comprising 199,960
single nucleotide polymorphism (SNPs) and 18,609 gene ex-
pressions (GENs) as well as 17 clinical variables (such as age
and body mass index) from 122 patients. Then, it performs a

linear regression fit (lmfit) for each pair of SNP and GENE with
the clinical variables adjusting confounders and calculates the
standard error, the p-value and the beta-value. The result is
written to an output file.

Initially, performance was not in the focus of the develop-
ers who rather concentrated on the correctness of the outcome.
Based on small subsets of the data, the estimated runtime for
the whole dataset on a standard desktop PC was about three
years. Our goal was to reduce this time significantly by opti-
mizing the original code and distributing the workload on a
network of computing nodes. While working on the optimi-
zation of the code, we focused on four success indicators:

– Performance: The time required for computation of the full
dataset (the shorter, the better).

– Scalability: The extent, to which adding more computing
nodes yields a performance gain (ideally a linear gain should
be achieved).

– Quality: There should be no (relevant) deviation between the
output of the optimized and the original script.

– Simplicity: The resulting script should retain the flexibil-
ity of the original while requiring only minimal changes.

The last point was especially important because the medical
experts should still be able to proof and modify the algo-
rithm using their existing libraries (flexibility, trust).This is why
the options to completely rewrite the algorithm in another pro-
gramming language or to use alien tools were discarded.

First, the initial code in R was optimized. Then, the algo-
rithm was parallelized, and the workload was distributed in
a local MPI-cluster using the parallel-package of R. Finally,
SparkR, which is a relatively new combination of Hadoop in-
memory computing and R, was evaluated as an alternative to
MPI. All changes to the functional part of the script have been
checked for deviations in the results.

2.1. Optimizing R

The R script was analyzed using the R-profiler to identify time
bottlenecks caused by inefficient data structures or control
structures. Based on numerous tutorials, best practices and rec-
ommendations by the R-community [13], the R script was
improved by a couple of means:

– The original script iterated over the list of SNPs and GENs
using nested for-loops. Using apply instead yielded not only
a performance gain but also facilitated the parallelization
in the later steps.

– An R DataFrame is a flexible, but inefficient data structure.
It was replaced by a matrix with a simple typecast.

– The linear regression performed by LM requires parsing of
the given formula. Using lm.fit instead of LM avoids the
parsing overhead, but requires to manually calculate the
p-value and standard error.

– Replacing the built-in lm.fit function by a third-party library
(qtl2scan) resulted in another, substantial performance gain
[14].

Each step was benchmarked and the results were vali-
dated against the original script as gold standard. An

322 c om pu t e r m e thod s and p r og r am s i n b i om ed i c i n e 1 3 7 (2 0 1 6) 3 2 1 – 3 2 8

intermediate test using two SNPs revealed a speedup of factor
122 (7.6s vs. 932.3s) or an estimated duration of nine days (vs.
3 years) for the full dataset.

2.2. Parallelizing R using the message passing interface

The nature of the algorithm allows for parallelization as each
combination of SNP and GEN can be calculated independently.

While there are several options to implement parallel R (multi-
core, explicit cluster) [9] we concentrated on the Message Passing
Interface (MPI) as it is a standard used by many HPC clusters
and comes packaged for most Linux distributions. Each node
of an MPI cluster should provide the same environment (soft-
ware, folders) so that a locally started process can easily be copied
to worker nodes. In principle, the local PC becomes the master,
logs into each worker node, and starts the software which keeps
connected to the master process. If the master quits, all de-
pendent worker processes are terminated automatically.

Refactoring the script is straightforward:

– cluster = createCluster(number of nodes, type = „MPI“): Com-
mence the cluster by starting R on each node

– clusterExport(cluster, vector of variables & methods): Copy all
required data and code to each node of the cluster.

– parApply(cluster, vector, function): Apply the function on each
element of the vector. It equals the standard R function apply
but distributes the load across the remote nodes instead
of computing it sequentially on the local node.

– stopCluster(cluster): Stop R on all the nodes in the cluster.

The clusterExport causes the data to move to each in-
stance of R on the remote nodes which might require
substantial time depending on the size of data and network
speed. Using clusterCall instead to read the data in parallel from
the file system had no beneficial effect on execution time in
our experiments.

The parApply method not only distributes the workload, but
also collects the partial results into an overall result.The joined
result has to fit into the memory of the node of the R master.

2.3. Parallelizing R using SparkR

SparkR is an R-package that provides functions to compute and
read/write resilient data frames (RDD) in a Spark cluster. The
current distribution of Spark already includes a preconfigured
environment so that a user can immediately start using R with
SparkR.

The parallel approach used before can easily be replaced
by SparkR functions. Creating and destroying the cluster is not
necessary because the Spark cluster runs independently; the
client just connects to the Spark master which distributes the
workload. The distribution of data and function definitions is
handled automatically, so there is no need to export the data
to the nodes explicitly.

The main differences are:

– dframe = createDataFrame: Convert the matrix of SNPs into
a Spark DataFrame, which is inherently parallel.

– rdd = SparkR:::map(dframe, function): Prepares to apply the given
function on each element of dframe.

– collect(rdd): Actually executes the map and performs the cal-
culation. Partial results will be collected on the master.

The described modifications only concentrate on the com-
putational aspect.SparkR also provides options to read and write
data inadistributedwayusing theHadoopDistributedFileSystem
(HDFS) which was not used, because the R script already saves
partial results from the worker nodes and using HDFS would
have required a full Hadoop cluster next to the Spark cluster.

The java-based method glm of the machine learning package
of Spark has been evaluated, but discarded because it is sig-
nificantly slower than the native R function (glm is optimized
for distributing the linear regression of huge matrices among
a cluster).

3. Results

The core of our cluster consists of a pool of 13 desktop PCs (Intel
core i5, 8 GB RAM) in a lecture hall, which are mainly used for
student education. A virtual machine was set up on each PC
(Ubuntu Linux 64bit, 4 cores, 4 GB RAM).All measurements were
taken using these nodes.

The cluster is complemented by a 6-year old desktop server
(2 Intel Xeon, 8 GB RAM), one desktop and one spare PC (Intel
core i5, 8 GB RAM) and two virtual machines (each 6 cores, 12 GB
RAM) on two localVmWare ESX hosts.The full dataset was com-
puted on the full cluster (76 cores) in less than three hours.

Each run was performed three times, and the minimum,
maximum and mean runtimes were recorded. A significant dif-
ference between the three runs (30–70%) was only observable
if using the smallest dataset.The cause is the variation in start-
up time of the client and the connection to the cluster which
contributes a large portion to the overall runtime. There was
no notable difference between the three runs (i.e. less than 5%)
with larger datasets. As cluster computations are only reason-
able with larger datasets, only the mean time is shown here.

Table 1 shows the times measured for each approach. For
each number of worker nodes (cores) in the cluster (1/5/10/
20/50) a combination of SNPs (1000/10,000/100,000), and GENs
(100/1000) have been calculated using two adjustment vari-
ables (age and body mass index). Based on the number of
SNP × GEN combinations and the time measured, a perfor-
mance index (thousand calculations per second,Tps) has been
determined. For MPI and SparkR, a factor relative to the single
case is calculated based on the Tps—ideally, it should be the
same as the number of cores.

For the single case, the performance is between 13 and 14
thousand calculations per second, independent of the size of
the dataset.

A 5-node MPI cluster is about 2.8 times faster than the single
case, and the 50-node cluster is only about 3–15 times faster.
Although the number of combinations of 10,000 SNPs/1000 GENs
equals 100,000 SNPs/100 GENs, the relative performance is better
if GENs is larger because the transfer time only depends on
the number of SNPs.

The 5-node SparkR cluster is about 4.5 times faster than the
single case and scales up to factor 22 on the 50-node cluster.
The number of calculations per second from which the factor

323c om pu t e r m e thod s and p r og r am s i n b i om ed i c i n e 1 3 7 (2 0 1 6) 3 2 1 – 3 2 8

Table 1 – Mean time in seconds for calculating all correlations of SNPs and GENs using core-number of worker nodes.
The number of thousand calculations per second (Tps) is the basis for the performance factor relative to the single R
measurement.

Single

Cores SNPs GENs Mean Tps

1 1,000 100 8 13
1 1,000 1,000 72 14
1 10,000 100 75 13
1 10,000 1,000 717 14
1 100,000 100 788 13
1 100,000 1,000 7690 13

MPI

Cores SNPs GENs Mean Tps Factor

5 1,000 100 4 27 2.0
5 1,000 1,000 26 39 2.8
5 10,000 100 30 33 2.5
5 10,000 1,000 245 41 2.9
5 100,000 100 326 31 2.4
5 100,000 1,000 2744 36 2.8
10 1,000 100 2 55 4.1
10 1,000 1,000 13 75 5.3
10 10,000 100 17 60 4.5
10 10,000 1,000 124 81 5.8
10 100,000 100 168 60 4.7
10 100,000 1,000 1364 73 5.6
20 1,000 100 2 51 3.8
20 1,000 1,000 13 78 5.5
20 10,000 100 12 83 6.2
20 10,000 1,000 71 141 10.1
20 100,000 100 111 90 7.1
20 100,000 1,000 714 140 10.8
50 1,000 100 5 19 1.4
50 1,000 1,000 17 58 4.2
50 10,000 100 26 38 2.8
50 10,000 1,000 51 197 14.1
50 100,000 100 251 40 3.1
50 100,000 1,000 491 204 15.7

SPARK

Cores SNPs GENs Mean Tps Factor

5 1,000 100 2 41 3.1
5 1,000 1,000 15 65 4.6
5 10,000 100 16 62 4.6
5 10,000 1,000 159 63 4.5
5 100,000 100 179 56 4.4
5 100,000 1,000 1830 55 4.2
10 1,000 100 2 50 3.8
10 1,000 1,000 9 112 8.0
10 10,000 100 9 109 8.1
10 10,000 1,000 88 114 8.1
10 100,000 100 101 99 7.8
10 100,000 1,000 1003 100 7.7
20 1,000 100 3 29 2.2
20 1,000 1,000 5 189 13.5
20 10,000 100 6 179 13.3
20 10,000 1,000 46 217 15.6
20 100,000 100 55 181 14.2
20 100,000 1,000 542 184 14.2
50 1,000 100 4 27 2.1
50 1,000 1,000 4 241 17.2
50 10,000 100 5 217 16.2
50 10,000 1,000 30 331 23.7
50 100,000 100 57 176 13.9
50 100,000 1,000 347 288 22.1
72 196,000 18,600 9360 389

324 c om pu t e r m e thod s and p r og r am s i n b i om ed i c i n e 1 3 7 (2 0 1 6) 3 2 1 – 3 2 8

is determined is less prone to variations in the data size than
with MPI.

In both cases MPI and SparkR, the scalability is not linear
to the number of nodes. While SparkR generally scales better
than MPI, it worsens with the cluster size (Fig. 1 shows the per-
formance gain in relation to the hypothetical linear scaling).

For MPI as well as for SparkR, the relative performance drops
the larger the cluster gets (Fig. 2).The main contributing factor
is the distribution of the data, which requires more time as
the cluster grows. SparkR generally scales better than MPI.

An additional test was performed to compare the native
Hadoop/SparkR installation onWindows 7 with the virtual Linux
environment on the same physical hardware using 4 nodes (16
cores), 1000 SNPs and 1000 GENs. While splitting the tasks into
16 parts (1 part per core) showed no significant difference in
runtime (both 11s), a split into 160 parts (10 tasks per core) re-
vealed a massive drop in the native Windows implementation
(32 s vs. 17 s).Apparently, the set-up of R as an external process
and the communication required is less efficient in Windows
than in Linux.

0

500

1000

1500

2000

2500

3000

5 10 20 50

CO
M
PU

TI
N
G
TI
M
E
IN

SE
CO

N
D
S

NUMBER OF NODES

Number of nodes vs. computing time (in seconds) for
100,000 SNPs and 1,000 GENs

MPI SPARK

Fig. 1 – Time in seconds for performing a 100,000 SPNs, 1000 GENs analysis dependent on the number of cores used in the
cluster.

0%

20%

40%

60%

80%

100%

120%

1 5 10 20 50

PE
RF
O
RM

AN
CE

G
AI
N
IN

%
W
H
EN

AD
D
IN
G
A
N
O
D
E

NUMBER OF NODES

Performance improvement factor vs. number of nodes

linear MPI SPARK

Fig. 2 – Factor to which extend adding nodes increase the performance of the cluster (indicator for scalability).

325c om pu t e r m e thod s and p r og r am s i n b i om ed i c i n e 1 3 7 (2 0 1 6) 3 2 1 – 3 2 8

Fig. 3 illustrates the main differences between implemen-
tations. It can be seen that bringing the script to the cluster
requires no major changes. While the original script was based
on for-loops, the optimized version used apply. For parallel com-
puting, a createCluster starts R on all nodes as defined in the
MPI-configuration. Required data have to be exported to each
node of the cluster before the parallel version of apply per-
forms the calculation.When SparkR is invoked, it automatically
connects to a Spark cluster, which has to be started in advance.
Data should be parallelized so that the distribution can also
be handled automatically. Therefore, the modifications re-
quired in the MPI-case and SparkR are very similar.

4. Discussion

The goal of reducing the runtime of the data analysis has been
achieved: from an initially targeted three years to less than three
hours. Refactoring the initial script by rewriting the loops and
using native data structures also paved the way towards
parallelization using MPI and SparkR. No new or external re-
sources were needed, only the existing office infrastructure was
used. With regards to our success criteria:

– Performance: Improving the original script already reduced
the computing time from an estimated 3 years to about 9
days. As the algorithm can be parallelized, the workload can
easily be distributed among worker nodes.

– Scalability: All three tested approaches use R for the actual
computation, so the parallelization scales with the number
of R instances in the network. However, the overhead for
communication (of data and results) among the worker
nodes increases with the number of nodes. The efficiency
of communication limits the performance gain. SparkR
scales generally better than MPI.

– Quality: As all calculations are performed by the very same
functions in R, there is no deviation in the results. Our ex-
periments with the equivalent function glm (from the machine
learning package of Spark [10]) shows only a minor differ-
ence in the rounding of the eighth to seventh decimal place.

– Simplicity: Using the R-package parallel required only four
additional lines and one changed line of code, SparkR re-
quired two lines. Both approaches match closely the
optimized R script and hinder in no way the readability of
the code.

As the function of the linear fit remained the same in all
three implementations and R is used for performing the cal-

culations, the measured runtime difference between MPI and
SparkR should result from cluster management overhead.This
overhead consists of data distribution and interprocess com-
munication with R. In the case of MPI, the time required for
data distribution can be measured explicitly (clusterExport) and
takes up to 90% of the overall time. Although our approach to
copy all data to all nodes could be improved, it is fair to say
that a special focus should be put on data management.

This is also true for collecting the results. Because we do
no filter on the p-value, the number of raw results is huge and
the result file grows larger than 100 GB.This does not fit in the
memory of the R master and hence the computation fails.Third-
party packages for huge matrices and Big Data exist ([15]), but
they add another layer of complexity and are a mere
workaround.

Both, MPI and SparkR, require additional effort in setting
up and maintaining a cluster and also show other differ-
ences during installation and operation.

4.1. MPI

The parallel package based on MPI is easy to install and use
because it is available preconfigured for major Linux distribu-
tions and requires only minimal setup (a textfile containing
the IP-addresses of worker nodes). Further, MPI is a robust tech-
nology proven in large clusters and super computing centers
[16]. Implementations are available for all major operating
systems.

However, MPI is optimized for static clusters preferably using
dedicated hardware and network resources [16].The set of nodes
is fixed and cannot dynamically grow and shrink which re-
quires a stable environment, often not given when piggybacking
office computers or using dynamic cloud resources.

A minor issue is the lack of a progress indicator when using
the parallel package; therefore, the user gets no feedback on
the state of long-running tasks.

4.2. SparkR

SparkR is a relatively new addition to R and suffers until now
from a lack of documentation as well as from some contra-
dictory tutorials due to a change in the interface. This causes
an additional overhead for the programmer to learn and for
the administrator to maintain a cluster. The pace of develop-
ment of Spark is rather high, so major version changes often
occur (every 4–8 weeks) which potentially affect or break current
programs.

Fig. 3 – Modifications to the code required to utilize the cluster (in pseudo-code).

326 c om pu t e r m e thod s and p r og r am s i n b i om ed i c i n e 1 3 7 (2 0 1 6) 3 2 1 – 3 2 8

An advantage of SparkR is that it natively interfaces with
Hadoop and can, therefore, utilize the distributed filesystem
HDFS for reading and writing large datasets.

Spark splits a request into tasks and distributes tasks to
workers and executors. The size of a single task should not
exceed 100 kb which was the case for the larger data runs. Also,
the cluster experienced timeouts if the required time in R ex-
ceeded the heartbeat time of the executor. Either the timeout
has to be extended or—more preferably—the number of tasks
has to be increased (e.g. from two to ten times the number of
nodes). Having more tasks than nodes is also important for load-
balancing heterogenous clusters so that faster nodes can
complete more tasks than slower ones.

SparkR provides a function to apply a function to the Car-
tesian product of two vectors. So SparkR:::cartesian(SNPs, GENs,
function) would have been an alternative to just parallelizing
the SNPs. However, the ratio of number of tasks to runtime of
each task became unfortunate (four billion small tasks in our
case), and the runtime performance dropped due to the ad-
ditional overhead.

An experiment implementing the functions of our R script
using Spark/Scala had no apparent performance benefit in our
case. However, as datasets become larger, the possibility to
employ not only large compute clusters but also to use RDDs
in HDFS is beneficial [17].

We were able to add successfully computing nodes running
Microsoft Windows to the Spark-cluster using HDFS as the
common file system. A sample benchmark with 4 nodes (16
cores) revealed that while the computing time of R does not
differ between R on Windows and R in a VM in Linux, the over-
head of the process communication between Spark and R is
enormous. If the workload is split 1:1 to workers, there is no
significant difference; if a split of 1:10 is used, the Windows-
based solution is 4 times slower.

Although the performance can be below the dedicated Linux
virtual machine, it could be an opportunity for employees to
start the node at the end of a working day to provide addi-
tional computing resources during the night. The elasticity of
Spark allows them to kill the node in the morning without com-
promising the overall stability.

4.3. Related work

Liang et al. [11] have evaluated and discussed the differences
in runtime performance of other Hadoop packages in R
(rHadoop and H2O). They also found the exchange of data
between R and the Java-based cluster as the bottleneck while
the changes to the R program are less than 10 lines.

Wiewiorka et al. [18] have used Spark for genomic analy-
sis and found an almost linear speedup with the number of
worker nodes. They also use HDFS to read the data directly to
the client thus avoiding the data transfer overhead. Addition-
ally, as they do not use R, they have no inter-process-
communication overhead.

Zou et al. [19] provide an extensive survey of MapReduce
frameworks for bioinformatics. They also argue that MPI has
many disadvantages at it does not offer load balancing, no fault
tolerance, and no distributed file system. O’Driscoll et al. [17]
confirm that the Spark family clusters are more robust to node
failures and automatically restart chunks upon failure [17].

Agarwal and Owzar [4] mention CUDA as a possible alter-
native for massively parallel execution using a graphics card
(GPU). Davis et al. [20] and Lee et al. [21] give examples of genetic
algorithms using GPUs. A package exists for R which brings the
lm.fit to the GPU [22]. Unfortunately, similar to the function glm
in Spark it helps to accelerate computation on large matri-
ces, but requires to move the matrix from RAM to GPU-
memory.The additional overhead to move the data of each cell
to the graphics card back and forth is larger than the benefit.
In order to unleash the card, one should move the whole matrix
to graphics memory and implement a kernel to compute on
CUDA only.

Jha et al. [8] compare different architectures, Spark and MPI
among them. They also find an almost linear efficiency with
a small benefit for MPI over Spark due to data requirements
of the implemented K-means clustering algorithm which differs
from our linear regression approach.

Large cloud providers such as Google and Amazon provide
huge resources [5] at high service levels [23]. And also in Europe,
scalable infrastructures for life science research are under de-
velopment [24]. However, legal restrictions or mental
reservations (e.g. regarding data ownership or trust) often pro-
hibit the use of external services for sensitive data; especially
as long as genetic data cannot be strictly anonymized [25,26].

4.4. Limitations

Computing the correlation of each SNP and GEN is a naive brute-
force approach. In the final setting, one would use additional
knowledge from databases like HapMap [27] to limit the com-
binations that have to be investigated. This reduces the
computational effort and especially minimizes the risk that the
necessary p-value adjustment (like Bonferroni correction or
further advanced methods of FDR [28]) will hide genuine results.
But our aim was to explore the possibilities to support a high
number of calculations using big data/cluster technologies. Even
if the number could be reduced in our case, it explodes if e.g.
SNP–SNP–GEN interactions will be tested and makes it inevi-
table to use technologies as outlined above.

The authors are no professional experts in MPI and Spark.
Both technologies are used according to their manuals and as
close to the default installation as possible. Customizations and
tweaks may exist that improve the overall performance. For
economy, the amount of time required to optimize the runtime
is probably larger than the achieved performance gain.

Further improvement may be achieved if SparkR is config-
ured together with a Hadoop file system or a scalable database
instead of files which would also relieve the master from
sending data (input and results) back and forth the worker
nodes. But this requires an extra Hadoop cluster.

We have not explored the possibility to use MPI in Windows.
We do not expect any relevant runtime difference between
using MPI/R on Linux and Windows: the actual calculation
should not differ given our experiments with SparkR on Linux
and Windows. The distribution of the data (cluster manage-
ment) also remains the same with Windows and Linux.

While our tests focused on a single dataset and a particu-
lar algorithm, we are confident that our findings can be
transferred to similar algorithms as literature supports our
general findings as shown above. For example, it benefits the

327c om pu t e r m e thod s and p r og r am s i n b i om ed i c i n e 1 3 7 (2 0 1 6) 3 2 1 – 3 2 8

analysis of GEN–GEN as well as GEN–GEN–SNP interactions that
would be too computationally demanding otherwise.

5. Conclusions

We have compared the potential to speed up an R-script for
genetic analysis by refactoring the script, and by parallelizing
it with MPI and SparkR.

Under the condition that the dataset and the algorithm can
beparallelizedand the timerequired to transfer thedata toworker
nodes is less than the actual computation time, a substantial
increase can be observed when contributing additional nodes/
cores to such a cluster. It enables us to enlarge the dataset from
122 patients to more than 500 for which the researchers have
data, to enrich the amount of confounder variables and to analyze
GEN–GEN–SNP interactions that have not been considered before.

SparkR generally scales better than MPI in such a case. And
although SparkR can be used in a standalone-cluster mode (as
presented here) with comparably low efforts to set-up and
maintain, its full potential should lie in the integration with
Hadoop (HDFS) improving data management. The elasticity of
such a cluster and the possibility to utilize free commodity re-
sources is a real benefit.

The modifications required to an R script to utilize a cluster
are minimal, but to unleash the full potential, additional efforts
should be invested to customize and improve the code, espe-
cially with regards to data distribution.

Acknowledgments

The research has been supported by the Smart Data Program
of the German Federal Ministry for Economic Affairs and Energy
(1MT14001B).

R E F E R E N C E S

[1] W. Raghupathi, V. Raghupathi, Big data analytics in
healthcare: promise and potential, Health Inf. Sci. Syst. 2 (1)
(2014) 3.

[2] A.M. Noor, L. Holmberg, C. Gillett, A. Grigoriadis, Big data:
the challenge for small research groups in the era of cancer
genomics, Br. J. Cancer 113 (10) (2015) 1405–1412.

[3] R. Bellazzi, M. Diomidous, I.N. Sarkar, K. Takabayashi, A.
Ziegler, A.T. McCray, Data Analysis and data mining: current
issues in biomedical informatics, Methods Inf. Med. 50 (6)
(2011) 536–544.

[4] P. Agarwal, K. Owzar, Next generation distributed computing
for cancer research, Cancer Inform. 13 (Suppl. 7) (2014) 97–
109.

[5] L. Griebel, H.-U. Prokosch, F. Köpcke, D. Toddenroth, J.
Christoph, I. Leb, et al., A scoping review of cloud computing
in healthcare, BMC Med. Inform. Decis. Mak. 15 (1) (2015) 17.

[6] R.C. Taylor, An overview of the Hadoop/MapReduce/HBase
framework and its current applications in bioinformatics,
BMC Bioinformatics 11 (12) (2010) 1.

[7] P. Hodor, A. Chawla, A. Clark, L. Neal, cl-dash: rapid
configuration and deployment of Hadoop clusters for

bioinformatics research in the cloud, Bioinformatics 32 (2)
(2016) 301–303.

[8] S. Jha, J. Qiu, A. Luckow, P. Mantha, G.C. Fox A tale of two
data-intensive paradigms: applications, abstractions, and
architectures. IEEE; 2014. pp. 645–652.

[9] D. Eddelbuettel CRAN task view: high-performance and
parallel computing with R. https://cran.r-project.org/web/
views/HighPerformanceComputing.html, 2016.

[10] SparkR. (R on Spark) [Internet]. https://spark.apache.org/
docs/1.6.0/sparkr.html, 2016 (accessed 20.03.16).

[11] M. Liang, C. Trejo, L. Muthu, L.B. Ngo, A. Luckow, A.W. Apon
Evaluating R-based big data analytic frameworks. IEEE; 2015.
pp. 508–509.

[12] A.L. Dixon, L. Liang, M.F. Moffatt, W. Chen, S. Heath, K.C.C.
Wong, et al., A genome-wide association study of global
gene expression, Nat. Genet. 39 (10) (2007) 1202–1207.

[13] H. Wickham Advanced R—Performance [Internet]. http://
adv-r.had.co.nz/Performance.html, 2016 (accessed 09.05.16).

[14] K. Broman Benchmark of linear regression routines
[Internet]. http://kbroman.org/qtl2/assets/vignettes/
linreg_benchmarks.html, 2016 (accessed 16.03.16).

[15] G. Ostruchov, W.-C. Chen, P. Patel, D. Schmidt Programming
with big data in R [Internet]. http://r-pbd.org/, 2016 (accessed
11.04.16).

[16] M. Rak, M. Turtur, U. Villano, L. Pino A portable tool for
running MPI applications in the cloud. IEEE; 2014. pp. 10–17.

[17] A. O’Driscoll, V. Belogrudov, J. Carroll, K. Kropp, P. Walsh, P.
Ghazal, et al., HBLAST: parallelised sequence similarity–A
Hadoop MapReducable basic local alignment search tool, J.
Biomed. Inform. 54 (2015) 58–64.

[18] M.S. Wiewiórka, A. Messina, A. Pacholewska, S. Maffioletti, P.
Gawrysiak, M.J. Okoniewski, SparkSeq: fast, scalable and
cloud-ready tool for the interactive genomic data analysis
with nucleotide precision, Bioinformatics 30 (18) (2014) 2652–
2653.

[19] Q. Zou, X.-B. Li, W.-R. Jiang, Z.-Y. Lin, G.-L. Li, K. Chen, Survey
of MapReduce frame operation in bioinformatics, Brief
Bioinform. 15 (4) (2014) 637–647.

[20] N.A. Davis, A. Pandey, B.A. McKinney, Real-world
comparison of CPU and GPU implementations of SNPrank: a
network analysis tool for GWAS, Bioinformatics 27 (2) (2011)
284–285.

[21] S. Lee, M.-S. Kwon, T. Park, CARAT-GxG: CUDA-accelerated
regression analysis toolkit for large-scale gene-gene
interaction with GPU computing system, Cancer Inform. 13
(Suppl. 7) (2014) 27–33.

[22] J. Buckner, Package gputools [Internet]. https://cran.r-
project.org/web/packages/gputools/gputools.pdf, 2015.

[23] S. Yazar, G.E.C. Gooden, D.A. Mackey, A.W. Hewitt,
Benchmarking undedicated cloud computing providers for
analysis of genomic datasets, PLoS ONE 9 (9) (2014) e108490.

[24] A.M.S. Duarte, F.E. Psomopoulos, C. Blanchet, A.M.J.J. Bonvin,
M. Corpas, A. Franc, et al., Future opportunities and trends
for e-infrastructures and life sciences: going beyond the grid
to enable life science data analysis, Front. Genet. 6 (2015)
197.

[25] J.L. Raisaro, E. Ayday, J.-P. Hubaux, Patient privacy in the
genomic era, Praxis (Bern 1994) 103 (10) (2014) 579–586,
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?
dbfrom=pubmed&id=24800770&retmode=ref&cmd=prlinks.

[26] Z. Lin, A.B. Owen, R.B. Altman, Genetics. Genomic research
and human subject privacy, Science 305 (5681) (2004) 183.

[27] T.A. Manolio, F.S. Collins, The HapMap and genome-wide
association studies in diagnosis and therapy, Annu. Rev.
Med. 60 (1) (2009) 443–456.

[28] S.R. Narum, Beyond Bonferroni: less conservative analyses
for conservation genetics, Conserv. Genet. 7 (5) (2006) 783–
787.

328 c om pu t e r m e thod s and p r og r am s i n b i om ed i c i n e 1 3 7 (2 0 1 6) 3 2 1 – 3 2 8

http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0010
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0010
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0010
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0015
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0015
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0015
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0020
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0020
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0020
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0020
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0025
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0025
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0025
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0030
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0030
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0030
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0035
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0035
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0035
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0040
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0040
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0040
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0040
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0045
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0045
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0045
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0050
https://cran.r-project.org/web/views/HighPerformanceComputing.html
https://cran.r-project.org/web/views/HighPerformanceComputing.html
https://spark.apache.org/docs/1.6.0/sparkr.html
https://spark.apache.org/docs/1.6.0/sparkr.html
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0060
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0060
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0060
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0065
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0065
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0065
http://adv-r.had.co.nz/Performance.html
http://adv-r.had.co.nz/Performance.html
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0075
http://kbroman.org/qtl2/assets/vignettes/linreg_benchmarks.html
http://kbroman.org/qtl2/assets/vignettes/linreg_benchmarks.html
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0080
http://r-pbd.org/
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0085
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0085
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0090
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0090
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0090
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0090
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0095
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0095
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0095
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0095
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0095
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0100
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0100
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0100
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0105
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0105
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0105
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0105
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0110
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0110
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0110
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0110
https://cran.r-project.org/web/packages/gputools/gputools.pdf
https://cran.r-project.org/web/packages/gputools/gputools.pdf
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0120
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0120
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0120
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0125
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0125
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0125
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0125
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0125
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0130
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0130
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=24800770&retmode=ref&cmd=prlinks
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=24800770&retmode=ref&cmd=prlinks
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0135
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0135
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0140
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0140
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0140
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0145
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0145
http://refhub.elsevier.com/S0169-2607(16)30380-7/sr0145

	 Optimizing R with SparkR on a commodity cluster for biomedical research
	 Introduction
	 Methods
	 Optimizing R
	 Parallelizing R using the message passing interface
	 Parallelizing R using SparkR

	 Results
	 Discussion
	 MPI
	 SparkR
	 Related work
	 Limitations

	 Conclusions
	 Acknowledgments
	 References

