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Towards Road Type Classification with Occupancy Grids
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Abstract— Occupancy grid mapping is a popular approach
for robust obstacle fusion and is already used in series
production in the automotive industry. In this work, local
occupancy grids are used in the situation interpretation layer
of the environment model for a context classification task. We
present several approaches for recognizing, without the use of
navigation map or image data, whether the vehicle is driving
on a freeway, a highway, in a parking area or on an urban
road. Inspired from the success of deep learning approaches, we
compare an end-to-end Convolutional Neural Network classifier
to a Support Vector Machine trained on hand-crafted features.
All approaches were tested on a dataset containing about 700
local occupancy grids per class for training and 150 for testing.
The best methods achieve a test accuracy of 94%. We see the
proposed work as a first step towards classification of high-level
information from occupancy grids and will extend the approach
to other situations.

I. INTRODUCTION

Environment perception is a key aspect in advanced driver
assistance systems. In particular, autonomous driving re-
quires increasingly diverse sensors and sophisticated fusion
algorithms. Because the complexity of rule based-approaches
is beyond a manageable level, machine learning approaches
play an increasingly important role in many parts of the
environment model. When it comes to urban environments,
situation interpretation becomes a key ingredient. In this
sense, we address the problem of road type classification.
Being able to tell the type of road the vehicle is driving on
can be beneficial for various purposes. First, environment
perception and sensor fusion algorithms can be parameter-
ized accordingly [1]. Second, the vehicle’s user interface can
be adapted or specific assistance functions can be enabled
or disabled. In particular, autonomous driving functionalities
can be limited to roads with a structural separation to
oncoming traffic or pedestrians.

We propose to perform this situation interpretation task
based on local occupancy grids, which are otherwise mainly
used for fusion and detection of obstacles. One advantage
of using occupancy grids instead of camera images as a
source for road type classification is that they are largely
illumination invariant. Furthermore, occupancy grids can be
built from any type of sensor and thus offer a powerful
level of abstraction to sensor raw data. In this work, we
aim to distinguish the four road types freeway, highway,
parking area and urban environment. We define a freeway, in
contrast to a highway, as a road with a structural separation to
oncoming traffic and without vulnerable road users. Several
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variants of a classification algorithm are presented, where
the four classes are solely recognized from fused occupancy
grids, without the use of video or navigation map data.
In particular, we treat the grids like images and are thus
able to directly apply recent Convolutional Neural Network
(CNN) topologies. With the expectation that CNNs would
adapt to occupancy grids much better than state-of-the-art
image based features, we compare them to a Support Vector
Machine (SVM) classifier that is trained on hand-crafted
features. The proposed approach is a first step towards
occupancy grid based situation interpretation and will be
extended with more situations in the future.

Prior work mainly focused on the classification of road
types from camera image data. Sikiric et al. compared
several image descriptors to classify typical traffic scenes [2].
Mioulet et al. used a Gabor filter bank to classify the current
road type [3]. To classify the road environment, Tang et
al. [4] extracted a set of color and edge based texture features
in specific regions of the image. Contrary to the image based
approaches, Taylor et al. [5] used data mining of vehicle
signals to classify the road type. Hellbach et al. published
an approach for indoor semantic labeling based on occupancy
grids [6].

Section II briefly outlines occupancy grid mapping which
is used as input for both, SVM and CNN classification
approaches that are presented in Section III and Section IV,
respectively. Classification results of all methods are pre-
sented in Section V which is followed by a conclusion and
outlook in Section VI.

II. OCCUPANCY GRID MAPPING

Occupancy grid mapping [7] is a well-established method
for static obstacle fusion. The idea is to divide the environ-
ment into 2D cells, each containing the probability of being
occupied. An inverse beam sensor model is used to model
the uncertainty of obstacle measurements and to derive free
space. This model assigns an occupancy probability to every
cell that intersects the ray of a range measurement. In our
processing pipeline the data of the resulting scan grids is
then integrated over time into an accumulated grid for each
sensor type and finally fused into a single grid. In the
Dempster-Shafer-based grid fusion proposed by Pagac et
al. [8], each grid cell can be occupied (O) or free (F ).
Formally, this frame of discernment Θ is defined as Θ =
{F, O}. According to Dempster-Shafer theory, a mass of
belief is assigned to every element of 2Θ instead of just
to singletons of Θ, as in Bayesian occupancy grid fusion.
Details about the fusion algorithm can be found in previous
work [9].
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III. CLASSIFICATION WITH SVMS

To differentiate between occupancy grids representing
freeways, highways, parking areas and urban environments,
we compared several state-of-the-art global image features
to train an SVM.

A. Feature Extraction

Because the classification task we consider is closely
related to image categorization, we selected features that
were successfully applied in this domain. Only the color
channel with the occupancy probability mass was used as
input of all feature extraction methods.

1) PCA: Principal Component Analysis aims to transform
the data into linearly uncorrelated components and reduce the
dimensionality of a feature vector. In our case the PCA was
directly applied to the grid images in the training set.

2) CENTRIST: Census Transform Histogram features
mainly represent the structural properties of an image by
computing edge patterns of local image patches [10].

3) Gist: The Gist descriptor was designed to capture the
Spatial Envelope of a scene that the authors described with
naturalness, openness, roughness, expansion, and rugged-
ness [11].

4) PHOG: Pyramid Histogram of Gradients features [12]
are an extension of the well-known histogram of gradients
(HOG) features with a spatial encoding of the feature posi-
tion using an image pyramid.

B. Classification

We use binary SVM classifiers [13] that were extended to
the multi-class setting using error correcting codes [14]. A
one-vs-one scheme that builds separate pairwise classifiers
was used to encode the classes [15]. In total, this results in
K ·(K−1)/2 binary classifiers, where K = 4 is the number
of classes. The final result is then the class that minimizes
the total loss of all binary classifiers.

IV. CLASSIFICATION WITH CNNS

In contrast to the two-stage approach of the previous
section, CNNs [16] are able to provide both, automatic
feature extraction and the ability to discern between multiple
classes. This property has made CNNs a popular choice
for image classification and speech recognition tasks. As
previously, we interpret fused occupancy grids as images,
with the color values encoding the occupancy and free space
probability of each cell.

Employing a CNN-based classifier is motivated by the ob-
servation that occupancy grids contain information that hand-
crafted feature extractors may fail to capture. Furthermore, a
CNN can hierarchically represent the interrelation of simple
features, which may result in higher-order concepts, such as
tree or reflector post that, in turn, facilitate the discrimination
of road types.

We evaluated various network topologies from literature
(AlexNet [16], GoogLeNet [17], VGG16 [18]), as well as a
self-designed network. Each network features an output layer
with four neurons (for the four road types). In contrast to the
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Fig. 1. Sensor setup of our test car. The lidar and the full-range front
radar, with long-range (LRR) and mid-range (MRR) mode, are mounted in
the front bumper. The stereo camera is mounted behind the windshield and
the four short-range radars (SRR) are mounted in the corner of the cars,
behind the bumper.

network topologies from literature, our network structure was
designed to model small features, such as single occupied
cells, and simultaneously to provide a means to describe the
connection of features at a very high level. To this end, we
chose a small kernel size of 8× 8 at the first convolutional
layer, combined with a network depth of nine layers. The first
six layers contain a combination of convolutions, rectangular
linear units (ReLU), pooling and response normalization,
each. The first layer comprises 48 kernels and layer two to
six 256 kernels. The final two layers are fully connected and
contain 4092 and 2048 neurons, respectively. We obtain a
comparatively small number of neurons per layer and thus a
relatively low computational cost that matches the four-class
classification task at hand.

V. RESULTS

A. Occupancy Grid Data Acquisition

The sensor setup of our test car is shown in Fig. 1. For
all experiments, the grid size is 100× 100 m with 0.1 m cell
resolution. The ego vehicle is centered in the grid and all
grids were rotated, such that the car points upwards. All
grid images were resized to 256 × 256 pixels to speed up
computation. The data was mostly acquired at daytime with
sunny, cloudy, rainy and snowy weather. Some of the data
was also acquired at night. To maximize the variation within
the dataset, the original stream of grid data was subsampled
every 10 m (parking area), 20 m (urban), and 40 m (freeway
and highway). In total, ≈ 700 manually labelled grids of each
category were used for training and ≈ 150 for testing the
classifiers. Example occupancy grids and reference images
are shown in Fig. 2.

B. Implementation and Parameters

Feature extraction and SVM classification was imple-
mented in Matlab with the built-in PCA and SVM functions.
Furthermore, open source implementations of the feature
extraction methods Gist1, PHOG2 and CENTRIST3 were
used. All features were normalized to have zero mean and
unit variance. Sequential Minimal Optimization with a soft
margin parameter of 0.01 was used to train the SVM. The
parameters of the feature extraction methods are shown in
Table I.

1https://github.com/adikhosla/feature-extraction
2http://www.robots.ox.ac.uk/~vgg/research/caltech/phog.html
3https://github.com/sometimesfood/spact-matlab
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Fig. 2. Example occupancy grids of the four categories freeway (first
row), highway (second row), parking area (third row), and urban (fourth
row). Note the different weather conditions during data acquisition.

Method Dimension Remarks
PCA 100 PCA subspace computed on train-

ing set, test set only projected.
CENTRIST 256 Histogram of 8 bit census trans-

form.
Gist 512 Gabor filter bank with 4 scales and

8 orientations, 4× 4 equally sized
blocks.

PHOG 680 3 pyramid levels, 8 angular bins in
the range [0, 360°].

TABLE I
PARAMETERS OF THE FEATURE EXTRACTION METHODS.

The CNNs were modelled and trained in Caffe [19]. The
training data was fed to each network to either train it from
scratch with randomly initialized weights or fine-tune the
upper layers of a network that was pre-trained on ImageNet
data. Due to the rather small training data set (≈ 700 per
class), training was carried out using the AdaDelta optimizer
[20], which tends to cope better with small training sets, as
compared to Stochastic Gradient Descent. The learning rate
ε was chosen as 0.01 in case of a random initialized network
and ε = 0.001 in case of fine-tuning. In both cases, a batch
size of 50 was used and momentum ρ was set to 0.9.

Method Accuracy
PCA 0.80
CENTRIST 0.88
Gist 0.90
PHOG 0.91
PHOG + Gist 0.94
AlexNet (fine-tuning) 0.94
GoogLeNet (fine-tuning) 0.93
VGG16 (fine-tuning) 0.93
AlexNet (from scratch) 0.88
Our topology (from scratch) 0.89

TABLE II
COMPARISON OF THE TEST ACCURACY.

0.94 0.013 0.0 0.047

0.006 0.983 0.0 0.012

0.0 0.0 0.919 0.081

0.0 0.046 0.028 0.926

TABLE III
CONFUSION MATRIX FOR GIST + PHOG WITH SVM CLASSIFIER.

C. Quantitative Evaluation

For a general comparison of the proposed methods, the
test accuracy of the learned classifiers was evaluated. Results
are given in Table II. Both, SVM-based as well as CNN-
based variants were able to classify 94% of the test data
correctly. The results show that a feature-level fusion of Gist
and PHOG features yields the best results of the SVM-based
approaches. Other feature-level fusion approaches did not
improve classification accuracy and are thus not included
in the table. Fine-tuned CNN-topologies, even though they
were pre-trained on the unrelated ImageNet data, outper-
formed randomly initialized networks, which can be largely
attributed to the comparatively small set of training exam-
ples. Typically, a training set with ≈ 10.000 samples per
class is required for randomly initialized networks. In the
set of networks that were trained from scratch, the self-
designed network performed better, by a small margin, than
its competitors. However, due to the relatively small amount
of training images, the increased performance cannot clearly
be attributed to the altered network structure.

While the general performance of the best SVM-based
and CNN-based classification methods seems on par, the
confusion matrices of Tables III and IV reveal slight differ-
ences in their per-class performance. The classes freeway,
highway, and parking area have a higher detection accuracy
with the CNN-based approach than with the SVM-based
approach. In contrast, the SVM-based method provides a
higher accuracy with respect to class urban. Interestingly
enough, the CNN was able to provide such a high accuracy
for class highway, which implies that our test set might still
be too small. Fig. 3 shows that for some occupancy grids it
is even hard for humans to distinguish between the four road
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0.98 0.013 0.0 0.007

0.0 1.0 0.0 0.0

0.0 0.0 0.957 0.043

0.04 0.091 0.034 0.835

TABLE IV
CONFUSION MATRIX FOR PRE-TRAINED ALEXNET.

Fig. 3. Examples of false classifications with pre-trained AlexNet. Ground
truth labels are urban (left), parking (middle) and urban (right).

types solely based on occupancy grids which emphasizes the
good performance of the trained classifiers.

VI. CONCLUSION AND OUTLOOK

We have presented different methods for road type clas-
sification based on fused occupancy grids. Our guiding
idea was to approach the problem both, from a machine
learning perspective with clearly separated feature extraction
and classification and from the deep learning side. While
our expectation was that the CNN-based classifier would
outperform its SVM-based counterpart, it turned out that a
reasonable choice of hand-crafted features can bring an SVM
classifier on par with a deep neural network. Apparently,
typical image features can be successfully used directly on
occupancy grids. However, as occupancy grids do not have
exactly the same properties as photographic images, a lot
of experiments with feature extractors were necessary to
achieve competitive results. Of course, the feature extraction
step becomes superfluous when using a CNN, but finding
suitable network topologies and optimization parameters also
does not come for free. We found that using pre-trained
CNNs improved classification rates significantly when com-
pared to training from scratch, even though these networks
had undergone pre-training on photographic images from
ImageNet. Very likely, the size of our training data set
was a limiting factor for the CNNs to exert their potential.
Increasing the number of training samples and also the
number of considered classes is the immediate next step
on our agenda. Candidate situations to recognize from grid
images include construction sites, freeway entrances and
exits, traffic jam ends, accidents and road blockage.

Future work will furthermore focus on exploiting the time-
series properties of a stream of occupancy grids. Clearly,
information is lost when classifying each subsequent grid
independently and ignoring previous classifications. This can
be overcome by modeling class transition probabilities with

a Hidden Markov Model. Another promising improvement
in this direction would be to build upon a Recurrent Neural
Network. We also plan to add the video camera images to the
classification and compare feature-level and classifier-level
fusion. Furthermore, the topology of the CNNs needs to be
further pruned to better match the sparsity of occupancy grids
and, in consequence, also to reduce computational costs.
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